
ASSOCIATED REGULAR SPACES 

J. PELHAM THOMAS 

1. I n t r o d u c t i o n . Let iX,3T) be any topological space. In this paper, we 
show t h a t there is a unique regular topology J % on X which is coarser t h a n ^ 
such t h a t if Y is any regular space, the continuous maps X —> Y are the 
same for 3/~ and J^*. We shall call ^ * the regular topology associated with 
3?~ and (X,3r*) the regular space associated with {X,3f~). In order to prove 
these results, we shall develop two operators, ultraclosure and weak ultra-
closure, which are related to the closure operator. We shall also define a new 
separat ion axiom, called T2b, and show tha t it is between T2a (Urysohn) and 
r 3 (regular Hausdorff). 

In wha t follows, X will denote a set, A and B subsets of X, and ^~, 3TX, 
^a,^*, • • • , topologies on X. If srf is a set of subsets of X, by §{sé) we 
shall mean the topology generated by <$/ as a sub-base. We shall denote the 
closure operator by CI and the interior operator by Int . If it is necessary 
to distinguish between topologies, we shall use subscripts; e.g., C\2A means 
the closure of A with respect to topology 3?~2. 

T h e au thor wishes to thank E. E. Enochs for his assistance in writing this 
paper and the referee for his many helpful suggestions. In particular, the 
first proof of Theorem 1, which is much shorter than the author ' s , is due to 
the referee. T h e author ' s proof is also included, since it seems to exhibit 
more of the topological s t ructure involved. Pa r t s of the paper were done 
under a research gran t from the Char lot te College Foundat ion. 

2. T h e pr inc ipa l t h e o r e m . 

T H E O R E M 1. If $~ is a topology on X, then there is a unique regular topology 
J^7"*, coarser than ^f~, such that if Y is any regular space, the continuous maps 
{X,3?~) —> Y are the continuous maps {X,37~%) —> F. Furthermore, ^~* is the 
least upper bound of the regular topologies coarser than 3?~. 

Proof (by the referee). Define JT'* to be the family of all G C X for which 
there exist a regular space Z, a continuous map fz: (X,^) —» Z, and an 
open U C Z for which G = f~l(U). We first prove t h a t ^ * is a topology. 
T o show tha t <f> £ ^~* and X £ J?^*, let Z be the set X with the trivial (in
discrete) topology and let jf2 be the identi ty map . If {Gi\ is a family of ele
ments of 3T* and fu Zt, Ut the corresponding maps, regular spaces and 
subsets, let Z = II* Z , and l e t / * : (X,^) - » Z such t ha t f2(x) = (f* (*))<. 
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For each i let Vt C Z be the subset of Z consisting of those elements of Z 
whose ith coordinate is in Ut. Then U iGt = / 2

_ 1 ( U t ^ ) € <^~*. If d , G2 G ̂ "*, 
then with the obvious notation, / i X /2 maps continuously into Z\ X Z2 and 
G, C\ G2 = (fi X f2)~1(Ui X Z72) 6 ^~*. Thus ^ * is a topology on X. It is 
not difficult to check that JT~* is regular. Now if Y is any regular space, it 
follows easily t h a t / is continuous (X,^~) —» F if and only if/ is continuous 
( X , ^ * ) —> F. If JT"# is any other topology on X having the desired pro
perties, ^ " # = ^ " * since the identity maps (X, 3T) —> (X,^7"*) and 
(X,J^~) —» (X,^7""/) are continuous. In a similar way it can be shown that 

J?7"* is the least upper bound of the regular topologies coarser than J7". 
Note. The fact that the least upper bound of the regular topologies finer 

than 37~ is itself regular was shown in (1). 

3. 3T* by means of the ultraclosure operator. 

Definition 1. By the ultraclosure of A, denoted Ucl ^4, we shall mean the 
intersection of all closed sets B such that A C B and such that if c £ X — B, 
there are disjoint open $~ neighbourhoods of B and c. If A = Ucl A we say 
that A is ultraclosed. 

THEOREM 2. Ucl is a Kuratowski closure operator on X. 

The proof is straightforward and will be left to the reader. 

Example 1. A r2a-space such that the topology $~\ determined by Ucl is 
neither regular nor Hausdorff: 

A = [0, 1] C\ rationals, 
B = [0, 1] Pi {p/q + V2, p and q integers, q 9* 0}, 
C = [0, 1] Pi \p/q + V3 , p and q integers, q ?* 0}, 
D = [0, 1] H {£/g + V5, £ and g integers, q 9^ 0}, 
E = {]/} U ([0, 1] H {£/# + V7, £ and g integers, g ^ 0}), F ^ 1, 

and let I = i U 5 U C W D U E. Let a base for ^ consist of all sets of 
the following forms: 

(a, b) C\A, 
(a, 6) n ^ U B U C l . K l , 
(a, &) r\ C, 
(a, 6) H ( C U D U £ ) , 
((a, b) HE) U {F}, a < 1 < b, 
(a, fe) H E, 6 < 1. 

Then {1} and {F} are ultraclosed for ^T", hence closed for 3^\. But neigh
bourhoods of 1 and F always intersect. Indeed, £T\ | [0, 1) is the interval 
topology, while sets of the form (a, 1] and (a, 1) \J {\'\ are base neighbour
hoods of 1 and F, respectively. Thus 1 and F have the same systems of 
deleted neighbourhoods. If the ultraclosure operator is applied to (X,&~\) 
we obtain a topology ^" 2 which differs from the interval topology only in 
that 1 and F have the same system of neighbourhoods. Thus ^"2 is not T0. 
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Definition 2. If ^~ 0 = $~ and \i^~a has been defined for each ordinal less 
than j8, define $~$ to be the topology determined by Ucl as applied to 
n«</3^~a. We call ^ the /3th topology associated w i t h J ^ and n « < ^ « the 
jG~~th topology associated with J ^ , denoted by 3T$-, 

L E M M A 1. (X,3T) is regular if and only if Ucl A = CI A for each A C_ X. 

T h e proof is left to the reader. 

L E M M A 2. There exists an ordinal /3 such thatS~p+i =^~$. 

Proof. Otherwise, choose 8 of cardinali ty greater than t ha t of P(X). Then 
with each a < 8 we can associate Aa £ ^~*- — f7~a* B u t this is impossible, 
for this would imply a subset of P(X) having cardinali ty 8. 

LEMMA 3. Let 13 be as in Lemma 2. Then$~$ is regular. 

Proof. If A is closed f o r ^ s , it is closed f o r j ^ + i , t ha t is, Ucl/^4 = A = ClpA. 
T h u s , ^ 3 is regular by Lemma 1. 

LEMMA 4. Let Y be a regular space and let f: {X,^~) —> Y be continuous. 
Then if D C Y is closed, f~x{D) is ultraclosed in (X,^). 

T h e proof is straightforward and will be left to the reader. 

L E M M A 5. If y is an ordinal and Y is a regular space, the continuous maps 
(X,Jr'7) —> Y are continuous (X,^~) —> F. 

Proof. Clearly, the lemma is t rue if 7 = 0. Suppose it is t rue for each 
a < y. Let F be closed in F. T h e n / _ 1 ( F ) is closed in (X,^a) for each a < 7, 
hence closed for O a ^ ^ = <^~y-. Hence, by Lemma 4, f~l(F) is ultraclosed 
for J ^ , - , therefore closed for J^y. 

Proof of Theorem 1 (by the au thor ) . Let /3 be an ordinal such t h a t J ^ =^"^+ i 
(Lemma 2) and let J?7"* =^~&. Then J?7"* is regular (Lemma 3), and con
tinuous maps (X,3?~*) —» F a r e continuous (X,^~) —> F (Lemma 5) . Clearly, 
continuous maps (X,JT~) —> F a r e continuous ( X , ^ * ) —» F. Proof of unique
ness and of the fact t h a t ^ * is the least upper bound of the regular topologies 
coarser than $~ is the same as in the referee's proof. 

4. Ultraclosure by means of the weak ultraclosure operator. In 
order to obtain a bet ter unders tanding of the ultraclosure operator, we shall 
now develop it by means of the weak ultraclosure operator which we now 
define. 

Definition 3. T h e weak ultraclosure of A, denoted Wucl A is 
{x G X\ every closed neighbourhood of x intersects A}. 

Remark. Both Ucl A and Wucl A are closed. If (X,J^~) is regular, then 
C l i = U c l i = Wucl ,4. 

Wucl is no t a closure operator since it may be false t ha t Wucl (Wucl A) = 
Wucl A as we shall see in Example 2. This fact motivates Definition 4. 
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Definition 4. Let the 0th weak ultraclosure of A be A, denoted by WuclM. 
If the ath weak ultraclosure of A has been denned for each a < 7, define 
the 7th weak ultraclosure of A, denoted WuclM to be Wucl(U«<7WucK4). 

Example 3. A subset A of a r2a-space (X,J~) such that WuclM j* WTuclM 
for each a < /3 ^ co, where œ denotes the just infinite ordinal. Let (X,J^~#) 
be the real numbers with the order topology. Let B0 = X. For each n £ N 
let Bn, Bn-i — Bn be a resolution of Bn_i into disjoint dense sets. Let 

3T = $ ( ^ # U {Bu Bo - B2, B,, Bo - Bh . . .}). 

Let 4 = Bo- BL 

We first prove, by induction, that WuclM = B0 — B2n+1 for each n ^ 0. 
Clearly, WuclM = A — B0 — B\ = Bo — ^20+1, therefore, suppose that 

WuclM = Bo- B2k+1. 

We can write B0 - B2k+Z = WuclM U (£2*+i ~ ^ + 2 ) U (£2*+2 - £2/,+3). 
Clearly, WuclM C WucP+M. Let x G £2*+i - 52*+2 and let F be any open 
neighbourhood of x. Then (a, b) H £2Â;+2 H (5 0 — B2k+2) C V for some 
a < x < b, since i ^ + i and i30 — ̂ 2^+2 are the minimal sub-base elements of 
3T which are not in J^"# and which contain x. Let 

y G (a, b) r\ WuclM H S2* = (a, 6) H (B2k - B2k+l). 

(Such a y exists by induction and the transitive property of density.) Then 
if W is any open neighbourhood of y we have that 

(c, d) H (5 0 - £2*+2) H 5a*-! C W 

for some c, d such that a<c<x<d<b, since i30 — ^2^+2 and 52it_i are 
minimal sub-basis elements of^7" which are not in 3f~% and which contain y. 
Hence 

vuwD[(a,b)nBU+1 n (50 - Btk+S)]n 
2^+2) P -^2A:-i] — (£, d) C\ (B2k+1 — B2k+2) ^ 0 

by transitivity of density. Thus y G Cl F Pi WuclM, which implies 
x G WucP+M. If x G -̂ 2yt+2 — ̂ 2A;+3 and V is any neighbourhood of x, an 
argument similar to the above will show that x G Wucl*+M. Thus, 

Bo - B2k+zC WucP+M. 

We now show that B2k+s (Z Bo — Wuclfc+M. Let x G B2k+z. Then 
x G X — (Bo — B2k+2) which is closed and 

WuclM = Bo- B2k+1 CBo- B2k+2, 

therefore CI B2k+% C\ WuclM = 0. We have now completed the proof that 
WuclM = B0 — B2n+1 for each w Ç i V U ( O ) , which shows that 

WuclM 9* WucPM if m, n G N, m ^ n. 
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From the above it is clear that WuclM ^ WuclM for each n. This completes 
the proof. 

LEMMA 6. If for some ordinal /3 it is true that WuclM = WucF+M, then 
WuclM = WuclM for each y >/3. 

Proof, by transfinite induction, is easy and will be left to the reader. 

LEMMA 7. There exists an ordinal /3, independent of A, such that 

WuclM = WuclM 

whenever y ^ fi. 

Proof. Let /3 be an ordinal whose cardinality is greater than that of X, 
and suppose Wucl^+M ^ WuclM. Then, by Lemma 6, for each a < /3, we 
may choose x 6 WuclM — UÔ<«WUC1M. But then the cardinality of X is 
greater than or equal to that of £, which is impossible. I t follows by Lemma 6 
that WuclM = WuclM whenever r > p. 

THEOREM 3. Let p be as in Lemma 7. Then WuclM = Ucl A. 

Proof. Suppose x Q WuclM. Then there exists a neighbourhood V of x 
such that Cl F Pi WuclM = 0. For each y G V, F is a neighbourhood of y 
which does not intersect X — V 3 WuclM D A. Thus x & Ucl A and 
therefore UclM C WuclM. Suppose now that WuclM (£ Ucl A. Let y be 
the smallest ordinal for which WuclM (£ Ucl A and let z G WuclM — Ucl A. 
There is a neighbourhood W of z such that CI IF Pi Ucl A = 0. But then 
for each a < y we have CI W P WuclM = 0, since WuclM C Ucl A. Thus 
z (? WuclM, a contradiction. 

Note. 3T is regular if and only if Wucl A = CI A for each A Ç^X. 

5. r26-spaces and other results. 

THEOREM 4. If (X,^) is not T2a, then (X ,^V) is not TV 

Proof. Let x, y G X such that every closed neighbourhood of x intersects 
every closed neighbourhood of y for ̂ ~'. Then, if V is a n y ^ neighbourhood 
of x, y G Ucl V. Thus for «jf i every neighbourhood of y intersects V; hence 
(X,^~i) is not TV Since £T* is regular and coarser than ^ V it follows that 

£T* is not TV 

We noted that for the TV-space (X,3T) defined in Example 1,^~2 = ^~* 
was not TV On the other hand, we have the following example. 

Example 4. A TV-space (X,^) which is not Tz and such that (X,Jf*) 
is TV Let X be the reals, Ĵ ~# the order topology, Q the rationals and 

<T = $Cr#u {(2}). 
Then jT* = jT#. 
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Theorem 4 and Examples 3 and 4 give rise to the following definition, which 
seems to be of interest in view of Theorem 1. 

Definition 5. A topological space (X,^~) is said to be a r2ô-space if 3T* 
is 7\ (hence T'z). 

I know of no characterization of r2&-spaces other than the defining one. 

Example 5. (£T \ A)* is not necessarily the same as J?7""* | A. Let 

X = {a,b,c,d}, 3T = * ( { M , { c } , { M } , { a , M } ) , A = {byc,d}. 

T r i e n t * \A is the trivial topology, while &~\A)* = $({c}, {6, d}). 

THEOREM 5. In order that X be connected for 3T it is necessary and sufficient 
that it be connected for 37~*. 

Proof. Necessity follows immediately from the fact thatj^"* C ^ ~ . To show 
sufficiency, suppose A is not connected for £T. Then there is a continuous 
and onto m a p / : (X,^~) —» F, where F = {a,b} with the discrete topology. 
But then, since F is regular, we have, by Theorem 1, t h a t / is continuous 
(X,^7"*) —> F, hence ( X , ^ * ) is not connected. 

Note. Theorem 5 cannot be extended to subspaces. In Example 5, (^4,^*1^4) 
is connected but (A,^~\A) is not. 

THEOREM 6. Let ^"# be the semi-regular topology associated with $~ (see 2). 
Then^* C^~# C ^ ~ . 

Proof. The fact that 3T# C ^ is stated as an exercise in (2). To show 
that 3T* C ^"#, it suffices to show that the complement F of any ultraclosed 
set X — V is the union of regular open sets. But, since X — V is ultraclosed, 
for each x £ V we can choose a neighbourhood Vx of x such that . 

Cl 7* H (X - F) = 0. 

Then F = U ^ F Int CI Vx. 

THEOREM 7. Let / , g &£ continuous functions X —> F, where F w TV / / 
/ (x) = g(x) /<?r eac& point of a subset D C X which is dense in (X, ^ * ) , //zen 

/ = «• 
Proof. D determines continuous functions ( X , ^ * ) —> F by the principle 

of extension of identities. The theorem then follows from Theorem 1. 
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