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Abstract

We prove the unimodality of some coloured q-Eulerian polynomials, which involve the flag excedances,
the major index and the fixed points on coloured permutation groups, via two recurrence formulas. In
particular, we confirm a recent conjecture of Mongelli about the unimodality of the flag excedances over
type B derangements. Furthermore, we find the coloured version of Gessel’s hook factorisation, which
enables us to interpret these two recurrences combinatorially. We also provide a combinatorial proof of a
symmetric and unimodal expansion for the coloured derangement polynomial, which was first established
by Shin and Zeng using continued fractions.
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1. Introduction

Let l be a fixed positive integer. Consider the wreath product Cl o Sn of the cyclic
group Cl of order l by the symmetric group Sn of order n. The groups Cl o Sn

are also known as the coloured permutation groups. In case l = 1, 2, they are
respectively the symmetric groups (or permutation groups) Sn and the type B Coxeter
groups Bn. Various statistics on permutation groups have been generalised to coloured
permutation groups, including the four classical ones in the literature: inversions,
descents, excedances and the major index (see [1–3, 7, 10, 17] and the references
therein).

An element of Cl o Sn is called a coloured permutation and can be viewed as an
ordered pair (π, ε), with π = π1 · · · πn ∈ Sn and ε = ε1 · · · εn a word on {0, 1, . . . , l − 1}
of length n. For convenience, we usually write (π, ε) in one line as πε1

1 π
ε2
2 · · · π

εn
n . Now

define the excedance number, exc(π, ε), the major index, maj(π, ε), and the number of
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2 Z. Lin [2]

fixed points, fix(π, ε), of a coloured permutation (π, ε) ∈ Cl oSn by

exc(π, ε) := #{1 ≤ j ≤ n − 1 : π j > j and ε j = 0},
DES(π, ε) := {1 ≤ j ≤ n − 1 : either ε j < ε j+1, or ε j = ε j+1 and π j > π j+1},

maj(π, ε) :=
∑

j∈DES(π,ε) j,
fix(π, ε) := #{1 ≤ j ≤ n : π j = j and ε j = 0}.

For example, if (π, ε) = 6032124050218070 ∈ C3 o S8, then exc(π, ε) = 2, DES(π, ε) =

{1, 2, 5, 7}, maj(π, ε) = 1 + 2 + 5 + 7 = 15 and fix(π, ε) = 2. Bagno and Garber [1]
introduced the flag excedance of (π, ε), denoted fexc(π, ε), as

fexc(π, ε) := l · exc(π, ε) +

n∑
j=1

ε j.

Our main focus is the coloured (q, r)-Eulerian polynomial A(l)
n (t, r, q) defined by

A(l)
n (t, r, q) :=

∑
(π,ε)∈CloSn

tfexc(π,ε)rfix(π,ε)q(maj− exc)(π,ε).

By convention, A(l)
0 (t, r, q) = 1. Clearly, A(1)

n (t, 1, 1) = An(t), where An(t) is the classical
nth Eulerian polynomial (see [4]). The values of A(2)

n (t, r, q) for 1 ≤ n ≤ 3 are

A(2)
1 (t, r, q) = r + t,

A(2)
2 (t, r, q) = r2 + (1 + r + rq)t + (2 + q)t2 + t3,

A(2)
3 (t, r, q) = r3 + [1 + (1 + q + q2)(r + r2)]t + [1 + (1 + q + q2)(2 + 2r + rq)]t2

+ [1 + (1 + q + q2)(3 + r + q)]t3 + (3 + 2q + 2q2)t4 + t5.

Let (q; q)n :=
∏n

i=1(1 − qi) for n ≥ 1 and (q; q)0 = 1. The q-exponential function
e(z; q) is defined by e(z; q) :=

∑
n≥0 zn/(q; q)n. The following elegant expression for the

exponential generating function of A(l)
n (t, r, q) can be derived from the work of Foata

and Han [7, Theorem 1.3] or Hyatt [10, Theorem 1.4]:∑
n≥0

A(l)
n (t, r, q)

zn

(q; q)n
=

(1 − t)e(rz; q)
e(tlz; q) − te(z; q)

. (1.1)

Let us recall some necessary definitions. Let Q[q] be the ring of all polynomials in
q with rational coefficients. Define the partial order relation on Q[q] by

f (q) ≤q g(q)⇔ g(q) − f (q) has nonnegative coefficients.

A polynomial h(t) =
∑n

k=0 ak(q)tk ∈ Q[q][t] is symmetric (with centre of symmetry n/2)
if ak(q) = an−k(q) for all 0 ≤ k ≤ n and it is unimodal if there exists a c, 0 ≤ c ≤ n, such
that

a0(q) ≤q a1(q) ≤q · · · ≤q ac(q) ≥q ac+1(q) ≥q · · · ≥q an(q).

It is well known [16] that the Eulerian polynomial An(t) is symmetric and unimodal.
A coloured permutation (π, ε) ∈ Cl oSn is called a derangement if fix(π, ε) = 0. In [20],
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[3] Unimodality and coloured hook factorisation 3

Zhang proved that the roots of the type A derangement polynomial A(1)
n (t, 0, 1) are all

real, which implies its unimodality. Shareshian and Wachs [13] proved the symmetry
and unimodality of A(1)

n (t, 1, q) and A(1)
n (t, 0, q). Recently, Mongelli [12] noticed that

A(2)
5 (t, 0, 1) has nonreal complex roots and conjectured that the type B derangement

polynomial A(2)
n (t, 0, 1) is unimodal for any n ≥ 1. Motivated by this conjecture and the

above results, we will investigate the unimodality of A(l)
n (t, 1, q) and A(l)

n (t, 0, q).
The first result confirms the unimodality conjecture of Mongelli.

Theorem 1.1. For all n, l ≥ 1, the coloured q-Eulerian polynomials A(l)
n (t, 1, q) and

A(l)
n (t, 0, q) are symmetric and unimodal.

Theorem 1.1 generalises parts (3) and (4) of [13, Theorem 5.3] from permutations
to coloured permutations. Our approach is slightly different, being an easy application
of the recurrence relations for A(l)

n (t, r, q) in Theorem 1.2.
For n ≥ 0 and 0 ≤ k ≤ n, define [n]q := (1 − qn)/(1 − q) and the q-binomial

coefficient [
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

Theorem 1.2. For n ≥ 0, A(l)
n (t, r, q) satisfies the two recurrence relations:

A(l)
n+1(t, r, q) = rn+1 +

n∑
k=0

[
n + 1

k

]
q
A(l)

k (t, r, q)t[l(n + 1 − k) − 1]t, (1.2)

A(l)
n+1(t, r, q) = (r + t[l − 1]tqn)A(l)

n (t, r, q) + t[l]t

n−1∑
k=0

[
n
k

]
q
qkA(l)

k (t, r, q)A(l)
n−k(t, 1, q). (1.3)

Remark 1.3. When l = 1, these two recurrence relations reduce to the recurrences
in [13, Corollary 4.3] and [11, Theorem 2], respectively.

A nice property that is stronger than the symmetry and unimodality of a polynomial
is the so-called γ-positivity. For each permutation π = π1 · · · πn ∈ Sn, a double
excedance is an index i such that i < πi < ππi . Let cda(π) be the number of double
excedances of π. Shin and Zeng [14] proved the γ-positivity of the derangement
polynomial A(1)

n (t, 0, 1):

A(1)
n (t, 0, 1) =

bn/2c∑
k=1

γn,ktk(1 + t)n−2k, (1.4)

where γn,k := #{π ∈ Sn : fix(π) = cda(π) = 0, exc(π) = k}. Very recently, using the
machinery of continued fractions, Shin and Zeng [15, Theorem 3] generalised their
result from derangements to coloured derangements, by obtaining the following
symmetric and unimodal expansion of A(l)

n (t, 0, 1).

Theorem 1.4 [15]. For all n, l ≥ 1,

A(l)
n (t, 0, 1) =

∑
1≤i+2 j≤n

(
n
i

)
γn−i, jt j(1 + t)n−i−2 j(t[l − 1]t)i[l]n−i

t . (1.5)
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When l = 2, expansion (1.5) becomes

A(2)
n (t, 0, 1) =

∑
1≤k≤n

( ∑
i+ j=k

(
n
i

)
γn−i, j

)
tk(1 + t)2n−2k, (1.6)

which implies the γ-positivity of A(2)
n (t, 0, 1). Note that expansion (1.5) also implies

the symmetry and unimodality of A(l)
n (t, 0, 1), since each summand on the right-hand

side of (1.5) is symmetric and unimodal with the same centre of symmetry at 1
2 ln. We

will provide a combinatorial proof of expansion (1.5).
The proofs of Theorems 1.1 and 1.2 are given in the next section. The combinatorial

interpretation of the recurrences in Theorem 1.2 inspired us to find the coloured
analogue of Gessel’s hook factorisation [8], which is developed in Section 3. In
particular, we obtain another interpretation of A(l)

n (t, r, q). In Section 4, we give the
combinatorial proof of expansion (1.5). We end with some remarks and a conjecture.

2. Proofs of Theorems 1.1 and 1.2

We first prove Theorem 1.2 and derive Theorem 1.1 from it. For simplicity, set
An(t, q) := An(t, 1, q).

Proof of Theorem 1.2. We first prove recurrence relation (1.2). By (1.1),∑
n≥0

A(l)
n (t, r, q)

zn

(q; q)n
=

e(rz; q)
1 −

∑
n≥1 t[ln − 1]tzn/(q; q)n

.

Multiplying both sides by 1 −
∑

n≥1 t[ln − 1]tzn/(q; q)n and taking the coefficients of
zn+1/(q; q)n+1 gives the following recurrence, which is equivalent to (1.2):

A(l)
n+1(t, r, q) −

n∑
k=0

[
n + 1

k

]
q
A(l)

k (t, r, q)t[l(n + 1 − k) − 1]t = rn+1.

Next, we prove (1.3). Let δx be the Eulerian differential operator defined as

δx( f (x)) :=
f (x) − f (qx)

x

for any f (x) ∈ Q[q][[x]], the ring of formal power series in x overQ[q]. It is not difficult
to show that, for any variable y,

δz(e(yz; q)) = ye(yz; q).

Now, applying δz to both sides of (1.1) and using the above property and the quotient

https://doi.org/10.1017/S0004972715001276 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001276


[5] Unimodality and coloured hook factorisation 5

rule for the differential operator (see [11, Lemma 7]),∑
n≥0

A(l)
n+1(t, r, q)

zn

(q; q)n
= δz

( (1 − t)e(rz; q)
e(tlz; q) − te(z; q)

)
=

r(1 − t)e(rz; q)
e(tlz; q) − te(z; q)

+
(1 − t)e(rzq; q)(te(z; q) − tle(tlz; q))

(e(tlqz; q) − te(qz; q))(e(tlz; q) − te(z; q))

=
r(1 − t)e(rz; q)

e(tlz; q) − te(z; q)
+

(1 − t)e(rzq; q)
e(tlqz; q) − te(qz; q)

×

( tle(z; q) − tle(tlz; q)
e(tlz; q) − te(z; q)

+
te(z; q) − tle(z; q)
e(tlz; q) − te(z; q)

)
=

(∑
n≥0

A(l)
n (t, r, q)

(qz)n

(q; q)n

)
×

(
(t + · · · + tl−1)

∑
n≥0

A(l)
n (t, q)

zn

(q; q)n
+ tl

∑
n≥1

A(l)
n (t, q)

zn

(q; q)n

)
+ r

∑
n≥0

A(l)
n (t, r, q)

zn

(q; q)n
.

Taking the coefficient of zn/(q; q)n on both sides of the above equality, we get (1.3).
This completes the proof of Theorem 1.2. �

We shall apply the following fact [16, Proposition 1] to prove Theorem 1.1.

Lemma 2.1. The product of two symmetric and unimodal polynomials in Q[q][t] with
respective centres of symmetry c1 and c2 is symmetric and unimodal with centre of
symmetry c1 + c2.

Proof of Theorem 1.1. We will show that Theorem 1.1 follows from recurrence
relation (1.3) and Lemma 2.1 by induction on n. A similar discussion is also available
with recurrence relation (1.3) replaced by (1.2).

For n = 1, the result is clear, as A(l)
1 (t, r, q) = r + t + t2 + · · · + tl−1. Suppose that

Theorem 1.1 is true for all n ≤ m. Setting r = 1 in (1.3),

A(l)
m+1(t, q) = (1 + t[l − 1]tqm)A(l)

m (t, q) + t[l]t

m−1∑
k=0

[
m
k

]
q
qkA(l)

k (t, q)A(l)
m−k(t, q)

= (t[l − 1]tqm + [l + 1]t)A(l)
m (t, q) +

m−1∑
k=1

[
m
k

]
q
t[l]tqkA(l)

k (t, q)A(l)
m−k(t, q).

By the induction hypothesis and Lemma 2.1,

(t[l − 1]tqm + [l + 1]t)A(l)
m (t, q) and t[l]tqkA(l)

k (t, q)A(l)
m−k(t, q) (1 ≤ k < m)

are all symmetric and unimodal with the same centre of symmetry at 1
2 (l(m + 1) − 1).

Hence, A(l)
m+1(t, q) is symmetric and unimodal with centre of symmetry 1

2 (l(m + 1) − 1).
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Similarly, setting r = 0 in recurrence (1.3),

A(l)
m+1(t, 0, q) = t[l − 1]tqnA(l)

m (t, 0, q) + t[l]t

m−1∑
k=0

[
m
k

]
q
qkA(l)

m−k(t, q)A(l)
k (t, 0, q). (2.1)

Now, by the induction hypothesis and Lemma 2.1, all the polynomials

t[l − 1]tqnA(l)
m (t, 0, q) and t[l]t

[
m
k

]
q
qkA(l)

m−k(t, q)A(l)
k (t, 0, q) (0 ≤ k < m)

are symmetric and unimodal with centre of symmetry 1
2 l(m + 1), which implies the

same for A(l)
m+1(t, 0, q) in view of (2.1). This completes the proof by induction. �

3. Hook factorisation of coloured permutations

In this section, we introduce the hook factorisation of coloured permutations and
give combinatorial interpretations of the two recurrences in Theorem 1.2.

Let us first recall the hook factorisation of permutations due to Gessel [8]. A word
w = w1w2 · · ·wm over N is called a hook if w1 > w2 and either m = 2, or m ≥ 3 and
w2 < w3 < · · · < wm. As shown by Gessel [8], each permutation π admits a unique
factorisation, called its hook factorisation, pτ1τ2 · · · τr, where p is an increasing word
and each factor τ1, τ2, . . . , τr is a hook. The hook factorisation has applications in
various combinatorial problems (see [6, 9, 11, 19]).

We can extend the hooks to coloured hooks. Let

Nl :=
{
10, 11, . . . , 1l−1, 20, 21, . . . , 2l−1, . . . , i0, i1, . . . , il−1, . . .

}
.

A letter ik ∈ Nl is called a k-coloured letter and k is referred to as the colour of ik. Let
|ik| := i. A word w = w1w2 · · ·wm over Nl is called a coloured hook if:

• m ≥ 2 and |w| := |w1||w2| · · · |wm| is a hook in which only w1 may have positive
colour; or

• m ≥ 1 and |w| is an increasing word and only w1 may have positive colour.

As in the permutation case, each coloured permutation (π, ε) ∈ Cl oSn admits a unique
factorisation, called its coloured hook factorisation, pτ1τ2 · · · τr, where p is a word
formed by 0-coloured letters, |p| is an increasing word over N and each factor τ1, τ2,
. . . , τr is a coloured hook. To derive the coloured hook factorisation of a coloured
permutation, one can start from the right and factor out each coloured hook step by
step. Clearly, coloured hook factorisation of coloured permutations is a generalisation
of hook factorisation of permutations.

For example, the coloured hook factorisation of

20 40 51 80 30 70 101 10 90 61 ∈ C2 oS10 (3.1)

is 20 40 |51 |80 30 70 |101 10 90 |61.
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[7] Unimodality and coloured hook factorisation 7

If w = w1w2 · · ·wm is a word over N, define the inversion number inv(w) of w by

inv(w) := #{(i, j) : i < j,wi > w j}.

For a coloured permutation (π, ε) ∈ Cl o Sn with coloured hook factorisation
pτ1τ2 · · · τr, we define

inv(π, ε) := inv(π) and lec(π, ε) :=
r∑

i=1

inv(|τi|).

We also define

flec(π, ε) := l · lec(π, ε) +

n∑
i=1

εi and pix(π, ε) := length of p.

For example, if (π, ε) is the coloured permutation in (3.1), then inv(π, ε) = 16,
lec(π, ε) = 4, flec(π, ε) = 11 and pix(π, ε) = 2.

The following result generalises [5, Theorem 1.4] from permutations to coloured
permutations.

Theorem 3.1. For n ≥ 1,

A(l)
n (t, r, q) =

∑
(π,ε)∈CloSn

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε). (3.2)

Proof. By the same discussions as in the proof of [6, Theorem 4], we can show that
the exponential generating function for

∑
(π,ε)∈CloSn

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε) is exactly
the right-hand side of (1.1). We leave the details to the reader. �

Remark 3.2. This result answers a question of Han et al. [9] and leads to a
combinatorial interpretation of a coloured symmetric q-Eulerian identity.

For the interpretations of the two recurrences in Theorem 1.2 by means of (3.2), we
need the following well-known interpretation of q-binomial coefficients:[

n
k

]
q

=
∑

(A,B)

qinv(A,B), (3.3)

where the sum is over all ordered partitions (A,B) of [n] such that |A| = k and

inv(A,B) := #{(i, j) : i ∈ A, j ∈ B with i > j}.

3.1. A combinatorial interpretation of (1.2). Note that a coloured hook of length k
may contribute 1,2, . . . , lk − 1 to the ‘flec’ statistic of a coloured permutation. Consider
the last coloured hook (possibly empty) of each coloured permutation. This gives∑

(π,ε)∈CloSn+1

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε) =

n+1∑
k=0

∑
(π,ε)=pτ1 ···τr

#τr=n+1−k

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε)

= rn+1 +

n∑
k=0

[
n + 1

k

]
q
t[l(n + 1 − k) − 1]t

∑
(π,ε)∈CloSk

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε),

where we apply (3.3) to the last equality. This shows that the right-hand side of (3.2)
satisfies recurrence relation (1.2).
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3.2. A combinatorial interpretation of (1.3). Recall that, to derive the hook
factorisation of a coloured permutation, one can start from the right and factor out each
hook step by step. We distinguish two cases according as 1 appearing in a coloured
permutation is 0-coloured or not. For this purpose, we write A(l)

n (t, r, q) as

A(l)
n (t, r, q) = B(l)

n (t, r, q) + C(l)
n (t, r, q), (3.4)

where
B(l)

n (t, r, q) =
∑

(π,ε)∈ CloSn+1
1 is 0-coloured

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε)

and
C(l)

n (t, r, q) =
∑

(π,ε)∈ CloSn+1
1 is not 0-coloured

tflec(π,ε)rpix(π,ε)q(inv− lec)(π,ε).

Case 1: 1 is 0-coloured in (π, ε) ∈ Cl o Sn+1. Then the coloured hook factorisation of
(π, ε) = πε1

1 · · · π
ε j−1

j−1π
ε j

j 10π
ε j+2

j+2 · · · π
εn+1
n+1 is pτ1 · · · τsτ

′
1 · · · τ

′
r, where pτ1 · · · τs and τ′1 · · · τ

′
r

are coloured hook factorisations of πε1
1 · · · π

ε j−1

j−1 and π
ε j

j 10π
ε j+2

j+2 · · · π
εn+1
n+1, respectively.

When 1 ≤ j ≤ n, it is not difficult to see that

flec(πε j

j 10π
ε j+2

j+2 · · · π
εn+1
n+1) = l + flec(πε j

j π
ε j+2

j+2 · · · π
εn+1
n+1),

(inv− lec)(πε j

j 10π
ε j+2

j+2 · · · π
εn+1
n+1) = (inv− lec)(πε j

j π
ε j+2

j+2 · · · π
εn+1
n+1)

and
pix(π, ε) = pix(πε1

1 · · · π
ε j−1

j−1).

Thus, by (3.3),

B(l)
n (t, r, q) = rA(l)

n (t, r, q) + tl
n−1∑
k=0

[
n
k

]
q
qkA(l)

k (t, r, q)A(l)
n−k(t, 1, q). (3.5)

Case 2: 1 is not 0-coloured in (π, ε) ∈ Cl oSn+1.
For (π, ε) = πε1

1 · · ·π
ε j−1

j−11ε jπ
ε j+1

j+1 · · ·π
εn+1
n+1 with ε j ≥ 1, the coloured hook factorisation of

(π, ε) is pτ1 · · ·τsτ
′
1 · · ·τ

′
r, where pτ1 · · ·τs and τ′1 · · ·τ

′
r are coloured hook factorisations

of πε1
1 · · · π

ε j

j and 1ε jπ
ε j+1

j+1 · · · π
εn+1
n+1, respectively. Now

flec(1ε jπ
ε j+1

j+1 · · · π
εn+1
n+1) = ε j + flec(πε j+1

j+1 · · · π
εn+1
n+1),

(inv− lec)(1ε jπ
ε j+1

j+1 · · · π
εn+1
n+1) = (inv− lec)(πε j+1

j+1 · · · π
εn+1
n+1)

and
pix(π, ε) = pix(πε1

1 · · · π
ε j−1

j−1).

Therefore, again by (3.3),

C(l)
n (t, r, q) = t[l − 1]t

n∑
k=0

[
n
k

]
q
qkA(l)

k (t, r, q)A(l)
n−k(t, 1, q). (3.6)

Substituting (3.5) and (3.6) into (3.4), we get (1.3).
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4. Combinatorial proof of expansion (1.5)

The symmetric and unimodal expansion (1.5) can be obtained by using (1.4) in the
following relationship between derangement polynomials and coloured derangement
polynomials.

Proposition 4.1. For all n, l ≥ 1,

A(l)
n (t, 0, 1) =

n∑
i=0

(
n
i

)
(t[l − 1]t)i[l]n−i

t A(1)
n−i(t, 0, 1). (4.1)

In [18], Sun and Wang introduced a group action on derangements and
provided a combinatorial proof of (1.4). Therefore, to provide a combinatorial
proof of expansion (1.5), we just need to give a combinatorial interpretation of
relationship (4.1).

Combinatorial proof of (4.1). Let D(l)
n := {(π, ε) ∈ Cl o Sn : fix(π, ε) = 0} be the set of

derangements in Cl oSn. We will use the following interpretation:

A(l)
n (t, 0, 1) =

∑
(π,ε)∈D(l)

n

tfexc(π,ε).

An index j is called a coloured fixed point of (π, ε) ∈ Cl oSn if π j = j but ε j , 0. Let
D

(l)
n,i be the set of derangements in D(l)

n with i coloured fixed points. We claim that

∑
(π,ε)∈D(l)

n,i

tfexc(π,ε) =

(
n
i

)
(t[l − 1]t)i[l]n−i

t A(1)
n−i(t, 0, 1), (4.2)

from which we get (4.1). So, it remains to prove this claim.
For each (π, ε) ∈ Cl oSn, we define the function

t j(π, ε) :=
{

tl if ε j = 0 and π j > j,
tε j otherwise.

Clearly, tfexc(π,ε) =
∏n

j=1 t j(π, ε). Let Sn,i := {π ∈ Sn : fix(π) = i}. For a fixed
permutation σ ∈ Sn,i with exc(σ) = k,

∑
(σ,ε)∈D(l)

n,i

tfexc(σ,ε) =
∑

(σ,ε)∈D(l)
n,i

n∏
j=1

t j(σ, ε)

=
∏
σ j> j

(t + t2 + · · · + tl)
∏
σ j< j

(1 + t + · · · + tl−1)
∏
σ j= j

(t + · · · + tl−1)

= (t[l]t)k[l]n−k−i
t (t[l − 1]t)i.
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It follows that ∑
(π,ε)∈D(l)

n,i

tfexc(π,ε) =
∑
σ∈Sn,i

∑
(σ,ε)∈D(l)

n,i

tfexc(π,ε)

=

n−1∑
k=0

dn,k,i(t[l]t)k[l]n−k−i
t (t[l − 1]t)i

=

n−1∑
k=0

dn,k,itk[l]n−i
t (t[l − 1]t)i,

where dn,k,i = #{σ ∈ Sn,i : exc(σ) = k}. Our claim (4.2) then follows from the above
expression and the simple fact that

dn,k,i =

(
n
i

)
#{π ∈ D(1)

n−i : exc(π) = k}.

This completes the proof of (4.1). �

Remark 4.2. Proposition 4.1 in the special case l = 2 was first proved by Mongelli [12,
Proposition 3.4]. It can also be proved analytically using generating functions. In fact,
from (1.1), ∑

n≥0

A(l)
n (t, 0, 1)

zn

n!
=

1 − t
etlz − tez

. (4.3)

Setting l = 1 and then substituting z← [l]tz yields∑
n≥0

A(1)
n (t, 0, 1)

([l]tz)n

n!
=

1 − t
et[l]tz − te[l]tz

=
1 − t

(etlz − tez)et[l−1]tz
.

Comparing with (4.3),

et[l−1]tz
∑
n≥0

A(1)
n (t, 0, 1)[l]n

t
zn

n!
=

∑
n≥0

A(l)
n (t, 0, 1)

zn

n!
.

Identifying the coefficient of zn/n! on both sides gives (4.1).

5. Final remarks

Let Bd = {tk(1 + t)d−2k}
bd/2c
k=0 . Using an unpublished result of Gessel, Shareshian

and Wachs [13, Remark 5.5] proved the result of q–γ-positivity: A(1)
n (t, 1, q)

(respectively A(1)
n (t, 0, q)) has coefficients in N[q] when expanded in Bn (respectively

Bn−1), which implies the l = 1 case of Theorem 1.1. In view of (1.6), one may wonder
if there are similar q–γ-positivity results for the type B groups. This is not the case,
because

A(2)
2 (t, 1, q) = (1 + t)3 + (q − 1)t(1 + t)

and
A(2)

3 (t, 0, q) = t(1 + t)4 + (2q + 2q2 − 1)t2(1 + t)2 + q3t3,

neither of which has all γ-coefficients in N[q].
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Recall that a polynomial h(t) =
∑n

k=0 aktk ∈ Q[t] is said to be log-concave if a2
i ≥

ai−1ai+1 for all 1 ≤ i ≤ n − 1. If the coefficients of h(t) have no internal zero, that is,
there do not exist integers 0 ≤ i < j < k ≤ n such that ai , 0, a j = 0, ak , 0, then the
log-concavity of h(t) implies its unimodality.

Proposition 5.1. For all n, l ≥ 1, the coloured Eulerian polynomial A(l)
n (t, 1, 1) is log-

concave.

Proof. It was shown by Foata and Han [7, (5.15)] that

A(l)
n (t, 1, 1) = (1 + t + · · · + tl−1)nA(1)

n (t, 1, 1).

The result then follows from this relationship and the known fact [16, Proposition 2]
that the product of two log-concave polynomials with nonnegative coefficients and no
internal zero coefficients is again log-concave. �

Actually, in [12, Conjecture 8.1], Mongelli also conjectured that the type B
derangement polynomial A(2)

n (t, 0, 1) is log-concave. His conjecture can be extended
to the coloured derangement polynomials.

Conjecture 5.2. For all n, l ≥ 1, the coloured derangement polynomial A(l)
n (t, 0, 1) is

log-concave.

It is well known that a polynomial with nonnegative coefficients and with only
real roots is log-concave; thus, the l = 1 case of Conjecture 5.2 follows from Zhang’s
result [20] that the roots of A(1)

n (t, 0, 1) are all real.
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