
Journal 0/ Glaciology, Vol. 34, No. 118, 1988 

DYNAMICS OF THE ICE-CRUSHING PROCESS 

By IAN J. JORDAAN 

(Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 

St. John's, Newfoundland A I B 3X5, Canada) 

alld GARRY W. TIMeo 

(Hydraulics Laboratory, National Research Council of Canada, Ottawa, 

Ontario KIA OR6, Canada) 

ABSTRACT. During fast indentation tests on ice sheets 
at constant rates, crushing is commonly observed at 
appropriate combinations of speed and aspect ratio. An 
analysis is made of this mode of failure, using as a basis a 
recently conducted test on an ice sheet under controlled 
conditions. The variation of load with time is given special 
attention, and cyclic variation of load is associated with 
periodic crushing (pulverization) events, followed by clearing 
of the crushed ice particles. An analysis of the clearing 
process is summarized in the paper, treating the crushed ice 
as a viscous material. A detailed analysis of the energy 
exchanges during the indentation process is given. Elastic 
variations of stored energy in the indenter and in the ice 
sheet are calculated; these are relatively minor. The 
dissipation of energy during a typical load cycle (3 mm 
movement during 0.05 s) is about 8 J. The energy required 
to create surfaces of the crushed ice particles is small 
(0.006 J), as is the work of crushing based on mechanical 
testing (0.09 J). It is concluded that the process of viscous 
extrusion of crushed ice is the main seat of energy 
dissipation, basically as a frictional process. A relationship 
for the mean thickness of the crushed ice layer is 
developed, based on energy-balance considerations. 

I. INTRODUCTION 

Ice is an extremely brittle material. Yet at very low 
loading rates, ice creeps, dissipating energy mainly as heat. 
This is not a result of the loading rate per se, but rather 
the result of the fact that the creep process keeps the load, 
and consequently the strain-energy density, at a level low 
enough to preclude fracture. Once this density exceeds a 
critical value, fracture processes take place. These can 
consist of tensile fractures (splitting or f1exural) and also 
crushing in compression. 

The present work concentrates on the crushing of ice 
in indentation, and is focussed particularly on the results of 
a test series in which a flat indenter is pushed at constant 
rate through a level ice sheet. In an earlier paper by the 
authors (Timco and Jordaan, 1987), it was shown that due 
consideration should be given to two different aspects of 
the indentation process. These are: 

(I) The pulverization (crushing) of the ice . 
(2) The clearing of the products in the pulverized 

zone. 
Of special interest is the relation of these events to the 

force-time variation. These time series were discussed in the 
reference noted above, and it was concluded that sudden 
drops in load were associated with pulverization of ice 
ahead of the indenter and that the clearing of crushed ice 
carried on continuously. A mechanism along these lines with 
almost instantaneous pulverization had been suggested to 
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explain the dynamic action of ice in the crushing mode 
(Jordaan, 1987). It is important to test these assumptions by 
a detailed analysis, and also to analyse the exchanges of 
energy in the process so as to assist in an understanding of 
the indentation process . 

With regard to previous work, a number of articles 
deal with the crushing process in ice on both rigid and 
flexible structures. Some of the earlier studies were 
concerned with the development of an analogue model of 
the crushing process (Matlock and others, 1971; Swamidas 
and others, 1977). Miiiittiinen (1978) dealt with flexible 
structures, in particular lighthouses, and presented analysis 
methods for this kind of structure. There have also been a 
number of experimental investigations in the laboratory 
using model ice, primarily by Miiiittiinen (1983) and Sodhi 
and Morris (1986). A number of researchers have 
investigated the crushing process in terms of the energy 
processes involved (Kheisin and Likhomanov, 1973; 
Kurdyumov and Kheisin, 1976; Jordaan, 1986, 1987; 
Kivisild and Blanchet, 1987; Timco and Jordaan, 1987; 
Jordaan and others, 1988). Most recently, Jefferies and 
Wright (1988) presented a very interesting paper on the 
crushing of ice against the Molipaq structure in the 
Canadian Beaufort Sea. The papers mentioned above 
represent only a small number of those published in this 
area . A recent review by Sodhi (in press) gives more 
details, to which the reader is referred. Nevertheless, the 
abundance of work in this area gives a clear indication of 
the interest in and complexity of the problem of the 
ice-crushing process. 

2. EXPERIMENTAL 

Due to the complexity of the interaction process, it is 
necessary to simplify it as much as possible. A good way to 
do this is to perform tests of ice crushing under controlled 
conditions in the laboratory. For the present purposes, 
edge-loaded penetration of an indenter through an ice sheet 
is an appropriate experimental approach . A test series was 
performed in the ice tank in the Hydraulics Laboratory at 
the National Research Council of Canada in Ottawa using a 
fine-grained (1-2 mm) columnar S2 ice. A 63 .5 mm wide 
rigid indenter was pushed through a 9 mm thick sheet of 
ice at a rate of 60 mm S- l This gives a crushing failure 
mode of the ice. 

The indenter was attached to a high-capacity load cell 
so the load on it could be determined. The output of the 
load cell was sampled at a rate of 1000 Hz, and a load-time 
series of the interaction event was obtained. During the 
crushing event, the crushed ice was collected and sieved, 
giving the size and size distribution of the ice pieces. The 
reader is referred to a recent paper by Timco (1986) for 
further details of the experimental arrangement. 
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( b) 

Fig. J. Idealization of ice sheet; plan view of (a) photographic representation showing progress of 
damage . and (b) idealization into three zones. 

3. RESULTS AND INTERPRETATION 

3.1. Cracks and the crUshing process 
During the indentation process, micro-cracking in the 

ice started some distance ahead of the indenter in the zone 
of compressive stresses. Figure la shows the crack pattern 
that moves ahead of the indenter; the cracks appear to be 
aligned along the directions of maximum shear, as indicated 
in a previous analysis (Jordaan, 1986). 

The ice is idealized as shown in Figure lb. Zone 
represents the virgin ice; zone 2 represents the ice that is 
cracked, with some loss of stiffness, whereas zone 3 
represents ice that is pulverized to the point where the ice 
pieces may slide over each other and be ejected from the 
pulverized zone, that is, they can move independently of 
each other. 

The process of cracking of ice in essentially 
compressive states of stress is referred to as "damage"; the 
material can continue to resist stress but its integrity is 
impaired. Thus, the effect of the cracks in compressive 
fields is not immediate disintegration of the ice; compressive 
states are mentioned in the present context since cracks in 
tension will tend to propagate unstably, leading to splitting 
of ice pieces. The array of cracks of shorter length with a 
considerable density is characteristic of compressive states 
and leads to loss of stiffness, when the stiffness is averaged 
over a length of ice containing many cracks. 

Damage mechanics has been used to study a variety of 
brittle materials, and several definitions of damage itself 
have been proposed. It is convenient here to adopt the 
definition used by Resende and Martin (1984); the damage 
parameter, >.., is a quantity that varies from 0 (undamaged 
virgin ice) to I (completely pulverized ice). It is given by 

(I) 

where Go = shear modulus of virgin ice, and G = shear 
modulus of damaged ice. This is in line with the approach 
suggested elsewhere to the effect that the damage to the 
shear modulus is the most important aspect of the 
degradation of ice (Jordaan, 1986, 1987). Attention is 
focussed on the total absence of elastic rigidity with regard 
to shear stress in crushed ice (zone 3), as compared to 
virgin ice. Pulverized ice that is densely packed would be 

able to resist volumetric stress in a manner not dissimilar to 
virgin ice. No doubt, dilatation must occur as the network 
of micro-cracks forms upon pulverization. These events are 
likely to occur only at discrete points in time. The strategy 
in the present approach is that detailed analysis of dilatation 
and any effect on the bulk modulus (including possible 
non-linearities) be regarded as "second order" in comparison 
to shearing and flow. 

The progression from virgin to damaged ice is likely to 
be of the kind illustrated in Figure 2, i.e. the progression 
to the fully damaged state increases rapidly only as the 

Damage 
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y 

Fig . 2. Damage acceleration near the crushed layer. The 
parameter y denotes the distance from the indent er face 
along the length of the ice sheet. 

boundary of the crushed layer is approached. In analysing 
this problem, it seems reasonable to treat zones I and 2 as 
essentially elastic. Zone 3, on the other hand, could be 
modelled as a viscous material with its flow motivated by 
shear stress. 

3.2. The time series 
A typical time series from the interaction event is 

shown in Figure 3. It is evident that the loading event is 
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Fig. 3. Load variation during a half-second time period. The 
interaction speed was constalll. giving an equivalelll 
distance of 3 cm. 

irregular, cyclic, and complex. Clearly, dynamic processes 
are taking place. To understand the crushing process, it is 
necessary to try to understand (1) what causes these load­
level fluctuations, and (2) what controls the magnitude of 
the crushing event. To this end, it is instructive to examine 
the time series in more detail. This was done recently by 
Timco and Jordaan (1987) for the time series shown in 
Figure 3. They found that there were two predominant 
frequencies - one at 20 Hz and the other at 50 Hz. Since 
the interaction speed was constant throughout the test, these 
frequencies correspond to lengths of 3 mm and 1.2 mm, 
respectively. In the analysis it was concluded that the lower 
frequency corresponded to "pulverization" events where the 
ice in the region directly in front of the indenter crushes 
into a myriad of small ice pieces. This produces a crushed 
zone with, on average for this case, a length of 3 mm and 
a total size of 63.5 mm x 9 mm x 3 mm. It was further 
suggested that the higher frequency corresponds to either 
further crushing or large clearing events. The whole process 
is cyclic with regard to the crushing process - the clearing, 
on the other hand, is virtually continuous. 

4. RELATIVE MOVEMENTS OF THE INDENTER 

The rapid variations in load observed in tests (e.g. 
Fig. 3) are considered to be associated with pulverization 
events, resulting in variations about the mean layer thickness 
discussed above. This variation often appears to be of the 
order of the layer thickness. In larger-scale interactions the 
variation in load can be quite regular. A factor that should 
also be considered is the variation of the actual rate of 
movement across the pulverized layer that results from 
elastic movements of the ice and the indenter. For this 
purpose, a period of time 0.05 s, corresponding to a 
movement 3 mm, will be considered. 

The symbol K will be used to denote the composite 
stiffness of the ice and the indenter; noting that the 
calculations below are all for the case of unit indenter 
width, K will also be taken as being per unit width . The 
value of K is calculated from the stiffness of the indenter 
and the ice. Consider first the loading device (Fig. 4) , 
which deflects a distance 50 during the application of load 
FT = Fw, where FT = total load, F = load per unit width, 
and IV = width of indenter. It is impossible to construct a 
perfectly rigid device so that in general 

(2) 

where Ko = stiffness of loading device (including the load 
cell), and 50 = deflection of loading device (at the ice 
surface). Equation (2) assumes linear elastic response; in the 
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Fig. 4. Cantilever loading device aplying a load F as a 
result of movement from A to B. 

present instance, this was verified by experiment and it was 
found that Ko "" 6 MN m-l. The energy stored in the 
loading device is (F50 / 2) or (K0 50

2/ 2) or (F2/ 2Ko)' 
As regards the ice sheet, this is 7 m wide; the length 

is 16 m at maximum, decreasing as the indenter moves 
through the ice. The edge of the ice sheet is frozen into 
retaining walls along the sides of the test basin and at the 
end remote from the indenter. For finite-element modelling 
purposes, these edges were taken as fixed (Tomin and 
others, unpublished). For the present purposes, the 
semi-infinite elastic-plate solution with uniformly distributed 
edge load is used; various results and the rationale for this 
choice are given in the Appendix, presented therein as "case 
C". The stiffness of the ice sheet is then given by 

(3) 

where KI '" 24.0 MN m-I, based on E = 10000 MPa, for 
rapid changes in load. 

The total variation in load in the complete 0.5 s period 
(Fig. 3) was aggregated into increases and decreases, giving 
an average of 5 kN variation (up and down), for a 0.05 s 
movement period (3 mm average distance). Typically, 
decreases in load included several quite large decreases and 
many smaller decreases. We shall investigate the drop of 
3.7 kN over a period of time equal to 0.006 s, identified in 
Figure 3. Given the values of Ko and KI noted above, the 
indenter face and the pulverization front would experience 
the following relative movement (on the assumption of no 
pulverization event in the period considered). 

Movement of indenter (rigid body) 
Elastic rebound (indenter, from Equation (2)) 
Elastic rebound (ice, from Equation (3)) 

Total 

0.36 mm 
0.62 mm 
0.15 mm 

1.13 mm 

It is seen that there is a considerably enhanced relative 
movement, above the regular advance of the indenter; 
during increases in load, the reverse would be the case 
since the elastic movement of the indenter and the ice sheet 
would tend to reduce the relative movement of the indenter 
face and the pulverization front. It should be noted that a 
very rigid indenter (or structure) would result in a 
negligible elastic rebound (second item in the set of three 
above). 

The value of K may now be determined by considering 
a mechanical model such as that in Figure 5. Remembering 
that F is the force per unit width, the total strain energy 
stored is 

wF 2 (5D + 51); 

substituting Equations (2) and (3), this becomes 

(4) 
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and it is seen that 

K 

A representative value in our 
KD = 6 MN m- I, KI = 24 MN m-I, w = 
MN m- 2 

5. THE ENERGY OF THE PROCESS 

(5) 

case, substituting 
0.0635 m, is K = 76 

To understand further the crushing process, it is 
instructive to look at the energy involved in the whole 
process. Using the time series, it is possible to calculate the 
total energy involved in one cycle of the crushing/ clearing 
process. To do this, it is necessary to make use of the fact 
that time is equivalent to distance, so that integration under 
the force-time curve directly gives a quantitative measure 
of this energy. The total energy (ET) for crushing and 
clearing one length of the crushed zone is 

Ts 

R voJF .dt 

ET IF .dY 
0 (6) 

0 fR 

voF 
i .e. ET 

fR 

where Vo is the indenter speed, F is the mean force, f R is 
the frequency corresponding to the lowest significant peak 
in the spectrum, ani! Ts is the time-series record length. In 
the present case, F = 2660 N, Vo = 6 cm S-1, and f R = 20 
Hz, and so ET = 81. This energy can be compared to the 
individual energies of the crushing and clearing processes. 

Since the size of both the crushed zone and the ice 
pieces in the zone are known, it is possible to get a rough 
estimate of the energy involved in crushing this ice. This 
can be done by determining the total energy required to 
create the free surface of the crushed particles. Since there 
was a range of particle sizes, it is necessary to take this 
into account in the calculation. The energy for crushing 
(Ecr) can be estimated by mUltiplying the surface energy 
with the total surface area created. This would not include 
energy dissipated in friction. As previously mentioned (and 
discussed in detail in Timco and 10rdaan (1987)), the 
crushed ice pieces were caught and sieved through screens 
with openings of 4, 2, 1.2, and 0.71 mm. For this 
interaction speed, there were more or less equal amounts of 
crushed ice in each sieve range. Assuming spherical shaped 
particles, it is possible to predict the crushing energy (Ecr) 
as 

Jordaan and Timco: Dynamics of the ice-crushing process 

(7) 

where Gc is the energy required to create a new crack 
surface of unit area, d i is the diameter of the individual 
ice pieces, Pi is the relative amount of crushed ice of size 
i, the summation over i is taken over each of the five 
sieve ranges. Since the percentage of the total ice pieces is 
known in each sieve range (i.e. Pi)' the total crushing 
energy can be determined. Using an average piece size of 
5, 3, 1.6, 0 .95, and 0.6 mm in each of the sieve ranges, 
and energy Gc' measured on this ice of 0 .8 11m2 (Timco 
and Frederking, 1986), the total crushing energy for one 
cycle is calculated to be E = 0.0061. This crushing energy 
is certainly very small when compared to the total energy 
for one cycle, ET' of 8 J. 

Why should this be? At first glance, this large 
discrepancy is very unsettling . It would have been thought 
that the crushing energy (defined as the energy required to 
create the new surfaces) would be a substantial part of the 
total energy. Apparently this is not so . When considering 
the magnitude of the loads in the indentation interaction, 
however, it becomes clear that this crushing energy must be 
small. For example, it is relatively easy to fragment a piece 
of ice corresponding to the size of the crushed zone 
(63.5 mm x 9 mm x 3 mm) by simply hitting it a few times 
with a soup spoon. In this case, the forces and energies 
involved are relatively low. In the indentation tests, 
however, an average force of 2660 N (or about one-quarter 
of a ton) was required to break and clear this amount of 
ice. 

The difference between these cases is related to the 
confinement of the crushed ice. In indentation, the crushed 
ice is confined by the parent ice sheet, and high energies 
are required to clear the ice pieces. The analysis clearly 
shows the great importance of the crushed zone of ice in 
the whole crushing process. In the following sections, this 
region is examined in detail. 

6. THE CRUSHED ICE LAYER 

6.1. Ejection and flow of pulverized ice 
The geometry of the crushed zone is shown in Figure 

6, and a cross-sectional view from the side is shown in 
Figure 7. The idealized crushed ice is of thickness R, which 
is regarded as being constant across the width and through 
the thickness of the ice sheet at any point in time. The ice 
is ejected from the top and the bottom of the sheet. 
Various assumptions can be made regarding the thickness 
vanatlOn with time. For example, the modelling of the 
crushed layer can be done so as to maintain the layer R 
constant. Ejection of crushed ice and the crushing of solid 
ice are in perfect balance: the newly crushed ice constitutes 
a continual inflow into the region designated zone I. A 
process of this kind will be termed continuous crushing. 

Indenter 

Pulverized Laye r 

Fig. 6. Schematic illustration of pulverized ice layer in 
continuous indentation experiment. 
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This represents an idealized way of modelling the process 
which is not in accord with observation. Because of 
heterogeneities in the ice, and the basic instability of the 
fracture process with the stored elastic energy being released 
suddenly, the process will not actually be constant; each 
pulverization "event" will correspond to the pulverization of 
a finite volume of ice. Therefore, the concept of periodic 
crushing is introduced: the pulverized zone ahead of the 
indenter fluctuates continually in size. This represents a 
realistic physical process. Moreover, it fits in with the 
observed force-time curve in all indentation tests other than 
those at slow rates where creep processes predominate. If 
the fluctuation is regular, a periodic (cyclic) loading on the 
structure results . 

For periodic crushing, the indenter is assumed to move 
with a velocity Vo (Fig. 7), with the pulverization front 
at the edge of the ice sheet fixed in space. This choice is 
arbitrary; the analysis could equally well be carried out 
relative to the indenter, i.e. with the pulverization front 
moving at velocity Vo to the left. The analysis to follow is 
therefore intended to apply between the periodic crushing 
events discussed. During this time interval, R decreases as 
the indenter bar approaches the edge of the pulverization 
front. A symmetrical ejection of crushed ice from the top 
and bottom of the sheet is assumed, with no flow laterally 
(out of the plane of Figure 7). Since the indenter is rigid, 
the only inertial effects are in the crushed ice particles. 
Values of Reynolds number in the order of 10-5 or less are 
found, indicating that viscous forces dominate with inertia 
terms being negligible. The latter are therefore not included 
in the analysis. 

The flow of the crushed ice will now be modelled as 
that of a Newtonian fluid in which the shear stress is given 
by S = p.l! where 11. = coefficient of viscosity, and e = rate 
of shear strain. Analysis of crushed ice in a single impact 
(constant layer thickness) treating the crushed material as a 
viscous fluid has been carried out by Kurdyumov and 
Kheisin (1976) and used in analysis of iceberg impact forces 
by Nevel (1986). An extension to the case of spherical 
indenters with continuous indentation is given in 10rdaan 
and others, 1988). In the following, the geometry 
corresponds to that of a flat indenter moving against a level 
ice sheet, with extrusion at the top and bottom (Fig. 6). 
This is different from the spherical geometry used in the 
references noted. A further difference in the following is 
that a very thin layer is not initially assumed, and as a 
consequence continuity at each point (rather than for flow 
through the layer) is satisfied . Also, the variation of force 
with time is studied, and not only the conditions at peak 
force. 

We denote the components of velocity of the crushed 
ice particles with respect to the indenter bar as u in the x 
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(vertical) direction and as v in the y (horizontal) direction. 
In general, u is a function of x and y, i.e. u = u(x,y). In 
the case of v, this will be assumed to be a function of y 
only; this will certainly be true at y = ° and y = R. 

The equation of continuity is: au/ ax = -av/ay, using 
the coordinate directions as indicated in Figure 7. This 
suggests the following equation and solution (personal 
communication from M. Maes, 1987): u(x,y) = v' (y) . x 
+ g(y), on the assumption that v is a function of y only. 
The symbol v· (y) denotes the derivative of v with respect 
to y. The equations of equilibrium are as follows: 
ap/ ax = 1l.V'2u, ap/ ay = 1l.V'2v, where p = pressure, and 
v2 

= (a2/ ax2 + a2/ai), the Laplacian. 
The following solutions can be obtained: 

(8) 

u(x,y) = 6vo~] fr] &]~ - : J. (9) 

p(x,y) (10) 

where Po is the mean pressure at x = 0, i.e. the location of 
maximum mean pressure, and h is the ice thickness. In 
deriving these equations, it has been assumed that the 
particle velocity in the direction of motion of the indenter, 
v(y), is equal to the indenter velocity Vo at the indenter 
face (y = 0) and equal to zero at the solid ice surface 
(y = I). The value of u(x,y) was also assumed to be ° at 
y = 0, and at y = t, i.e. this component of velocity is zero 
at the solid surfaces due to frictional effects. Other 
boundary conditions should be considered and explored; for 
instance, a friction less surface may be appropriate between 
crushed ice and certain surfaces. There is a need for 
research in this general area. 

With regard to boundary conditions, the mean pressure 
at the top and bottom of the sheet can be set to zero. 
Small self -equilibrating pressures and shear stresses are given 
by the solution along these two surfaces; the values are 
small and are negligible for a narrow crushed layer, as in 
the present case. The mean pressure is denoted Px and is 
given by 

R 

Px = J p(x,y)dy. 

o 

At X = ±(h/2), Px = 0 and therefore Po 
using Equations (10) and (I I): 

Px = 6:V
o [f;-J [~ - ~r]] 

(11 ) 

(12) 

and it is seen that Px is a quadratic function of x. A more 
strict analysis would couple the pressure in the crushed ice 
and the damage process in the neighbouring solid ice. 
Taking a zero pressure in the crushed ice at the edges of 
the contact zone can only be a first approximation, since 
this would not lead to failure of the adjacent solid ice, 
unless the layer thickness vanishes. More work on the 
failure process and the relation to the crushed layer is 
needed. 

In a similar manner, it can be shown that this is the 
same pressure distribution that is obtained for the case of 
continuous crushing and expulsion, with v(y = R) = 0, and 
u(x,y) is also the same as the expression above, Equation 
(9). The force on the indenter per unit width can be found 
by integrating the pressure of Equation (12) for either 
periodic or continuous crushing as: 

F (13) 

where a = h/ R is the ratio of ice thickness to layer 
thickness. Thus, the force is proportional to (1/ R )3, so that 
as the ice is ejected and the layer thickness decreases 
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(R ~ 0) the force increases rapidly until the next 
pulverization event. Generally a > I; in the present case for 
the laboratory tests, a '" 3. In full-scale tests, the 
indications are that a is larger. The main activity in the 
crushing process is in a narrow layer of crushed ice 
adjacent to the indenter surface. 

Pursuing the observation that the crushed ice layer is 
narrow, a useful simplification can be obtained by the use 
of lubrication theory. In this, the approximation is made 
that the flow parallel to the face of the indenter and to the 
pulverization front (direction x in Figure 7) greatly exceeds 
that in the direction of movement of the indenter (y­
direction). Thus, ap/ ax» ap/ ay, u» v, a2u/ ay2 » 
a2u/ ax2, and consequently ap/ ax '" jLa2u/ ai, with 

ap ( .. ) u '" - x quadratic In y. 
ax 

(14) 

Since the value of av/ ay is neglected, the condition of 
continuity at a point cannot be obtained . Instead, continuity 
along the narrow channel is preserved by noting that 

(15) 

for all xl'x2 • In Equation (15), ii(-) represents the mean 
value of the parabolic variation of velocity noted above in 
Equation (14). The value of I has been taken as a variable 
in Equation (15) to emphasize that this is permissible in 
lubrication theory. An attractive possibil ity for future work 
is to treat the layer thickness as random, abandoning also 
the symmetry about the y-axis adopted in the present paper. 
In the remainder of the paper, Equation (13) will be used 
in the analysis of the indentation process. 

6.2. Layer thickness: equilibrium and variat.ion 
Given "average" conditions, we can calculate an 

equilibrium-layer thickness I on the following basis. 
Perturbate the layer thickness by the amount 51 ; for 
example, let us increase it slightly. The load changes by an 
amount 

5F 
aF 
-51 
al (16) 

the negative sign indicating a decrease in load . As a result, 
strain energy is released from the ice and the indenter, 
equal to 

F5F 

K 
(17) 

using Equations (13) and (16), the positive sign in Equation 
(17) indicating a release of energy . 

To obtain the equilibrium-layer thickness I, we suppose 
that the energy released by the elastic movement, Equation 
(17), is just sufficient to pulverize an additional thickness 
51 of ice; any further increase in I would cause the load 
to drop to a level where the strain energy released is not 
sufficient to pulverize the ice any further. Given an energy 
of pulverization equal to y per unit volume, the 
pulverization energy for the perturbation of the layer is 
(yh51) per unit width; equating this value to that given in 
Equation (17) and solving for I = Im' we have 

(18) 

This may also be expressed in dimensionless form as 

h 
(19) 

In the present case, the following values are taken as 
representive: y = 0.05 M1/ m3 (this value is likely to be 
greater for more highly confined ice), K = 76 MN m-2, 

h = 0.009 m, jL = 0.1 MPa s, Vo = 0.06 m/ so The suggested 
value for viscosity (jL = 0.1 MPa s) has been found to be 
reasonable in other investigations (e.g. 10rdaan and others, 
1988), and is also in the range suggested by Kurdyumov 
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and Kheisin (1976). This is an area where further 
experimental work is urgently needed . Substituting, we find 
<Xrn = 1.2. For a lower viscosity, say jL = 0.01 MPa s, and a 
value of y = 0.5 1/ m3 this increases to 3.1. The value of 
am is rather insensitive to the value of y; a reduction by a 
factor of 10 results in a 30% reduction only in <Xrn. The 
calculated values of a show reasonable general agreement 
with the observed <Xrn of the order of 3. Sodhi and Morris 
(1986) measured values of a in crushing tests at constant 
velocity against cylindrical indenters, and obtained values of 
a between 2 and 10.* 

It is important to note that it takes time to clear the 
ice by extrusion. In the present experiment, the elastic 
movement of the ice is relatively small, as noted earlier. 
For rigid indenters, the decreases in load would be rapid , 
since there would be little effo rt required to clear the 
crushed ice to accommodate the rebound movement of the 
indenter and ice (Fig. 8). Under these circumstances, most 
of the clearing would occur during the increases in load. 

Force 
F(t) 

Peak stre sses 
- pul ve riza tion 

Indentat ion Sys tem L
FleXi ble 

..... - - ,..;. 

Rigid Ind enta tion 

Syste m 
Extrusion 

T ime t 

Fig . 8. For flexible indenters. energy is stored 
increases. The strain energy is released as 
clearing on the load decreases (schematic). 

on load 
work 0/ 

The rate of decline in load is likely to be governed by the 
time required to rebound by clearing the (presumably newly 
created) layer of crushed ice. This becomes significant for 
flexible indenters . Clearing can occur during increases and 
decreases in load . 

7 . ENERGY EXCHANGES DURING INDENTATION 

The energy corresponding to several processes will now 
be considered. For this purpose, a characteristic move ment 
of the indenter of 3 mm will again be used . Some of the 
estimates that follow can be converted to power if one uses 
the rate of movement of 6 cm S- 1, but since the load is 
fluctuating, the power input is not constant. The average 
load is 2660 N, giving the total work as 8 J (a rate of 
160 W) for the 3 mm movement. This work will be largely 
dissipated, if one assumes that the elastic strain energy (or 
alternatively, load) is similar at the beginning and the end 
of the 3 mm cycle . The average energy stored in the 
indenter device is about 0.6 J, and in the ice, 0.1 1, giving 
a total of 0.71 . These numbers are based on the stiffnesses 
given after Equations (2) and (3). 

Taking the same example as before of the 3 .7 kN 
decline in load, from 4.5 to 0 .8 kN (Fig. 3), the stored 
energy varied from 2.1 to 0.1 1, so that the stored elastic 
strain energy varies from over 21 to a negligible quantity. 
This energy causes a fluctuation in the rate of dissipation . 

* It is interesting to speculate on the effect of changes in 
scale, in particular of thickness h. The main effect would 
be to increase K, and of course h in Equation (19). If the 
indenter or structure is very rigid , then the main stiffness 
variation of K is the ice itself and then K would increase 
in direct proportion to h (i.e . directly with area) . As a 
result, ~ a h3

/
7

. If scale were increased from the present 
case (approximately I cm thickness) to say I m, then <Xm, 
would increase (on the above assumptions) by a factor of 
(100)3/7 or approximately 7. Presumably, scaling of crushed 
layers is an area that deserves attention in model tests of 
structures and vessels in ice. 
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Where is the seat of the dissipation? There are several 
possibilities which will be examined in turn. It was shown 
earlier that the work required to create the fracture surfaces 
in the pulverized zone was 0.006 J. The pulverization of the 
ice does not provide the explanation, based on the value of 
0.05 MJ/ m3; this gives a value of 0.1 J for the characteristic 
zone considered here. The value of 0.05 MJ/ m3 is justified 
as follows. The area under a typical uniaxial stress~train 

curve, with a fast-loading rate appropriate to the present 
tests, is of the order of 0.01-0.02 MJ/ ms. For the biaxial 
conditions in the ice sheet, this value would be somewhat 
higher and the 0.05 figure is an upper value used for 
comparative purposes. In some areas of the literature, rather 
high specific crushing energies are proposed, of the order 
of 5-20 MPa. These values are not realistic for pulverization 
and are based on the fact that strength (MPa) and energy 
per unit volume (MJ/ m3) have the same unit. In other 
cases, the energy of pulverization is based on dropped ball 
tests, with an arbitrary amount of energy of ejection (flow 
of pulverized ice) included . It is important in future 
research to separate the work and energy in terms of the 
actual process involved. In the present instance, the work in 
creating enough fracture surfaces to have pulverized ice, 
and the work in the frictional movement of the separate 
particles, especially when confined, need to be separated. 
More information on specific energies in the literature and 
their interpretation is given in Jordaan and McKenna 
(unpublished). 

Cracks in compression can be associated with 
dissipation of quite large amounts of energy through 
frictional dissipation associated with relative movements of 
opposite crack faces with the frictional forces reslstmg 
movement. Also, the highly stressed zones near crack tips 
can dissipate energy in further distortion (even without 
extension). These modes are typical of strain-rates in the 
range 10-· to 10-5 S- l. The material under consideration here 
is being stressed at a much higher rate; the power of 
dissipation in the modes just discussed would be far too 
small to make a contribution of any significance. 

Let us now turn attention to the dissipation in the 
frictional clearing process. The power of dissipation per unit 
width is given by Equation (16) multiplied by the velocity. 
The result of this calculation, when multiplied by the 
crushed volume in our 0.05 s period of time gives the 
energy dissipated. Taking ex = 2, JI. = 0.1 MPa s, and Vo = 

0.06 m S-l, we find FT = Fw = 3000 kN, quite close to the 
measured average. The energy dissipated in the 3 mm 
distance is 9.1 J. 

The results are summarized in Table I. 

8. DISCUSSION AND CONCLUSIONS 

A mechanism for the clearing of crushed ice by a 
viscous extrusion process has been presented. It is contended 

TABLE I. ENERGY CORRESP9NDING TO VARIOUS 
PROCESSES FOR 3 mm MOVEMENT OF INDENTER 

Description of 
process 

Indentation 

Elastic fluctuations 

Creation of fracture 
surfaces 

Crushing of ice 

Clearing process 

Melting (latent heat 
of fusion) 

*Measured. 

Energy 

0.004 

334 

Energy for 
3 mm crushed 
zone in J 

8.0* 

up to 2-3 t 

0.006 t 

568 

t Calculated, based on assumptions given in text. 
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that this is the main process whereby energy is dissipated 
in indentation by flat indenters with ice crushing. Plausible 
results were obtained on the assumption of a Newtonian 
fluid and no slippage at the boundaries. An analysis has 
also been given of the variation of elastic strain energy 
stored in the ice and in the indenter; these quantities and 
associated movements were quite significant in the test 
series discussed. The interaction must then be analysed 
taking into account movements of the indenter and ice; it 
must be emphasized that elastic movements of the ice were 
much smaller than the layer thickness and may often be 
negligible. This may be true for field ice~tructure interac­
tion as well; more experience is needed to verify it as a 
general conclusion. 

The assumptions made regarding linear viscous flow, as 
well as the boundary conditions, need to be further 
investigated. The material could extrude as a "plug" and 
other material models (e.g. the Bingham body) may be 
more appropriate. 

An attractive extension of the model presented here is 
one based on a thin layer (lubrication theory). This permits 
the variation of layer thickness and possibly a stochastic 
treatment. In the work by Kheisin and Likhomanov (1973) 
and by K urdyumov and Kheisin (1976), a lubricating layer 
was used but not in the context of a dynamic variation. 
Indeed, peak pressures were deduced and the variation of 
force with layer thickness was not specifically addressed . It 
is contended in the present work that the peak load has 
more to do with the damage and pulverization process in 
the solid ice; the crushed layer transmits the load in a 
characteristic way but has nothing directly to do with the 
peak load itself, at least as a criterion for peak pressure. 
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APPENDIX 

ELASTIC SOLUTIONS FOR EDGE DEFLECTION OF 
SEMI-INFINITE PLATE 

Referring to Figure 9, the following linear elastic 

Semi - infinite ,,, ",,' I 

F A p 
-------- - ---. 

Fig. 9. Plan view of ice sheet in region of the indenter. 

solutions (Table II) can be derived for the deflection 61 of 
the edge of a semi-infinite plate of thickness h, relative to 
point P, based on plane-stress conditions (see Timoshenko 
and Goodier (1951) for basic formulation). The symbol E 
denotes the elastic modulus, and u is Poisson's ratio. 

The three equations for deflection (Table 11) are quite 
similar; taking typical values of d = 10 m, I' = 0.0635 m 
(width of indenter), v = 0.33: 

Cases A and B: KI 0.114 TlEh, 

Case C: KI 0.085 TlEh . 

TABLE II 

Case 

A 

B 

C 

Definilion 

F = Point 
load 

F = Total 
load; 
consta nt 
displacement 
over 
indenter 
width 

F = Total load 
d istri bu ted 
uniform ly 
over width 
of indenter 

Meaning of I' 

Distance from edge of 
of plate to point A 
(Fig. 9). Note 
singularity at r = O. 

Width of indenter 

Width of 
indenter 

Formula 

Deflection of A 
relative to P = 

F [ d 6 = - 21n- - (I 
I TlEh I' 

Deflection of edge relative 
relative to point P = 

6 = ~ [21n ~ - (1 + V)] 
I TlEh r 

Mean deflection 
over indenter 
width = 

6 = .!..- [21n ~ - (2 - V)] 
I TlEh I' 
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These values are reasonably close; because of the 
transfer of load from the indenter to the ice through a 
crushed layer, case C will be used. In other words , it is 
contended that a uniform pressure is closer to reality at the 
solid ice surface, rather than constant displacement given 
the presence of the crushed ice layer. If E = 10 GPa 
(near-instantaneous change in load), then 

KI = 24.0 MN m-I. 
It is also interesting to compare this result with that 

obtained using the finite-element method (FEM) with fixed 
boundaries at the junction of the ice sheet and the test 
basin walls (Tom in and others, unpublished); the result 
obtained by FEM indicated a slightly higher stiffness but 
the results were within 20% of each other. 

MS. received 15 January 1988 and in revised form 21 June 1988 
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