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Abstract

Let G be a semiabelian variety defined over an algebraically closed field K of prime characteristic. We
describe the intersection of a subvariety X of G with a finitely generated subgroup of G(K).
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1. Introduction

The purpose of this note is to prove a variant of the Mordell–Lang conjecture for
semiabelian varieties defined over fields of positive characteristic. More precisely, let
G be a semiabelian variety defined over an algebraically closed field K, that is, there
exists a short exact sequence of algebraic groups defined over K:

1 −→ GN
m −→ G −→ A −→ 1,

where N ≥ 0 is an integer and A is an abelian variety. Assuming K has characteristic
p > 0, then for any subvariety X ⊆ G defined over K and any finitely generated
subgroup Γ ⊂ G(K), we describe the intersection X(K) ∩ Γ. In particular, we fix an
error in the paper [2] of the first author where a simplified form of such a result
was claimed in the case when G is defined over a finite subfield of K; we present
several examples showing that the intersection X(K) ∩ Γ involves the more general
F-sets appearing in Definition 1.5.

1.1. General background. The Mordell–Lang conjecture for semiabelian varieties
G defined over fields of characteristic 0 predicts that the intersection of a subvariety
X ⊆ G with a finitely generated subgroup Γ of G is a finite union of cosets of subgroups
of Γ. This conjecture was proven by Laurent [4] in the case of tori, by Faltings [1]
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in the case of abelian varieties and by Vojta [7] in the general case of semiabelian
varieties. In particular, their results show that if X is an irreducible subvariety of G
which intersects a finitely generated group in a Zariski dense subset, then X must be a
translate of a semiabelian subvariety of G.

The picture for positive characteristic fields K is more complicated due to the
existence of the Frobenius endomorphism for varieties defined over finite fields; in
particular, it is no longer true that only translates of semiabelian subvarieties of G
have the property that they intersect a finitely generated subgroup of G in a Zariski
dense subset. Hrushovski [3] obtained the right shape for the irreducible subvarieties
X whose intersection with a finitely generated subgroup Γ is Zariski dense.

THEOREM 1.1 (Hrushovski [3]). Let G be a semiabelian variety defined over an
algebraically closed field K of characteristic p. Let Γ ⊂ G(K) be a finitely generated
subgroup and let X ⊆ G be an irreducible subvariety with the property that X(K) ∩ Γ
is Zariski dense in X. Then there exists γ ∈ G(K), a semiabelian subvariety G0 ⊆ G
defined over K, a semiabelian variety H along with a subvariety X0 ⊆ H both defined
over a finite subfield Fq of K, and a surjective group homomorphism h : G0 −→ H such
that X = γ + h−1(X0).

However, [3] left open the description of the actual intersection between the
subvariety X and the group Γ. Next, we will address exactly this issue.

1.2. The case of semiabelian varieties defined over finite fields and of finitely
generated subgroups invariant under the Frobenius endomorphism. Essentially,
Hrushovski’s result (see Theorem 1.1) reduced the description of the intersection
X(K) ∩ Γ to the case when the ambient semiabelian variety is defined over a finite
field. Moosa and Scanlon [5, 6] addressed precisely this problem under an additional
assumption on the subgroup Γ; to state their main result, we introduce some notation.

DEFINITION 1.2. For a semiabelian variety G defined over a finite subfield Fq of an
algebraically closed field K of characteristic p, we define a groupless F-set to be any
subset of G(K) of the following form:

{
α0 +

r∑
i=1

Fkni (αi) : ni ∈ N
}
, (1.1)

where r ≥ 0, α0,α1, . . . ,αr ∈ G(K) and k ∈ N, while F is the Frobenius endomorphism
of G corresponding to the finite field Fq.

For any finitely generated subgroup Γ ⊂ G(K), we define a groupless F-set in Γ as a
groupless F-set contained in Γ. Also, an F-set in Γ is any set of the form S + B, where
S is a groupless F-set in Γ and B is a subgroup of Γ. (For any two subsets B and C of
G, as always, C + B is simply the set of all c + b where b ∈ B and c ∈ C.)
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REMARK 1.3. In [6, Theorem B], Moosa and Scanlon allowed for the possibility that
a groupless F-set involves sums of F-orbits as in (1.1) of the form

α0 +

r∑
i=1

Fkini (αi) (as the ni vary in N), (1.2)

for given, but potentially distinct, positive integers ki. However, each F-set from (1.2)
is a union of finitely many F-sets as in Definition 1.2 (simply by working with k as the
least common multiple of k1, . . . , kr).

THEOREM 1.4 (Moosa–Scanlon [6]). Let G be a semiabelian variety defined over
a finite subfield Fq of an algebraically closed field K and let F : G −→ G be the
Frobenius endomorphism associated to the finite field Fq. Let X ⊆ G be a subvariety
defined over K and let Γ ⊂ G(K) be a finitely generated subgroup. If Γ is invariant
under F� for some � ∈ N, then X(K) ∩ Γ is a finite union of F-sets in Γ.

1.3. The case of an arbitrary finitely generated subgroup. It is natural to ask
whether the description from Theorem 1.4 of the intersection X(K) ∩ Γ remains valid
when Γ is no longer invariant under a power of the Frobenius endomorphism of G (but
we only assume Γ is finitely generated).

One could consider the Z[F]-submodule Γ̃ ⊂ G(K) spanned by Γ. Since F is integral
over Z (seen as a subring of End(G)), then Γ̃ is still finitely generated and so,
by Moosa–Scanlon’s result (see Theorem 1.4), X(K) ∩ Γ̃ is a finite union of F-sets
in Γ̃. So, the problem reduces to understanding the intersection of an F-set S in Γ̃
with Γ. The first author [2, Theorem 3.1] proved that when S is a groupless F-set in
Γ̃, then its intersection with Γ is a finite union of groupless F-sets in Γ. Also in [2],
the first author analysed the intersection with Γ of an arbitrary F-set in Γ̃; however,
the final assertion from [2, Step 3, page 3842] claiming that the general case of
an F-set reduces to the groupless case is not valid, as shown by the constructions
in Section 2 (see Examples 2.1 and 2.2 which were found by the second author).
Essentially, the error from [2] was to claim that the pullback of a groupless F-set
in Γ̃ through a group homomorphism restricted to Γ must be an F-set in Γ (as in
Definition 1.2). Furthermore, Example 2.3 shows that when Γ is an arbitrary finitely
generated subgroup, the intersection X(K) ∩ Γ can be quite wild; this motivates our
Definition 1.5 which yields the right form of the sets appearing in the intersection of a
subvariety of G with a finitely generated group.

DEFINITION 1.5. For a semiabelian variety G defined over a finite subfield Fq of
an algebraically closed field K of characteristic p and a finitely generated subgroup
Γ ⊂ G(K), we define a generalised F-set in Γ to be any subset of Γ of the form

(π|Γ)−1(S), (1.3)

where π : G −→ H is a surjective group homomorphism of semiabelian varieties both
defined over a finite subfield of K for which dim(ker(π)) > 0, π|Γ is its restriction to the
subgroup Γ and S ⊂ H(K) is a groupless F-set in π(Γ).
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Note that H may be defined over another finite subfield Fq′ ⊂ K and thus the set S
from (1.3) is a groupless F-set in π(Γ) where F stands for the Frobenius endomorphism
of H associated to the finite field Fq′ .

1.4. Our results. Now we can state our main results, first for describing the
intersection with a finitely generated group of a subvariety of a semiabelian variety
defined over a finite field. We note that even though our results are formulated for
semiabelian varieties defined over an algebraically closed field K, one could formulate
all of the results working instead with an infinite field K, as observed by the referee.

THEOREM 1.6. Let G be a semiabelian variety defined over a finite subfield Fq of an
algebraically closed field K of characteristic p. Let X ⊂ G be a subvariety defined over
K and let Γ ⊂ G(K) be a finitely generated subgroup. Then the intersection X(K) ∩ Γ
is a union of finitely many groupless F-sets in Γ along with finitely many generalised
F-sets in Γ.

Our Examples 2.1, 2.2 and 2.3 show that the sets appearing as intersections between
a subvariety X of a semiabelian variety G defined over a finite field with a finitely
generated subgroup can be quite complicated, well beyond the world of F-sets from
Definition 1.2. However, when X is a curve or G is a simple semiabelian variety, then
we can show that the intersection X(K) ∩ Γ is a finite union of F-sets in Γ.

THEOREM 1.7. Let G be a semiabelian variety defined over a finite subfield of an
algebraically closed field K of prime characteristic, let X ⊆ G be a subvariety defined
over K and let Γ ⊂ G(K) be a finitely generated subgroup. If either dim(X) = 1 or G is a
simple semiabelian variety (that is, either a simple abelian variety or a 1-dimensional
torus), then X(K) ∩ Γ is a finite union of F-sets.

Next, combining our Theorem 1.6 with Hrushovski’s result (see Theorem 1.1), we
obtain the description of the intersection of a subvariety of an arbitrary semiabelian
variety G defined over a field of prime characteristic with a finitely generated subgroup
of G. For this end, we introduce the notion of pseudo-generalised F-sets.

DEFINITION 1.8. Let G be a semiabelian variety defined over an algebraically closed
field K of characteristic p and let Γ ⊂ G(K) be a finitely generated subgroup. A
pseudo-generalised F-set in Γ is a set of the form

x0 + (π|Γ0 )−1(S),

where x0 ∈ Γ, G0 ⊆ G is a semiabelian subvariety, Γ0 = G0(K) ∩ Γ, H is a semiabelian
variety defined over a finite subfield Fq ⊂ K, π : G0 −→ H is a surjective group
homomorphism of semiabelian varieties and S ⊂ H(K) is a groupless F-set in π(Γ0).

REMARK 1.9. In Definition 1.8, if G is defined over a finite subfield of K, then the
pseudo-generalised F-sets from Definition 1.8 cover both the groupless F-sets in Γ
from Definition 1.2 and also the generalised F-sets in Γ from Definition 1.5, but they
are a bit more general than those two types of sets.
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THEOREM 1.10. Let G be a semiabelian variety defined over an algebraically closed
field K of characteristic p, let X ⊆ G be a subvariety and let Γ ⊂ G(K) be a finitely
generated group. Then X(K) ∩ Γ is a finite union of pseudo-generalised F-sets in Γ.

1.5. Plan for our paper. In Section 2, we introduce three examples which progres-
sively show the complexity of the sets appearing as intersections between a subvariety
of a semiabelian variety G with a finitely generated group. Even though in our
examples, G is defined over a finite field, each such example can be ‘embedded’ as
isotrivial semiabelian subvarieties of a semiabelian variety defined over an arbitrary
field of positive characteristic, thus providing complex examples of pseudo-generalised
F-sets. In Section 3, we prove Theorems 1.6 and 1.10. Also, we prove Theorem 1.7 as
a consequence of two more precise results (see Propositions 3.1 and 3.2) regarding
the structure of the intersection X(K) ∩ Γ when either X is a curve or G is a simple
semiabelian variety.

2. Examples

Our first example already shows that X(K) ∩ Γ is not always an F-set in Γ (when Γ
is not invariant under a power of the Frobenius endomorphism of G).

EXAMPLE 2.1. We let G = G2
m × E, where E is a supersingular elliptic curve defined

over Fp; for example, we can take E to be the elliptic curve given by the equation
in affine coordinates y2 = x3 + 1 when p = 5, in which case, the square F2 of the
usual Frobenius endomorphism of E corresponding to F5 equals the multiplication
map [−5] on E. We let C ⊂ G2

m be the line given by the equation x2 = x1 + 1 and then
let X = C × E. We let K = Fp(t) and let P ∈ E(K) be a nontorsion point. Finally, we let
Γ ⊂ G(K) be the cyclic group spanned by Q := (t, t + 1, P) ⊂ G(K). Then

X(K) ∩ Γ = {pnQ : n ≥ 0}. (2.1)

Furthermore, the set from (2.1) cannot be expressed as a groupless F-set; the closest
it comes to being an F-set is expressing it as the following slight twist of groupless
F-sets. We let Q1 := (t, t + 1, 0) ∈ G(K) and Q2 := (1, 1, P) ∈ G(K), and then the set
from (2.1) is the union of the two sets:

{F2n(Q1) + F4n(Q2) : n ≥ 0} and {F2n+1(Q1) − F4n+2(Q2) : n ≥ 0}. (2.2)

Now, comparing the sets from (2.2) with the actual (groupless) F-sets, the
difference seems quite small and so one might think that perhaps slightly extending
the definition of F-sets as in (2.2) would be enough. The main issue in Example 2.1
comes from the fact that the Frobenius endomorphism has ‘different weights’ on the
abelian and affine parts of G. It might seem reasonable to think that allowing different
weights in the definition of a groupless F-set by considering sets of the form

{ r∑
i=1

s∑
j=1

Fki,j·nj (αj) : nj ≥ 0 for j = 1, . . . , s
}
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would suffice for describing X(K) ∩ Γ. However, the next example shows that no
simple extension of the definition of F-sets would work.

EXAMPLE 2.2. We still work with G = G2
m × E, but this time, the elliptic curve E

is ordinary; for example, we could take p = 5 and let E be the elliptic curve given
by the equation in affine coordinates y2 = x3 + x. One can check that the Frobenius
endomorphism corresponding to F5 satisfies the integral equation F2 − 2F + 5 = 0
on E. As before, we let K = Fp(t) and we work with the cyclic group Γ spanned by
Q := (t, t + 1, P) ∈ G(K) for some nontorsion point P ∈ E(K). Then letting X = C × E,
where C ⊂ G2

m is the line x2 = x1 + 1, we find

X(K) ∩ Γ = {pnQ : n ≥ 0}. (2.3)

However, one can show that the set from (2.3) cannot be split into finitely many sets
of the form

{ r∑
i=1

s∑
j=1

Fki,jnj (Qj) : nj ≥ 0 for j = 1, . . . , s
}
, (2.4)

for any given r, s ∈ N and any choice of nonnegative integers ki,j and any choice
of given points Qj ∈ G(K). In other words, even the most complex definition of a
groupless F-set as in (2.4) would still not cover a possible intersection X(K) ∩ Γ.

Now, Examples 2.1 and 2.2 may still suggest that the intersection X(K) ∩ Γ could
be expressed using more general (groupless) F-sets in which one would allow also
the multiplication-by-p map on G playing a similar role to the Frobenius endomor-
phism. However, the next example shows that X(K) ∩ Γ may have a very complex
structure.

EXAMPLE 2.3. We let A and B be semiabelian varieties defined over a finite subfield
Fq of an algebraically closed field K, let G = A × B and let F be the corresponding
Frobenius endomorphism associated to Fq. We let h be the minimal (monic) poly-
nomial with integer coefficients for which h(F) = 0 on B. Depending on the abelian
part of the semiabelian variety B, the degree m of the polynomial h may be arbitrarily
large.

We let C ⊂ B be a curve defined over Fq with trivial stabiliser in B and let P ∈ C(K)
be a nontorsion point; one can even choose C and P so that C(K) intersects the
cyclic Z[F]-module Γ1 spanned by P precisely in the orbit of P under the Frobenius
endomorphism F. We also let Q1, . . . , Qm ∈ A(K) be linearly independent points
(note that A(K) ⊗Z Q is an infinite dimensional Q-vector space). Then we consider
X := A × C and also consider the group Γ ⊂ G(K) spanned by the points

R1 := (Q1, P), R2 := (Q2, F(P)), R3 := (Q3, F2(P)), . . . , Rm := (Qm, Fm−1(P)).
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Then letting π2 : G −→ B be the projection of G = A × B on the second coordinate, we
have π2(Γ) = Γ1 because Γ1 is spanned by the points

P, F(P), F2(P), . . . , Fm−1(P) ∈ B(K),

since Γ1 is the cyclic Z[F]-module spanned by P and h(F)(P) = 0. So, we can find m
sequences {a(i)

n }n≥0 of integers (for i = 0, . . . , m − 1) such that for any n ≥ 0,

Fn(P) =
m−1∑
i=0

a(i)
n · Fi(P). (2.5)

From (2.5), X(K) ∩ Γ is the set
{ m∑

i=1

a(i−1)
n · Ri : n ≥ 0

}
.

So, due to the potential complexity of the coefficients of the polynomial h satisfied by
the Frobenius endomorphism (on the semiabelian variety B), the sequences {a(i)

n }n≥0
may be quite complicated.

3. Proofs of our main results

PROOF OF THEOREM 1.6. We proceed by induction on dim(X); the case when
dim(X) = 0 is obvious since then, X(K) ∩ Γ is a finite set and so each of the groupless
F-sets from our intersection are singletons (corresponding to r = 0 in (1.1)).

Clearly, it suffices to assume X is irreducible. Also, we may assume X(K) ∩ Γ is
Zariski dense in X since otherwise, we could replace X by the Zariski closure of
X(K) ∩ Γ and use the inductive hypothesis.

We let U := StabG(X) be the stabiliser of X in G. We have two possibilities
depending on whether U is finite or not.

Case 1: dim(U) > 0. In this case, we let π0 : G −→ G/U be the natural group
homomorphism; in particular, G0 := G/U is a semiabelian variety defined over a
finite field since U is defined over a finite extension of Fq. We let Γ0 := π0(Γ) and
X0 := π0(X).

Since dim(U) > 0, then dim(X0) < dim(X) and so, by the inductive hypothesis,
X0(K) ∩ Γ0 is a union of finitely many groupless F-sets Bi in Γ0 along with finitely
many generalised F-sets Ci in Γ0. We have

X(K) ∩ Γ = π−1
0 (X0(K) ∩ Γ0) ∩ Γ = (π0|Γ)−1(X0(K) ∩ Γ0). (3.1)

Clearly, each (π0|Γ)−1(Bi) is a generalised F-set in Γ as in Definition 1.5. Now, each Ci
is a set of the form

( f |Γ0 )−1(S0) = f −1(S0) ∩ Γ0,

where f : G0 −→ H is a surjective group homomorphism of semiabelian varieties over
K in which dim(ker( f )) > 0 and H is defined over a finite extension of Fq, and S0 is a
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groupless F-set in f (Γ0) ⊂ H(K) as in Definition 1.2. So, using (3.1), along with the
fact that

π−1
0 ( f −1(S0) ∩ Γ0) ∩ Γ = ( f ◦ π0)−1(S0) ∩ Γ,

shows that X(K) ∩ Γ has the desired form as in the conclusion of Theorem 1.6.

Case 2: U is finite. In this case, we let Γ̃ be the Z[F]-submodule spanned by Γ inside
G(K); since F is integral over Z (inside End(G)), then Γ̃ is also a finitely generated
subgroup of G(K). According to [6] (see Theorem 1.4),

X(K) ∩ Γ̃ =
�⋃

i=1

(Si + Γi), (3.2)

where each Si ⊂ Γ̃ is a groupless F-set as in Definition 1.2, while each Γi is a subgroup
of Γ̃. Now, since

X(K) ∩ Γ = (X(K) ∩ Γ̃) ∩ Γ, (3.3)

it suffices to prove that for each i = 1, . . . , �, there exists a subset Ai ⊆ X(K) ∩ Γ which
is a union of finitely many groupless F-sets in Γ along with finitely many generalised
F-sets in Γ such that

(Si + Γi) ∩ Γ ⊆ Ai; (3.4)

then combining (3.2), (3.3) and (3.4), we see that

X(K) ∩ Γ =
�⋃

i=1

(Si + Γi) ∩ Γ =
�⋃

i=1

Ai

is indeed a finite union of groupless F-sets in Γ along with finitely many generalised
F-sets in Γ, as claimed in the conclusion of Theorem 1.6.

To prove the existence of a set Ai (for each i = 1, . . . , �) as in (3.4), we deal with two
additional cases.

Case 2a: Γi is an infinite subgroup. In this case, we let Xi be the Zariski closure
of Si + Γi; clearly, Xi ⊆ X. We claim that Xi is a proper closed subvariety of X.
Indeed, by construction, Γi ⊆ StabG(Xi) and since Γi is infinite, we cannot have Xi = X
because StabG(X) is finite. So, dim(Xi) < dim(X) and by our inductive hypothesis,
Ai := Xi(K) ∩ Γ satisfies the conclusion from Theorem 1.6. Therefore,

(Si + Γi) ∩ Γ ⊆ Ai,

where Ai is a union of finitely many groupless F-sets along with finitely many
generalised F-sets, as desired for (3.4).

Case 2b: Γi is finite. In this case, letting s := #Γi, we see that Si + Γi is a union of s
groupless F-sets as in Definition 1.2. Now, [2, Theorem 3.1] shows that the intersection
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of a groupless F-set with a finitely generated group is itself a finite union of groupless
F-sets; so,

Ai := (Si + Γi) ∩ Γ

is a finite union of groupless F-sets in Γ as desired for (3.4).
This concludes our proof of Theorem 1.6. �

Theorem 1.7 is an immediate corollary of our next two results which provide a more
precise form of the intersection between a subvariety X of G with a finitely generated
subgroup of G(K) when X is a curve and when G is a simple semiabelian variety.

PROPOSITION 3.1. Let G be a semiabelian variety defined over a finite subfield of
an algebraically closed field K, let Γ ⊂ G(K) be a finitely generated subgroup and let
X ⊆ G be an irreducible curve.

(i) If dim(StabG(X)) > 0, then X(K) ∩ Γ is a coset of a subgroup of Γ.
(ii) If StabG(X) is finite, then X(K) ∩ Γ is a finite union of groupless F-sets.

PROOF. The proof of part (i) is immediate since then, X = γ + G1 for some point
γ ∈ G(K) and some 1-dimensional connected algebraic subgroup G1 ⊆ G. So, the
intersection X(K) ∩ Γ is simply a coset of the subgroup G1(K) ∩ Γ of Γ.

Now, we assume StabG(X) is finite. Then we let Γ̃ be the Z[F]-submodule of G(K)
spanned by Γ. By Theorem 1.4, Γ̃ intersects X(K) in a finite union of F-sets Si in Γ̃.
However, then at the expense of replacing each Si with finitely many other F-sets,
we may assume that each such F-set is groupless (see also the proof of Case 2b in
Theorem 1.6). Finally, by another application of [2, Theorem 3.1], each Si ∩ Γ is a
finite union of groupless F-sets in Γ, as desired. �

PROPOSITION 3.2. Let G be a simple semiabelian variety (that is, either a simple
abelian variety or a 1-dimensional torus) defined over a finite subfield of an alge-
braically closed field K, let Γ ⊂ G(K) be a finitely generated group and let X ⊂ G be a
proper closed subvariety. Then, X(K) ∩ Γ is a finite union of groupless F-sets in Γ.

PROOF. First of all, we note that if Γ is a finite group, then clearly X(K) ∩ Γ is a finite
set and thus a finite union of groupless F-sets, as desired.

So, from now on, we assume that Γ is infinite. According to Theorem 1.6, X(K) ∩ Γ
is a finite union of groupless F-sets in Γ along with (possibly) finitely many generalised
F-sets in Γ. Now, for any such generalised F-set in Γ (call it S),

S = (π|Γ)−1(S0),

where π : G −→ H is a surjective group homomorphism of semiabelian varieties
defined over a finite subfield of K, S0 is a groupless F-set in π(Γ) ⊂ H(K) and moreover,
dim(ker(π)) > 0. However, since G is a simple semiabelian variety, this means that
ker(π) = G, that is, H is the trivial group variety and so, S would have to be the entire
subgroup Γ. However, then its Zariski closure in G is an infinite algebraic subgroup
of G (note that Γ is assumed now to be infinite) and so, once again because G is
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simple, we would conclude that Γ is Zariski dense in G. However, then because S = Γ
is contained in X, we would have X = G, contradicting the fact that X is a proper
closed subvariety of G. Therefore, we have no generalised F-sets in Γ contained in the
intersection X(K) ∩ Γ.

This concludes our proof for Proposition 3.2. �

Theorem 1.10 follows easily from our Theorem 1.6 combined with Theorem 1.1.

PROOF OF THEOREM 1.10. Clearly, as argued in the proof of Theorem 1.6, it suffices
to prove Theorem 1.10 assuming that X is an irreducible subvariety of G and X(K) ∩ Γ
is Zariski dense in X. Then Theorem 1.1 yields

X = γ + π−1(X0),

where π : G0 −→ H is a surjective group homomorphism of semiabelian varieties,
while G0 is a semiabelian subvariety of G and γ ∈ G(K); moreover, H and the
subvariety X0 ⊆ H are defined over a finite subfield Fq ⊂ K. Then for x ∈ G(K),
we have x ∈ X(K) if and only if ‘x − γ ∈ G0(K) and π(x − γ) ∈ X0(K)’. We denote
Γ0 = G0(K) ∩ Γ.

Pick x0 ∈ X(K) ∩ Γ. Let g0 = x0 − γ ∈ G0(K). We have x0 + Γ0 = (γ + G0(K)) ∩ Γ.
As a result, for any x ∈ Γ, we have x − γ ∈ G0(K) if and only if there exists γ0 ∈ Γ0
such that x = x0 + γ0. Thus, x − γ = g0 + γ0 and so, π(x − γ) ∈ X0(K) yields π(γ0) ∈
−π(g0) + X0(K).

Let X′0 = −π(g0) + X0 which is a subvariety of H. The discussion above implies
that X(K) ∩ Γ = x0 + (π|Γ0 )−1(X′0(K) ∩ π(Γ0)). So, considering the subvariety X′0 ⊆ H,
along with the finitely generated subgroup π(Γ0) of H(K), we apply Theorem 1.6 to
conclude that the intersection X′0(K) ∩ π(Γ0) is a finite union of generalised F-sets in
π(Γ0) along with finitely many groupless F-sets in π(Γ0). However, whether S is a
generalised F-set in π(Γ0) or a groupless F-set in π(Γ0), x0 + (π|Γ0 )−1(S) will always be
a pseudo-generalised F-set in Γ (see also Remark 1.9). This shows that X(K) ∩ Γ is a
finite union of pseudo-generalised F-sets in Γ, as desired. �
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