ASSOCIATED REGULAR SPACES
J. PELHAM THOMAS

1. Introduction. Let (X,.97) be any topological space. In this paper, we
show that there is a unique regular topology.Z 4 on X which is coarser than.7~
such that if YV is any regular space, the continuous maps X — Y are the
same for.7 and .7 . We shall call 7 the regular topology associated with
I~ and (X,7 &) the regular space associated with (X,.7). In order to prove
these results, we shall develop two operators, ultraclosure and weak ultra-
closure, which are related to the closure operator. We shall also define a new
separation axiom, called 7'y, and show that it is between T, (Urysohn) and
T3 (regular Hausdorff).

In what follows, X will denote a set, 4 and B subsets of X, and .9, 94,
T T 4 ..., topologies on X. If &7 is a set of subsets of X, by (%) we
shall mean the topology generated by .27 as a sub-base. We shall denote the
closure operator by Cl and the interior operator by Int. If it is necessary
to distinguish between topologies, we shall use subscripts; e.g., Clo4 means
the closure of 4 with respect to topology .7 .

The author wishes to thank E. E. Enochs for his assistance in writing this
paper and the referee for his many helpful suggestions. In particular, the
first proof of Theorem 1, which is much shorter than the author’s, is due to
the referee. The author’s proof is also included, since it seems to exhibit
more of the topological structure involved. Parts of the paper were done
under a research grant from the Charlotte College Foundation.

2. The principal theorem.

THEOREM 1. If T 4s a topology on X, then there is a unique regulur topology
T s, coarser than I, such that if Y is any regular space, the continuous maps
(X,.9) — YV are the continuous maps (X,J &) — Y. Furthermore, T 4 is the
least upper bound of the regular topologies coarser than I .

Proof (by the referee). Define.7  to be the family of all G C X for which
there exist a regular space Z, a continuous map f,: (X,.7) — Z, and an
open U C Z for which G = f~1(U). We first prove that .7  is a topology.
To show that ¢ € J 4 and X € T4, let Z be the set X with the trivial (in-
discrete) topology and let f, be the identity map. If {G;} is a family of ele-
ments of J 4 and f;, Z, U, the corresponding maps, regular spaces and
subsets, let Z = 11, Z; and let f.: (X,.9) — Z such that f.(x) = (f:(x))..
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For each 7 let V; C Z be the subset of Z consisting of those elements of Z
whose 7th coordinate is in U;. Then U ,G; = f."1(U.V,) € T 4. I Gy, Gy € T &,
then with the obvious notation, f; X f» maps continuously into Z; X Z, and
GiN Gy = (fi X f2) X (Ur X Us) €T 4 Thus I 4 is a topology on X. It is
not difficult to check that 9 4 is regular. Now if YV is any regular space, it
follows easily that f is continuous (X,.7 ) — Y if and only if f is continuous
(X,7 &) — Y. If 94 is any other topology on X having the desired pro-
perties, 7 # =.7 4 since the identity maps (X, ) — (X,7 &) and
(X,9) — (X, #) are continuous. In a similar way it can be shown that
T 4 is the least upper bound of the regular topologies coarser than .7 .

Note. The fact that the least upper bound of the regular topologies finer
than 7 is itself regular was shown in (1).

3. 9 « by means of the ultraclosure operator.

Definition 1. By the ultraclosure of 4, denoted Ucl 4, we shall mean the
intersection of all closed sets B such that 4 C B and such thatif ¢ € X — B,
there are disjoint open 4  neighbourhoods of B and ¢. If 4 = Ucl 4 we say
that A4 is ultraclosed.

THEOREM 2. Ucl 25 a Kuratowski closure operator on X.
The proof is straightforward and will be left to the reader.

Example 1. A Ty-space such that the topology .7 ; determined by Ucl is
neither regular nor Hausdorft:

A = [0, 1] M rationals,

B = 10,11 {p/q ++/2, p and ¢ integers, g = 0},

C=1[0,1]"N{p/q + /3, p and q integers, q¢ # 0},

D = [0,11N {p/q + /5, p and ¢ integers, ¢ # 0},

E={1I'}U (0,1] N\ {p/q + /7, p and q integers, g = 0}), 1’ £ 1,
and let X = A \UBU CU DU E. Let a base for Z consist of all sets of
the following forms:

(a,b) N A4,

(e, ) Y (A I BUCQO), b <1,

(a, b) N C,

(a, 0) N (C\U DU E),

((a, D) WE) U {1'}, a < 1 < D,

(¢, 0) VE, b < 1.
Then {1} and {1’} are ultraclosed for 77, hence closed for .7 ;. But neigh-
bourhoods of 1 and 1’ always intersect. Indeed, .7 ;| [0, 1) is the interval
topology, while sets of the form (a, 1] and (a, 1) \U {1’} are base neighbour-
hoods of 1 and 1’, respectively. Thus 1 and 1’ have the same systems of
deleted neighbourhoods. If the ultraclosure operator is applied to (X, )
we obtain a topology 7, which differs from the interval topology only in
that 1 and 1’ have the same system of neighbourhoods. Thus.7 , is not T.
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Definition 2. If I =9 and if I, has been defined for each ordinal less
than B, define J 5 to be the topology determined by Ucl as applied to
Na<sZ « We call 75 the Bth topology associated with.7 and MNe<s.? o the
B~th topology associated with. 7, denoted by Z s-.

LemMma 1. (X,.9) is regular if and only if Ucl A = Cl A for each A C X.
The proof is left to the reader.
LemMma 2. There exists an ordinal 8 such that T g1 =T 4.

Proof. Otherwise, choose § of cardinality greater than that of P(X). Then
with each @ < & we can associate A, € J o~ —7 . But this is impossible,
for this would imply a subset of P(X) having cardinality .

LeMMma 3. Let 8 be as in Lemma 2. Then I g is regular.

Proof. If A is closed for.7 g, it is closed for.7 g1, thatis, Uclgd = A = Cls4.
Thus .7 4 is regular by Lemma 1.

LemMa 4. Let YV be a regular space and let f: (X,9) — Y be continuous.
Then if D C Y is closed, f~2(D) is ultraclosed in (X,).

The proof is straightforward and will be left to the reader.

LeMmMa 5. If v is an ordinal and Y is « regular space, the continuous maps
(X,7,) — Y are continuous (X, ) — Y.

Proof. Clearly, the lemma is true if v = 0. Suppose it is true for each
a < v. Let Fbe closed in Y. Then f~1(F) is closed in (X, ,) for each a < ¥,
hence closed for Na<y-? « =7 ,-. Hence, by Lemma 4, f~1(F) is ultraclosed
for .7 ,-, therefore closed for .7 ,.

Proof of Theorem 1 (by the author). Let 8 be an ordinal such that.7 s =9 4,
(Lemma 2) and let I 4 =9 4. Then J 4 is regular (Lemma 3), and con-
tinuous maps (X, x) — Y are continuous (X, ) — ¥ (Lemma 5). Clearly,
continuous maps (X, ) — Y are continuous (X, 4) — Y. Proof of unique-
ness and of the fact that.7 4 is the least upper bound of the regular topologies
coarser than 7 is the same as in the referee’s proof.

4. Ultraclosure by means of the weak ultraclosure operator. In
order to obtain a better understanding of the ultraclosure operator, we shall

now develop it by means of the weak ultraclosure operator which we now
define.

Definition 3. The weak ultraclosure of A4, denoted Wucl 4 is
{x € X| every closed neighbourhood of x intersects A4}.

Remark. Both Ucl A and Wucl 4 are closed. If (X,.97) is regular, then
Cl4 = Ucl 4 = Wucl 4.

Wucl is not a closure operator since it may be false that Wucl (Wucl 4) =
Wucl 4 as we shall see in Example 2. This fact motivates Definition 4.
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Definition 4. Let the Oth weak ultraclosure of 4 be 4, denoted by Wucl’4.
If the ath weak ultraclosure of 4 has been defined for each a < v, define
the yth weak ultraclosure of 4, denoted Wucl’4 to be Wucl (Ua<;Wucle4).

Example 3. A subset 4 of a Ty,-space (X, ) such that Wucl*4 # Wucl?4
for each & < B £ w, where w denotes the just infinite ordinal. Let (X, #)
be the real numbers with the order topology. Let By = X. For each n € N
let B,, B,—1 — B, be a resolution of B,_; into disjoint dense sets. Let

f: @(f#U{Bl,B()—B‘z,Bg,BQ—B4,...}).

Let4 = By — B;.
We first prove, by induction, that Wucl®4 = By — By,y1 for each n = 0.
Clearly, Wucl’4 = A = By — By = By — Ba.o41, therefore, suppose that

WuClkA = B() - BQk+1.

We can write By — Byyz = Wucl*4 U (Bagyr — Barge) I (Barge — Bargs).
Clearly, Wucl*4 C Wucl*+'4. Let x € Bayy1 — Bagye and let V be any open
neighbourhood of x. Then (a,d) N Bayye M (By — Boaa) C V for some
a < x < b, since Bay1 and By — Byye are the minimal sub-base elements of
Z which are not in.J ¢ and which contain x. Let

y € ((1, b) N WuClkA N sz = ((J/, b) M (B2k - ng+1).

(Such a y exists by induction and the transitive property of density.) Then
if W is any open neighbourhood of ¥y we have that

(C, d) M (Bo - sz+2) M By CW

for some ¢, d such that ¢ < ¢ < x < d < b, since By — Ba,1» and By_; are
minimal sub-basis elements of 7~ which are not in.7 # and which contain y.
Hence

VUMW D [(a,b) M Bayyr M (Bo — Baga) ] M
[(c, d) M (By — Bogta) M Boy—1] = (¢, d) M (Bagr1 — Baoy2) = 0

by transitivity of density. Thus y € Cl VN Wucl*4, which implies
x € Wucl*4. If x € Byyos — Bays and V is any neighbourhood of x, an
argument similar to the above will show that x € Wucl*+'4. Thus,

B() - B2k+3 C Wucl"“A.

We now show that Byys C By — Wucl**'4., Let x € Bys. Then
x € X — (By — Bait2) which is closed and

Wucl*4 = Bo - sz+1 C By — sz+2,

therefore Cl Byyys M Wucl*4 = . We have now completed the proof that
Wucl*’4 = By — Bayy41 for each n € N U {0}, which shows that

Wucl’d # Wucl™4 if m,n € N, m # n.
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From the above it is clear that Wucl®4 # Wucl"4 for each #n. This completes
the proof.

LeMMA 6. If for some ordinal B it is true that Wuclf4 = Wuclf+14, then
Wuclv4d = Wuclf4 for each v >p.

Proof, by transfinite induction, is easy and will be left to the reader.
LemMmA 7. There exists an ordinal B8, independent of A, such that

Wuclf4 = Wucl"4
whenever v = .

Proof. Let 8 be an ordinal whose cardinality is greater than that of X,
and suppose Wuclft'4 # Wuclf4. Then, by Lemma 6, for each a < 8, we
may choose ¥ € Wucl*4 — U ;<.Wucl’4. But then the cardinality of X is
greater than or equal to that of 8, which is impossible. It follows by Lemma 6
that Wucl’4 = Wucl?4 whenever » > .

THEOREM 3. Let B be as in Lemma 7. Then Wuclf4 = Ucl 4.

Proof. Suppose x ¢ Wuclf4. Then there exists a neighbourhood V of x
such that CI VN Wuclf4 = 0. For each y € V, V is a neighbourhood of y
which does not intersect X — V DO Wuclf4 D 4. Thus x ¢ Ucl 4 and
therefore Ucl 4 C WuclP4. Suppose now that Wuclf4 ¢Z Ucl A. Let y be
the smallest ordinal for which Wucl”4 ¢ Ucl 4 and let 2 € Wucl”4 — Ucl 4.
There is a neighbourhood W of z such that C1 WM Ucl A = @. But then
for each @ < v we have C1 WM Wuclt4d = @, since Wucl*4 C Ucl 4. Thus
2z ¢ Wucl"4, a contradiction.

Note. 7 is regular if and only if Wucl 4 = Cl 4 for each 4 C X.

5. Ty,-spaces and other results.
THEOREM 4. If (X, T) is not T, then (X,T &) is not 1.

Proof. Let x,y € X such that every closed neighbourhood of x intersects
every closed neighbourhood of y for.7". Then, if V is any . neighbourhood
of x,y € Ucl V. Thus for 97, every neighbourhood of y intersects V; hence
(X,771) is not T,. Since J 4 is regular and coarser than.7 4, it follows that
T« is not Ty

We noted that for the 7'y-space (X, 7 ) defined in Example 1,.7 , =.9 4

was not T'y. On the other hand, we have the following example.

Example 4. A Ty-space (X,.7 ) which is not T3 and such that (X, )
is T;. Let X be the reals,.7 ¢ the order topology, Q the rationals and

I = &I +\U{0}).
Then I , =9 4.

https://doi.org/10.4153/CJM-1968-105-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-105-6

1092 J. PELHAM THOMAS

Theorem 4 and Examples 3 and 4 give rise to the following definition, which
seems to be of interest in view of Theorem 1.

Definition 5. A topological space (X,.7 ) is said to be a Ts,-space if 7 4
is Ty (hence T3).
I know of no characterization of T';,-spaces other than the defining one.

Example 5. (7 | A)s is not necessarily the same as.7 4 | A. Let
X = {d, b, ¢, d}’ I = (I)({{b}! {C}r {br d}’ {av b, C}}), A= {b, ¢, d}
Then 9 4 | A is the trivial topology, while (7 |4)s = ®({c}, {b, d}).

THEOREM 5. In order that X be connected for I it is necessary and sufficient
that it be connected for I,

Proof. Necessity follows 1mmed1ately from the fact that. 9 4 C.7 . To show
sufficiency, suppose A is not connected for 7. Then there is a continuous
and onto map f: (X,7) — ¥, where ¥ = {q, b} with the discrete topology.
But then, since Y is regular, we have, by Theorem 1, that f is continuous
(X,7 &) — Y, hence (X,.7 4) is not connected.

Note. Theorem 5 cannot be extended to subspaces. In Example 5, (4,7 4|4)
is connected but (4,7 |4) is not.

THEOREM 6. Let J + be the semi-regular topology associated with 7 (see2).
Then T « CT + CT .

Proof. The fact that I # C.7 is stated as an exercise in (2). To show
that J 4 C J 4, it suffices to show that the complement V of any ultraclosed
set X — V is the union of regular open sets. But, since X — V is ultraclosed,
for each x € V we can choose a neighbourhood 7V, of x such that,

Clv,N(X —-1"V)=4a.
Then V = U,y Int Cl V.

THEOREM 7. Let f, g be continuous functions X — Y, where V is T3 If
f(x) = g(x) for each point of a subset D C X which is dense in (X, T &), then
f=zs

Proof. D determines continuous functions (X, 4) — ¥ by the principle
of extension of identities. The theorem then follows from Theorem 1.
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