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1. Introduction. Let E be an arbitrary (non-empty) set and 5 the restricted symmetric
group on E, that is the group of all permutations of E which keep all but a finite number of
elements of E fixed. If <t> is any commutative ring with unit element, let F = Q>(S) be the group
algebra of S over <D, F => <D; and let M be the free <I>-module having E as O-base. The
" natural " representation of S is obtained by turning M into a F-module in the obvious
manner, namely by writing for a e S, Xt e <l>,

a E ^' = Z *PL

/ 6 E ( s E

Our object is a more or less complete analysis of this representation. It turns out that the
situation is particularly simple when E is an infinite set, the natural representation being
indecomposable independently of the ring of scalars O; furthermore when <1> is a field the
natural representation contains only one non-trivial irreducible constituent (§ 6). The case
in which the number n of elements of E is finite occupies §§ 2-5, where the natural represen-
tation is seen as one of a set of representations obtained from extensions by 3) of a certain
submodule Mo of M. Most of these representations are indecomposable (§ 4); and when <D
is a field they have only one non-trivial irreducible constituent of degree n-1 or n — 2 depend-
ing on the characteristic of the field. In this way one obtains a non-trivial modular irreducible
representation for each symmetric group (§ 5).

2. The natural representation of the symmetric group. Let 0 be a commutative ring with
unit element, S a group, and F = <t>(S) the group algebra of S over $ ; we shall use 1 to denote
the neutral element of 5 as well as the unit element of <&. By a representation module of S
over <I> we shall understand a (left) F-module M which is <£>-free, i.e. which has a $-base.
This last requirement is automatically satisfied when $ is a field, since every module over a
field is necessarily free. By choosing a <D-base for M we can construct a matrix representation
of S in the usual manner.

Since the ring $ is commutative, any two $-bases of a <t>-free module have the same num-
ber of elements! and consequently any two matrix representations arising from the same
representation module have the same " degree ". The usual notions of homomorphism, iso-
morphism, etc., of representation modules also obtain. For instance the representation module
M is said to be decomposable if it is possible to express M as the direct sum of two proper
representation submodules. Note that M may be decomposable as a F-module, but not as a
representation module. Similarly M is a simple or irreducible representation module if and
only if the only representation submodule of M apart from itself is the null submodule.

t See N. Bourbaki, Algebre, Ch. II § I, p. 20, Ex. 13, and Ch. Ill § 5, No. 7, Cor. 2, p. 67.
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122 H. K. FARAHAT

Throughout §§ 2-5 we take S to be the symmetric group on a finite set E\ for M we
take the natural representation module of S described in the introduction. Let n be the
number of elements of E.

Clearly the ring <5 is itself a O-free module (having <D-base consisting of the unit element 1
by itself). We make $ into a representation module for F by writing, for a e S, 0 e <D, a</> = </>.
The matrix representation corresponding to this module is the unit-representation a -> 1.
We now define a mapping v : M -»<D by the equation

ieE

Obviously, v is a <t>-homomorphism, and we may verify that if a e S then av =va, and v is in
fact a F-homomorphism. Put Mo = Ker v; thus Mo consists of all elements £A,i of M for
which J > , = 0.

Clearly Mo is a F-submodule of M. However, it is also a representation submodule of M.
To show this, it is enough to exhibit a <5-base for Mo; and it is an easy matter to verify that
if j , is a chosen element of E then the n — 1 elements i—il (i =£ ilt ieE) constitute such a base.

By the first isomorphism theorem it follows that M is an extension of Mo by the " trivial "
module O. The question arises as to whether or not this extension splits, i.e. whether Mo

is a direct summand of M. We prove

(2.1) THEOREM. MO is a direct summand of M if and only ifn<& = 0 .

Proof. Suppose that «$ = <D, that is that nri = 1 for a suitable ri e O. Let e denote the

sum of all elements of E: e = £/ , and define the mapping v' : O -»M by
i e E

v'(f> = n'<pe.

Since ae = e for all a 6 5, v' is a F-homomorphism. We have, for <j) e O,

vv'4> = vn'(j)e = n'4>n = </>;

whence vv' is the identity map of 0 . It follows that £ = v'v is an idempotent F-endomorphism
of M into itself:

c,1 = (v'v)2 = v'vv'v = v'v.
We have

and this is zero if and only if £A; = 0, i.e. if and only if £Ajje Af0. It follows that Mo is a
direct summand of M, more precisely, that M is the direct sum of Mo and the " trivial "
cyclic submodule <t>e generated by e.

Conversely if M0 is a direct summand of M then there exists a F-epimorphism n: M-> Mo

whose restriction to Mo is the identity map. Let ix be a fixed element of E and put

,/eE
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ON THE NATURAL REPRESENTATION OF THE SYMMETRIC GROUPS 123

so that we have£A; = 0. Since n is a T-homomorphism we have for any aeS, an = nix;
hence

£ XjO,j = anii =n<xil =n((«il-il) + il) = (ciil-il) + ni1. (•)
J e E

If j,j' are distinct elements of E other than ilt there exists aeS such that a/" =y, ai t = i\.
Comparing coefficients of j in (*) we then get kr = A;. It follows that the coefficient of j
(J j= /j) in nit is independent ofy. Let A be this coefficient. Then Afi = — (n— 1)A and so

nit = ACe-nij), e = £ i.

Equation (*) now gives for arbitrary a,

A(e—naii) = a 7 t ' i = a ' i ~ ' i + A(e —n^),

i.e. — xnaJ! = ai1 — i1(l +An).

Choosing for a any permutation which " moves " i1 and comparing coefficients of ai1( we
get —Xn= 1. Hence n$> = <J> and the proof is complete.

3. The group of extensions of Mo by <t>. The module /I is said to be an extension of the
module B by the module C if B is a submodule of /I such that AjB is isomorphic with C.
Here we are concerned with the extensions of Mo by <D.

According to the general theory of extensions of representation modules (see e.g. D. G.
Northcott, Homological algebra, Ch. 10, § 9) all extensions of Mo by <D will be known once the
cocycles on S into Horn $ (<t>, MQ) sa Mo are determined. We recall that a cocycle on S into Mo

is a mapping e : S -> Mo such that

a) (e,j8eS).

Those extensions which are isomorphic with the direct sum of Mo and 0 (i.e. split ex-
tensions) correspond to the coboundaries, namely cocycles of the form

eo(a) = aw0 — m0 (a e S),

where m0 is a fixed element of Mo. The group of extensions Ext(A/0, d>) is then defined as the
factor group of the additive group of cocycles modulo the subgroup of coboundaries.

In this section we compute the group of extensions of Mo by O. Let iui2, ... , in be the
elements of the set E in any order, and, if r is any integer and 1 ̂  k g n — 1, write Tt+r(n_ o

= (ik, /„). Then it is well known (see e.g. R. C. Carmichael, Groups of finite order, Ch. VII
§48) tha t t , , ... , Tn_, generate the symmetric group S on E, and that every identical relation
between them is a consequence of the following relations:

(a) xl = 1, (b) (tkxk+i)
3 = 1, (c) (xkxk+ixkXj)2 = 1,

where k, j range over the set 1 , 2 , . . . , «— 1, except tha ty is different from k and k+1.
It follows that a cocycle e is uniquely determined once its " values " at x,,..., Tn_t are

known. In fact, if coi, a>2,... , coq is any selection of the above 2-cycles, then

o2, ... co(J_2e(a)(7_1)+ ..
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124 H. K. FARAHAT

Using this formula we can verify easily from (a), (b), (c) that the values of the cocycle at
t | , ... , TB_! satisfy the identities

(a')

(£•') ( l + TtTfc+1+Tfc + 1T*){e(Tfc) + Tte(Tfc + 1)} = 0,

(C') (T7 + TkT(t+1Tk)[e(T;) + Tj(T4Tfc+1 + l)e(Tt) + T tT t + le(Tk + 1) ] = 0 ,

where, once more, k, j range over 1, 2, ... ,n— \,j being different from k and k+l.
Conversely, suppose that we are given « —1 elements e ^ ) , ... ,e(TB_!) of Mo which

satisfy the relations (a'), (b1), (c')- We show that they are the values of a cocycle at T ! , . . . , rn_ t .
If a?!, ... , co, is a sequence of elements tk, put

4

1, C 0 2 , . . . , CO,) = ^ COi(O2 . . . C 0 r _ i £ ( C 0 r ) ,

it being understood that empty sums are zero. It follows immediately that, if a>\, ..., co'p is
another sequence, then

e((ou ... , coq, co[, ... , co'p) = (0^2 ... co,e(to;, ... , o)'p)+e(cou ... , coq).

S i n c e t h e e(zk) s a t i s fy (a1), (b1), ( c ' ) , i t f o l l o w s t h a t £ (co , , co2, •••, coq) = 0 w h e n e v e r (OiCo2 ... coq

= 1. Hence, if c o ^ ... co, = co'jCô  ... co'p, then 6(0;!, ... ,00,, a>'p,, ... , OJ'J) = 0 and so

...co,)e(co;, co;_1( ... , co\)

= e(co'u(o'2> ... ,co'p),

by (a') and the definition. Thus we may define for a = (oxui2 ... a>q, e(a) = fi(co1; co2, ... , toq),
and then £ is a cocycle on S into Mo as required. Hence we have proved

(3.1) LEMMA. If e is a cocycle on S into Mo, then the elements mk = e{vk) (1 ^ k ^ n— 1)
of Mo satisfy the relations (a'), (b'), (c'). Conversely, any n — \ elements of Mo satisfying these
relations are the values of a cocycle at xu ... ,xn-v

Let g be a cocycle, and for k = 1, 2, ... , n — 1 put

Applying (a') we find that

<£*,*= - & - . = & (say) (i)

and 2</>M = 0 for l^kj^n. (ii)

Next apply (6'), comparing coefficients of /„ on both sides. We have

0 = sum of coefficients of /„, ik, ik+i in s(Tk) + Tke(rk+l) = </>fc> ft+i+ c>k+1 k.

Hence <f>k k+1 = 4>k+i k. (iii)
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Finally apply (c'), comparing coefficients of i} on both sides. Then 0 = sum of coefficients of

The contribution of the first term is zero by (i). The contribution of the second is the sum of
the coefficients in e(rk) of Tt+1TtTy/n, TjH.1T/kT,iJ-) tjin, tjij, which is clearly equal to

j j j k-^k = 0.

The contribution from the last term is obviously the sum of the coefficients in e(zk+i) of
Tfc+iTA/n, Tfc+1TJfc/J; t h a t i s

*k+i,* + * t + i j = O. (iv)

Hence, by (iii) and (iv), we see that, for each k, <f>k, has constant value provided that / # k,
I # n. Denote this common value by i]/k; then we have proved that

Z ik-in) ( 2 ^ = 0),

or writing as usual e = it + i2 + ... + /„, we have

<K**) = </V+S*0Wn)- (3-2)

Since e(yk)eM0, we have mj/k = 0 = 2i/^. Let <&0 denote the set of elements ^ of O such that
(2, n)\p = 0. Thus <D0 is necessarily zero if n is odd. Then il/keQ>0 ( a u &)•

Now a straightforward calculation shows that for arbitrary £,k e 0, the elements

™* = £*(<*-'„) (fc= 1, 2, ... , n - l )

satisfy the requirements of Lemma (3.1). Hence there is a unique cocycle e' such that e'(xk)
= &(»» — /„). It follows from (3.2) that the equations

e"(T») = ^ e ( f c = l , 2 , . . . , B - l )

also define a cocycle. Clearly for any a e S , e"(a)=i/'ae, where il/ae<&0. We have for

Hence

and so either ^a = 0 (all a), or else there is a non-zero element ij/ e O0 such that

0 if a is even,
if a is odd.

This last case is only possible when « is even.
Conversely it is clear that, if n is even and ij/eQ>0, then

if a is even,
if a is odd,

is a cocycle on S into Mo.
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Thus we have completely determined the cocycles:

Every cocycle e is given by

where I/'GOQ, ^ G $ ; and conversely if, i//eO0, ^ e $ , then (3.3) defines a cocycle on S into Mo.

Remark. We observe that for n > 2 the elements 4>, £i> ••• » £n-iare uniquely determined
by E C O , ... , £(Tn-i)- F ° r « = 2 we have ^e =0( / 1 + /2) =^0 ' ! —J2). SO that </< may be
replaced by zero. This will be assumed to be the case whenever an interpretation of (3.3)
for n = 2 is required in what follows.

Now we determine the coboundaries. If

e(a) = <xmo-mo,

n

where m0 = £ /i ti t

is any coboundary, then

say, where £k = fin — fik; we have

Conversely, suppose that e is a cocycle such that

, + ... +£„_! = n\in and define \xu ..., ^ n - i by

Z '*> t h e n
*=i

v(mo)

so that m0 e Mo; and furthermore

V n o - m o = Ojn-/VK<*-'J = «?k('*-'n) = e(T*)-
Consequently

e(a) = am0 - m0 (for a e S)

and e is a coboundary. Hence we have

(3.4) The cocycle (3.3) is a coboundary if and only if

\l/ = 0 and (*!+ ... +£„_! e n<P.

We are now in a position to prove

(3.5) THEOREM. Ifn > 2, the group Ext(M0, <D) of extensions ofM0 by O is isomorphic to
the direct sum o/O/nO a«rf O0, where O0 w //ze je? of elements f of $ JMC/I ?/ia/ (2, /i)^ = 0.
Forn = 2 we have Ext(M0, O)«^ O/2O.
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If n > 2 and e is the cocycle (3.3), put Ne = (^+ ... + £ n - i , i/0- Then N maps the
(additive) group of cocycles homomorphically onto <5/«O © <D0. Here £, denotes the residue
class of f modulo nO. The kernel of N is precisely the group of coboundaries, by the
remark preceding the theorem. This proves the first assertion and makes the second assertion
obvious.

(3.6) COROLLARY. Ifn<f> - 0 then every extension of Mo by <D splits.
For in this case we have <D/n<J> = 0, <J>0 = 0. a n d s o Ext (M 0 , <J>) = 0.

4. The extensions of Mo by O. As before, M denotes the <I>-free module with base
E = 0'i> '2. •• • . 'n}- We shall show how M can be made into a F-module in such a way that it
becomes an extension of Mo by 3> having a prescribed cocycle e. If a is any element of T, we
shall use ae to denote the O-homomorphism of M into itself corresponding to a in the proposed
module. Furthermore, we denote the resulting F-module by eM. Clearly it is sufficient to
define ae when a e S. We write, for m e M, a e S,

asm = am + v(m)(e —e)(a), (4-1)

where e is the cocycle of the natural module M (computed by using (4.3) below) and, as before,
v(m) is the sum of coefficients of m. Clearly, when e = e, (4.1) reduces to the natural definition
asm = am. We verify that (4.1) does in fact make M into a T-module. If a, /JeS, then, for
meM,

= (a/8)m + v (m) (e - e) (a/3) - <x[pm + v (m) (e - g) (/?)] - vfjSm + v (m) (e - e) (/?)] (e - e) (a)

= v(m){(e-e)(aj3)-a(£-e)0?)-(e-e)(a)} = 0,

since e - e is a cocycle. This proves our contention.

(4.2) THEOREM. The representation module eM defined by (4.1) is an extension of MQ by O
with cocycle e.

Proof. By (4.1), we have asm = am whenever meM0. Hence MQ is a T-submodule of
eM. Furthermore, we have for m e M, a. e S,

v(aem) = v(am) = av(m);

hence v is a F-epimorphism of eM onto <t>. Since Mo = Ker v, it follows that eM is an extension
of Mo by O. It remains only to compute the cocycle of this extension; and to do this we need
mappings which express M as a direct sum of the <J>-modules Mo and O. Define r\\ M-* Mo,
p : <1> -+ M by

where meM, $ e O . It is easy to see that

Mo ^ ' M i Mo ; O 4 M -^ O (4.3)
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is a representation of M as a direct sum of the O-modules Mo and O. According to the usual
method for computing the cocycle ex of the extension sM we have, for oceS,

e1(a) = a i n - i n +(e -£) (a ) .

But e is the cocycle of the " natural " module M. Hence when e = e we have et = e.
Consequently our formula gives

e(a) = a / n - i n (4.4)

and £! (a) = e(a); that is, the cocycle of the extension zM computed by using (4.3) is e. The
proof is complete.

Remark. The proof also yielded the formula (4.4) for the cocycle of the natural extension
of Mo by $ computed by using the representation (4.3). In particular we have e(rA) = /» — /„.
By (3.4), we have that e is a coboundary if and only if n— 1 6 n<&, i.e. if and only if n<S> = <P.
This yields another proof of Theorem (2.1).

The remainder of this section will be devoted to a discussion of the decomposability of
these extensions sM as representation modules. We begin with an easy lemma.

(4.5) LEMMA. If the representation module A is decomposable, then there exists an idem-
potent endomorphism 3 of A such that 3 and 1 are linearly independent over $, that is, such that

(t>l5a+(j)2a = Ofor all a^A implies that $! = 4>2 = 0.

Proof. Suppose that B and C are proper representation submodules of A such that
A = B+C (direct sum). Every element aeA has a unique expression in the form a = b + c
with beB,ceC. Let <5 be the mapping of A into itself carrying every element a to its com-
ponent b in B. Obviously <5 is an idempotent endomorphism of A, and it only remains to show
that 3, 1 are linearly independent over <D. Now since B is a representation module, it is <D-free,
and so the only element </> e <5 such that <j)B = 0 is the zero element. A similar assertion holds
for C. However B = 5A, and C = (1-5)A. It follows that $3 = 0 implies that <$> = 0 and
that 0(1 —3) = 0 also implies that $ = 0. Suppose now that 015 + <̂ 21 = 0. Multiplying by
1 — 5 and remembering that 52 = 5, we get <j}2(l—5) = 0 and hence $ 2 = 0, </>, = 0. The
lemma follows.

(4.6) LEMMA. If n > 2 and <5eHomr(eM, e'M), then 3M0<=M0. This conclusion is
valid in the case » = 2 provided that no non-zero element o / $ 0 annihilates t,\.

Proof. We have, for cteS, moeMo, <xe'3m0 = <5aem0 = 3a.m0. Hence

v5am0 = v(xe'5m0 = vtx3m0 = v5m0.

Suppose that n ^ 3, and let k, I be distinct integers such that 1 ^ k, I ^ n-1. Applying our
formula with a = T,, m0 = ik—in, we get

v<5( '*- 'J = v<5 O W / ) = v<5 ( '*- 'n)-v<5(»,-»„).
n - l

Consequently v<5(/,—/„) = 0, i.e. <5(/ ,- ; jeM0. But Mo = £ OC»i — *„)- Hence 3MQ c Mo.
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Suppose finally that « = 2 and that <£<!;', = 0, 4> eO 0 imply that <j> = 0. We have, writing

Hence

Comparing coefficients we have

Our hypothesis now gives Xl + \2 = 0, i.e. 8{ix — i2)eM0. The proof is complete.

Remark. The condition required for the case n = 2 cannot be dispensed with in general.
Consider for example the mapping 8 defined by

<5(ii-i2) = 2i1 + 2i2, 5i2 = 0,

taking for O the ring of the residue classes of the integers modulo 8. Clearly 8 does not map
Mo into itself, and a straightforward calculation will show that <5eEndreM if 8(T,) = 0.

The next object is to determine the endomorphisms of Mo.

(4.7) LEMMA. Every endomorphism of Mo is a multiplication by a scalar.

Proof. Let 8 e EndrM0 and put for 1 £k£n—l,

£(<*-»„) = "l<K'"*, '•,)('/-'„).
1=1

For any aeS we have 8 = <x~i8tx. Apply this, choosing for a any permutation leaving /„
fixed. Then

"t <K<"*> 'i)('|-'n) = *(«*-«•«) = a-lda{ik-in)= a-'S^-Q
l = i

n—1 n— 1

= a~1 £ 0(ait, ip)(ip-U= X! <K«»*> «'i)(»i-iJ ('P = «'/)•
P=I 1=1

Hence <£(/t, /,) = </>(a/fc, a/,) whenever a/n = /„. This implies that, if k # /; A:, / ^ « - 1 ,

^('*» '*) = <t>(ii, »i) = </>. <K»*. 'i) = 0( ' i . '2) = X,

say. Consequently, writing (j> — x = C.

5 0 ' * - O = C(/*-i.) + z (e -« i . ) (1 =a fc =1 « - l ) .

In the case n = 2 this gives

so that the assertion is proved in this case.
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If n > 2, let p g n — 1 and p # k. Since 8 — ( commutes with tp, we have

But

05-00*-/,) = (S-0Wk-Q- 0p-O} = (S-O(ik-ij-(5-M,-Q = o.

Hence x(e~m
P) = 0> X = 0> a n d ^0* —'«) = C(4 —'„)• The result follows.

(4.8) COROLLARY. 77ie representation module Mo is indecomposable.
This is an immediate consequence of (4.7) and (4.5).

(4.9) LEMMA. Let n > 2 and suppose that 6 is a T-homomorphism of the representation
module zM into the representation module e'M, where e is given by (3.3) and z' by a similar
formula having \j/', £'k in place ofty, t,k. Then we can find elements £ 0, 0O o /O such that for
meM,

n - l

0 E £k = "(0-0o)> 0iA' = O. (4.11)
I

Conversely, (4.10) defines a homomorphism 5 provided that (4.11) are satisfied. These assertions
are valid also in the case n = 2 if no non-zero element o / $ 0 annihilates £[.

Proof. L e t n > 2 . By (4.6), we have 8M0 c Mo; i.e. <5 induces an endomorphism of Mo.
By (4.7), there exists ( in <D such that dm = (,m whenever m e Mo. Put A = 5 - £ so that Am = 0

n

whenever meM0> and let A/n = £ 8kik. The relation A = T^'AT^E now gives

n

1

n

^ T £̂ /^ **klk — '
1

Let /, k, n be different. Then comparing coefficients of /,, ik we have, writing £ 0k ~ »̂

Adding this over fc = 1, 2, ... , n — 1, we get

n - l

i.e. 0 E & = n (0-0 n ) - Hence (4.11) is satisfied with 0O =0n. Furthermore we have
i

n n ~ 1 n —• 1

i i " i
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If now meM, then m — v(m)ineMo and so

f "-1 1
Am = v(m)Ain = v(mH0oe + 0 Z (f*-l)'*f-

I » J
This proves (4.10) and completes the proof of the direct part of the lemma in the case n > 2.
In view of the agreement that \p' = 0 when n = 2, we have also proved our assertion in this
case.

Now we prove the converse assertion. We have to show that, if 0, 0O satisfy (4.11), then
r »-i

Am = v(mH0oe + 0 Z ( & " 1 .
I i

say, defines a homomorphism of sM into e'M. Let a be any permutation from S. Then,
since aem = am (mod Mo), we have v(aem) = v(aw) = v(m). Hence

Aaem = Am.

On the other hand, for 1 ̂  k ^ n — 1 we have

xke'Am = v(m) . t^e'c = v(m){xkc + v(c)[il/'e+(^'k— l)(ik — in)]}

f »-i
= v(m)J0oe+0 Z (ft-l)i*-fl«i-l)(«*-

n - l

But v(c) = «0o + 0 Z €i — 0(n — 1) = 0, by 4.11. Hence, as 0i/>' = 0,
i

Tke'Am = v(m)c = Am.

It follows that as'Am = Am for all <xeS, and the proof is complete.

(4.12) THEOREM. Every extension zM of Mo by <t> is an indecomposable representation
module with the exception of the split extension.

Proof. We have to treat the case n — 2 separately. To begin with, assume that n > 2.
Suppose that zM is a decomposable representation module. By (4.5), we can find an

idempotent endomorphism S of eM into itself such that 1,5 are linearly independent. By
(4.9) (with e = e'), there exist elements £, 0, 0O of 3) satisfying

0 Z Zk = " ( 0 - 0 o ) . 0^ = 0 (4.13)
!

such that

5m = £m + v(m)<0 Z (̂ * — 1)ijt + 0
( i

say. Then ((ik-in) = 8(ik-Q = 82(ik-in) = C2('/t-'n)» whence C is an idempotent element
of $ . Next, writing A = 5 — (, we have Am = v(w)c,

A2m = v(m)Ac - v(m)v(c)c =0v(m)c.
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Hence A2 =0A; i.e. (5-Q2 =8(d-£). But d2 = <5, £2 = £. Consequently

However 6, 1 are linearly independent over <D. Hence

0 = l -2£ , 02 = (1-2O2 = 1

By (4.13), we have

and \p = 62\j/ =0.dip = 0. Accordingly e is a coboundary and the extension eM is a split
extension. This completes the proof in the case n > 2.

It remains to prove the theorem for n = 2. Suppose that the representation module eM
is decomposable, and let M = X+ X' be a decomposition of M into a direct sum of proper
representation submodules. Since any O-base of M has exactly two elements, the submodules
X, X' have bases of a single element each. Let x, x' be such elements. Then x, x' form a
O-base for M. Put

The 2 by 2 matrix in this equation is invertible, and the same must also be true of its determinant
aft' — a'P = n, say. Applying x^e to both sides of the above equation, we have

T I £ * "i = r - ( / 1 - / 2 ) "i = r - i o i r ,•,-.•,
T l « ' J I ^(h-h)+i2 J [ « i 2 JL ''2

Premultiplying by

we find that

«'^i-2a'jS' ~|[ * "I.
^ + aP'+a'P J [ x' J

Since Ĵ , A" are T-submodules and their sum is direct, the 2 by 2 matrix in this relation must be
diagonal. Hence

a2?, = -2a/?, a % = -2a'/?',

and so

ix% = W-<x'P)% = jS'V^ +p2 . OL'% = 0 (mod 20).

However n2 is invertible. Hence ^ , e20 and the extension eM splits. The proof is now
complete.
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5. An irreducible modular representation. In this section <D will denote afield of charac-
teristic p (possibly zero). Our object is to obtain the irreducible constituents of the matrix
representation of 5 obtained from the representation module Mo. We begin with a pre-
liminary result. The coefficient of i in x will be denoted by (x),.

(5.1) LEMMA. Ifx is any element of Mo and i any element of E, then

(x)j(ni—e)e Tx.

Here e denotes the sum of the elements of E.

Proof. Let E' denote the set of all elements of £ other than i, and let a be any permutation
of E leaving i fixed and permuting the elements of E' cyclically. Let

* ' = E (*)«">
U6JS'

so that x = x' + (x)ti, v(x) = v(x') + (x)t. Then clearly

since v(x) = 0. The lemma follows.

(5.2) THEOREM. If® is afield of characteristic p not dividing n, the matrix representation
{ofdegree n— 1) of S obtained from the representation module Mo is irreducible. If on the other
handp divides n, this representation contains an irreducible constituent of degree n — 2, the remain-
ing constituent being the unit representation.

Proof, (i) Suppose firstly that p does not divide n, and let x be a non-zero element of
Mo. Then, by (5.1), we have

(x)t(ni-e)erx (for all i e £).

But (x), # 0 for some ie E and O is a field. Hence ni—eeTx for some ieE. If now./ is any
element of E, and T is the 2-cycle (//) then

nj — e = x{ni — e) e Tx.

Since in this case M<5 = <t>, we get for/, keE,

j — k = n'[(nj -e)-(nk—e)] e Tx,

where nri = \. But the elements j—k generate the 0-module Mo. Hence Mo cz Fx; and so
fx = Mo for every non-zero element x of Mo. The representation module Mo is therefore
simple, and the corresponding matrix representation is irreducible.

(ii) Assume now that p divides n. Then v (e) = n . 1 = 0; that is e e Mo, and obviously $e
is a representation submodule of Mo. As such <be is isomorphic with O and so gives rise to the
unit representation. We shall show that the factor module M0/<I>e is a simple representation
module.

Let i be a fixed element of E, let E' be the set of all elements of E other than /, and denote
by S' the subgroup of S consisting of those permutations of S leaving / fixed. We identify
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S' with the symmetric group on E'. Since the elements {k—i; keE'} form a O-base for Mo,
there is a unique ^-isomorphism 9 of Mo onto M' — Y <J>fc, for which 6 (k — i) = k for all

keE'

k in E'. We observe however that 6 is in fact an S'-homomorphism. Furthermore we have,
since n . 1 = 0,

0(e) = 6 £ (fc-Q= £ fc = e',
ft e £' I e E'

say. Hence the F'-isomorphism 6 carries Oe onto d>e' (here F ' = O(S') is the group algebra
over O of 5 ' and F ' c F). It follows that 9 induces a F'-isomorphism of the factor module
M0/Oe onto the factor module M'l<&e. However the number of elements of E', namely n — 1,
is not divisible by p . The F'-module M' therefore splits into the direct sum of Oe' and
M'o = M' n M'o (cf. (2.1)), and, by the first part of this proof, M'o is a simple F'-module. As
M'\<be' is then isomorphic with M'o, it follows that Mol<!>e is a simple F'-module. Hence, for
any non-zero element x of M0/Oe we have

M0/3>e c F'x <= Fx,

and so A/0/<De = Fx; that is M0/Q>e is a simple F-module. The proof of the theorem is com-
plete.

We end this section by summarising our results in the case of a field <J> of characteristic p .

(i) If p is not a factor of n we have /zfl> = <t> and so (by (3.5)) all the extensions of Mo by <J>
are equivalent to the extension M. Furthermore Mo itself is a simple representation module
and so M => MQ => 0 is a composition series for M.

(ii) If p is a factor of n we have n«J) = 0, and there are " plenty " of extensions of Mo by <1>,
all of which (with the exception of the split extension) are indecomposable representation
modules. The module Mo is indecomposable but not simple. In fact we have a composition
series

zM => Mo •=> <D<? => 0

for each of the modules eM.
Note that our analysis has yielded an irreducible modular representation for each sym-

metric group, of degree n — 1 or n — 2. In point of fact we get another irreducible representation
(except when p = 2) by constructing the " associated " representation, i.e. by changing the(except when p = 2) by constructing the ~^~w~..wv.
sign of every matrix representing an odd permutation.

6. In this final section we investigate the symmetric group 5 on an infinite set E. The
results will be simpler than in the finite case.

(6.1) LEMMA. Let 0 be any commutative ring and M a free ^-module with base an infinite
set E. Then the only endomorphisms of the representation module M of the restricted symmetric
group S on E are multiplications by elements of<&.

Proof. Let S be any endomorphism of M, and for each ieE write
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where the coefficients 8(i,j) are almost all zero. If a e S then a.8 = <5a; i.e. a.'i8cL = 8. Hence
for each ieE we have

£ 5{i,j)] = 5i = a-15al = a-1 £ «(«i,fc)fc= £ <5(oci, k) . a^/c.
J G £ keE keE

Comparing coefficients of j , we get

8(i,j) = 8(m,aj) (6.2)

for all i,jeE and all txeS. Since 5(i,y) = 0 for almost ally and E is infinite, we can find7,,
different from i, such that 8 (i, _/,) = 0. If now / # y, there exists a permutation a in S such that

Using such a permutation in (6.2), we get

8(i,j) = 0 whenever i ^ y .

Once more, if i, i' are any elements of E and a any permutation carrying i to i', equation (6.2)
gives

say. We have thus proved that Si = <j)i for all ieE, and so 8m = 4>m for all meM. This
completes the proof.

(6.2) THEOREM. The natural representation module M of an infinite symmetric group is
indecomposable over any commutative ring.

This follows at once from (6.1) and (4.5).
Again let v : M -* <t> be defined by

ieE / ieE

and let Mo be the kernel of v. As before Mo is a representation submodule of M. We prove

(6.3) THEOREM. If® is any field then the representation module Mo of the infinite symmetric
group S is simple.

Proof. Let F = 0(5) be the group algebra of S over $ . We must show that Mo <= Tx
for every non-zero element x of Mo. The coefficient of i in x Will be denoted by (x)(. Let D
denote the (finite) non-empty subset of E consisting of all i in E such that (x)( # 0, and let d
be the number of elements of D. Choose a fixed element, say u, of D. Note that necessarily
d ̂  2 because £> is non-empty and £ (x), = 0. If D' is the set of elements of D other than w,

ie D

and <T is a cycle on D' leaving all other elements fixed, then easily

As (x)u ¥= 0 and O is a field, we conclude that du - £ i belongs to Tx. We have thus proved:
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(6.4) If x = £ ( x ) , i e M 0 and (x)t ¥= 0 (all ieD), then, for any ueD, we have
ieD

du- £ ieFx,
ieD

where d=\ D\.

Now to complete the proof, let x # 0 be as above, and let a, b be any two distinct elements
of E. The proof will be complete if we show that b-ae Tx, because the elements b - a generate
Mo as O-module. Let K be any subset of E having exactly d— 1 elements and disjoint from
{a, b} Since d ̂  2, Kis non-empty. Choose an element k of K. Put

A = KKJ{O], B = K\j{b) ;

thus | A | = | B | = d and there exist permutations a, /? in S such that

au = k, Pu = k, aD = A, fiD = B.

Applying (6.4) to ax in place of x, we conclude that dk — J^ie Fax = Fx. In the same way
leA

we have dk— £ i; e Fx, and therefore their difference £ i— £ i = b — a also belongs to Tx.
ieB ieB ieA

This completes the proof.
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