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Abstract. Understanding the formation and dynamical evolution of habitable planets in extra-
solar planetary systems is a challenging task. In this respect, systems with multiple giant planets
and/or multiple stars present special complications. The formation of habitable planets in these
environments is strongly affected by the dynamics of their giant planets and/or their stellar
companions. These objects have profound effects on the structure of the disk of planetesimals
and protoplanetary objects in which terrestrial-class planets are formed. To what extent the
current theories of planet formation can be applied to such “extreme” planetary systems de-
pends on the dynamical characteristics of their planets and/or their binary stars. In this paper,
I present the results of a study of the possibility of the existence of Earth-like objects in systems
with multiple giant planets (namely υ Andromedae, 47 UMa, GJ 876, and 55 Cnc) and discuss
the dynamics of the newly discovered Neptune-sized object in 55 Cnc system. I will also review
habitable planet formation in binary systems and present the results of a systematic search of
the parameter-space for which Earth-like objects can form and maintain long-term stable orbits
in the habitable zones of binary stars.
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1. Introduction
The discovery of extrasolar planets during the past decade has confronted astronomers

with many new challenges. The diverse and surprising dynamical characteristics of many
of these objects have made scientists wonder to what extent the current theories of planet
formation can be applied to other planetary systems. A major challenge of planetary sci-
ence is now to explain how such planets were formed, how they acquired their unfamiliar
dynamical state, and whether they can be habitable.

Among the unfamiliar characteristics of the currently known extrasolar planetary sys-
tems, the existence of systems with multiple planets in which Jovian-type bodies are
in eccentric and close-in orbits, and the existence of Jupiter-like planets in multi-star
systems are particularly interesting. As shown in figure 1, at the present, 26 extraso-
lar planetary systems contain more than one giant planet. Also, as shown in Table 1,
more than 20% of planet-hosting stars are members of binary systems. The formation of
terrestrial-class objects in such planetary systems, and the possibility of their long-term
stability in the habitable zones of their host stars are strongly affected by the dynamical
perturbations of the giant planets, and in systems of binaries with separations smaller
than 100 AU, by the perturbation of the stellar companion. Whether such “extreme”
planetary environments can be potential hosts to habitable planets is the subject of this
paper. I will review the possibility of the long-term stability of terrestrial-class objects
in some of multi-planet systems, and review the current status of research on planet
formation in dual-star environments.
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Figure 1. Currently known multi-planet extrasolar planetary systems (California-Carnegie
Planet Search).

2. Habitability of Extrasolar Multi-planet Systems

In order for a planetary system to be habitable, an Earth-like planet has to maintain
its orbit in the habitable zone (HZ) of the system’s central star for a long time. This
condition requires that the orbital eccentricity of a habitable planet to be close to zero
and its interactions with other bodies of the system do not disturb its long-term stability.
In a multi-planet system, these conditions may not be easily satisfied. The dynamics of
an object in such systems is strongly affected by other planets and the habitability of a
terrestrial planet may be influenced by the perturbations from giant bodies. The latter
is more significant in systems where the orbits of giant planets are close to the habitable
zone. The planetary systems of υ Andromedae (HZ = 1.68–2 AU), 47 UMa (HZ = 1.16–
1.41 AU), GJ 876 (HZ = 0.1–0.13 AU), and 55 Cancri (HZ = 0.72–0.87 AU) are of this
kind. In a recent article (Rivera & Haghighipour, 2007), we studied the stability of
terrestrial-class objects in these systems by numerically integrating the orbits of several
hundred test particles, uniformly distributed along the x-axis, in initial circular orbits.
Figure 2 shows the graphs of the lifetimes of these particles for 10 Myr. As shown here,
unlike the stable orbit of the newly discovered Earth-like planet of GJ 876 (Rivera et al.,
2005), the orbit of the small close-in planet of 55 Cnc, as reported by McArthur et al.
(2004) is unstable. Our results also indicate that it is unlikely that υ Andromedae and
GJ 876 harbor habitable planets. This has also been confirmed by the direct integration
of the orbit of an Earth-sized object in the habitable zone of the system by Dove &
Haghighipour (2006). The two systems of 47 UMa and 55 Cnc, however, have stable
habitable zones, although direct integrations of actual Earth-like objects in these systems
are necessary to confirm their habitability. The results of our test particle simulations
also indicated the capability of 55 Cnc system in harboring stable planet(s) in the region
between 0.7 AU and 2.2 AU. As shown by Fischer et al. (2007) and as in figure 2, the
newly discovered Neptune-sized planet of this system is located in this region.
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Table 1. Extrasolar Planet-Hosting Stars in Binary Systems (Haghighipour 2006)

Star Star Star Star

HD142 (GJ 9002) HD3651 HD9826 (υ And) HD13445 (GJ 86)
HD19994 HD22049 (ε Eri) HD27442 HD40979
HD41004 HD75732 (55 Cnc) HD80606 HD89744
HD114762 HD117176 (70 Vir) HD120136 (τ Boo) HD121504
HD137759 HD143761 (ρ Crb) HD178911 HD186472 (16 Cyg)
HD190360 (GJ 777A) HD192263 HD195019 HD213240
HD217107 HD219449 HD219542 HD222404 (γ Cephei)
HD178911 HD202206 PSR B1257-20 PSR B1620-26

3. Habitability of Multiple Star Systems
As shown in Table 1, more than 20% of currently known planet-hosting stars are

members of binary systems (Haghighipour 2006). Many of these systems are wide with
separations ranging from 200 AU to 6000 AU. In such systems, the perturbative effect
of the stellar companion is negligible and planet formation around the other star may
proceed in the similar fashion as around a single star. There are, however, three binary
systems, namely, GL 86 (Els et al. 2001), γ Cephei (Hatzes et al. 2003), and HD 41004
(Zucker et al. 2004, Raghavan et al. 2006), in which the primary star is host to a Jovian-
type planet and the binary separation is smaller than 20 AU. How these planets were
formed, and whether such binary-planetary systems can be habitable are now among
major theoretical challenges of planetary dynamics.

Planet formation in close binary systems is strongly affected by the perturbation of
the binary companion. This star may remove planet-forming material by truncating the
primary’s circumstellar disk (Artymowicz & Lubow 1994) and destabilizing the regions
where planetesimals and protoplanets may undergo collisional growth (Thébault et al.
2004). In binary systems where the primary hosts a giant planet, the perturbative effect of
the planetary companion will also affect the growth of protoplanetary objects. However,
as shown by numerical integrations of the orbits of Earth-sized planets in γ Cephei system
(Haghighipour 2006), it is possible for a terrestrial-class body to maintain a long-term
stable orbit at distances close to the primary star and outside the giant planet’s influence
zone. Figure 3 shows the graph of the lifetime of an Earth-sized object in the system of γ
Cephei. As shown here, the HZ of the system is unstable. However, an Earth-like planet
can main a stable orbit close to the primary star.

Based on the results of the simulations shown in figure 3, we recently studied habit-
able planet formation in moderately closed binary star systems that host giant planets
(Haghighipour & Raymond 2007). We simulated the late stage of terrestrial planet for-
mation for different values of the semimajor axis and orbital eccentricity of the binary,
as well as different binary mass-ratios. Our system consisted of a Sun-like star as the pri-
mary, a disk of protoplanetary bodies with 120 Moon- to Mars-sized objects distributed
randomly between 0.5 AU and 4 AU, and a Jupiter-sized planet at 5 AU. To study the
effect of the orbital dynamics of the secondary star on the formation and water contents
of planets in the HZ of the primary, we considered the orbit of the giant planet to be
circular. We also assumed that, following the model of Morbidelli et al. (2000), in which
the main source of Earth’s water is the water-rich bodies in the solar system’s asteroid
belt, the water in the habitable planet of a binary system is originated from the asteroid
region of its primary and is delivered to it during the collisional growth of the system’s
protoplanetary objects. We considered an initial gradient in the water contents of em-
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Figure 2. Graphs of the lifetimes of test particles in υ Andromedae (top left, HZ = 1.68–2 AU),
GJ 876 (top right, HZ = 0.1–0.3 AU), 47 UMa (bottom left, HZ = 1.16–1.41), and 55 Cnc (bottom
right, 0.72–0.87 AU). The graphs and habitable zones are from Rivera & Haghighipour (2007).
The islands of stability and instability, with their corresponding mean-motion resonances with
the inner and/or outer planet are also shown. As shown here, the habitable zones of υ An-
dromedae and GJ 876 are unstable implying that the planetary systems of these stars will not
be habitable. The habitable zones of 47 UMa and 55 Cnc, on the other hand, are stable. Also
as shown here, the recently detected Earth-like planet of GJ 876 (Rivera et al. 2005), and the
newly discovered fifth planet of 55 Cnc (Fischer et al. 2007) are in stable orbits.

bryos similar to the distribution of water in the primitive asteroids of the asteroid belt
(Abe et al. 2000). That is, embryos inside 2 AU were taken to be dry, the ones between
2 to 2.5 AU were considered to contain 1% water, and those beyond 2.5 AU were as-
sumed to have a water to mass ratio of 5%. Figure 4 shows some of the results for binary
mass-ratios µb = 0.5, 1.5. As shown here, it is possible to form Earth-like objects with
substantial amount of water in the HZ of the primary star. The sizes of these planets and
their water contents vary with the semimajor axis and eccentricity of the stellar compan-
ion. In binaries where the secondary star has a small periastron, the interaction between
this object and the giant planet of the system, which transfers angular momentum to the
disk of planetary embryos, causes many of these bodies to be ejected from the system.
As a result, in closer and eccentric binaries, the final planets are smaller and contain less
or no water. Figure 5 shows the relation between the periastron of the binary (qb) and
the semimajor axis of the outermost terrestrial planet (aout). As shown in the left graph
of figure 5, similar to Quintana et al. (2007), simulations with no giant planets favor
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Figure 3. Lifetime of an Earth-sized planet in γ Cephei system. The giant planet of the system
(1.67 Jupiter-mass) is at 2.13 AU with an eccentricity of 0.12. As shown here, the HZ of the
system is unstable. However, a terrestrial-class object can maintain a long-term orbit at close
distances to the primary star (Haghighipour 2006).

Figure 4. Habitable planet formation in binary-planetary systems with 0.5 and 1.5 stellar
mass-ratios. As shown here, binaries with moderate periastron distances are more favorable for
the formation of terrestrial-class planets with considerable amounts of water (Haghighipour &
Raymond 2007).

regions interior to 0.19qb for the formation of terrestrial objects. That means, around a
Sun-like star, where the inner edge of the habitable zone is at ∼ 0.9 AU, a stellar compan-
ion with a perihelion distance smaller than 0.9/0.19 = 4.7 AU would not allow habitable
planet formation. In simulations with giant planets, on the other hand, figure 5 shows
that terrestrial planets form closer-in. The ratio aout/qb in these systems is between 0.06
and 0.13. A detailed analysis of our simulations also indicate that the systems, in which
habitable planets were formed, have large periastra. The right graph of figure 5 shows
this for simulations in a binary with equal-mass Sun-like stars. The circles in this figure
represent systems with habitable planets. The numbers on the top of the circles show
the mean eccentricity of the giant planet. For comparison, systems with unstable giant
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Figure 5. The graph on the left shows the relation between the periastron of an equal-mass
binary and the location of its outermost terrestrial planet. The graph on the right shows the
region of the (eb , ab ) space for a habitable binary-planetary system (Haghighipour & Raymond
2007).

planets have also been marked. Since at the beginning of each simulation, the orbit of
the giant planet was considered to be circular, a non-zero eccentricity is indicative of the
interaction of this body with the secondary star. As shown here, Earth-like objects are
formed in systems where the interaction between the giant planet and the secondary star
is weak and the average eccentricity of the giant planet is small. That implies, habitable
planet formation is more favorable in binaries with moderate to large perihelia, and with
giant planets on low eccentricity orbits.
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