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Moduli of Rank 2 Stable Bundles and
Hecke Curves

Sarbeswar Pal

Abstract. Let X be a smooth projective curve of arbitrary genus g > 3 over the complex numbers. In
this short note we will show that the moduli space of rank 2 stable vector bundles with determinant
isomorphic to Lx , where Lx denotes the line bundle corresponding to a point x ∈ X, is isomorphic
to a certain variety of lines in the moduli space of S-equivalence classes of semistable bundles of
rank 2 with trivial determinant.

1 Introduction

Let X be a smooth projective curve of genus g > 3 over the complex numbers. Let
ML(r) denote the moduli space of rank r semistable vector bundles over X with
ûxed determinant L. A Fano variety M is a (possibly singular) projective variety
with anti-canonical divisor −KM that is ample and Cartier. It is well known that
when (r, deg(L)) = 1 (which we will call the rank r coprime case), the moduli space
ML(r) is a smooth Fano variety and the theta divisor, which is isomorphic to the
anti-canonical line bundle, generates the Picard group [16]. It is a fundamental result
that for any point x in a Fano manifold M with Picard number 1, there exists a ratio-
nal curve in M passing through x (see [9]). Since the 1980s, rational curves inside an
algebraic variety has been an active area of study in the classiûcation of higher dimen-
sional varieties. _is played a signiûcant role in Mori’s minimal model program. We
should also mention that ûnding rational curves with a ûxed topological class inside
a variety V played an important role in the study of Gromov–Witten theory and the
quantum cohomology ring of the variety V ; this has been an active ûeld of research
in the last twenty years. In the rank 2 coprime case, the quantum cohomology ring of
ML(2) was computed by Vincente Munoz [11, 12].

_e set of rational curves with ûxed topological datum inside an algebraic variety
is a proper subvariety of the Hilbert scheme of curves inside V . Sambaiah Kilaru ûrst
initiated the study of rational curves of ûxed degree inside the moduli space of vector
bundles. In the rank 2 coprime case Kilaru gave an explicit description of the space
of rational curves inside the moduli spaceML(2) that are of low degree (degree 1 and
2) in terms of certain Grassmann bundles over the Picard variety of X [8, _eorems
8 and 9].

Narasimhan and Ramanan [13, 14] ûrst introduced the Hecke modiûcation of a
vector bundle. _e rational curves in ML(r) that arise from Hecke modiûcation of
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a vector bundle over X are called Hecke rational curves. In the rank 2 coprime case,
Hwang [5,6] showed the existence of rational curves in ML(2) (also known as Hecke
curves). _ese Hecke curves satisfy certain minimality conditions on the curves (also
known asminimal rational curves) in terms of degree of the pullback of the canonical
line bundle. Later Xiaotao Sun [17] showed that for the higher rank and coprime case
all minimal rational curves passing through a generic point are Hecke curves and of
degree 2r.

In this paper we attempt to describe rational curves inside ML(2) for the non-
coprime case. Let L0 be a degree 0 line bundle in Pic(X). Drezet and Narasimhan [3]
showed that the Picard group ofML0(r) is isomorphic toZ. _ey also showed that the
moduli space is locally factorial with Gorenstein singularities, and its dualizing sheaf
is isomorphic to L−(r ,c1(L)), where L is the ample determinant bundle in ML(r).
Hence ML(r) is a singular Fano variety with Picard number 1. In this paper we give
an explicit description of rational curves in ML0(2). We plan to generalize our result
to a higher rank in a future paper.

We will brie�y explain our idea here. Our approach is quite similar to that of
Hwang. Let Lx be the line bundle associated with the sheaf O(x) for a point x in
X. For simplicity we writeM0 andMx instead ofML0(2) andMLx (2), respectively.
It is known that the Kummer variety K, which is the quotient of the Jacobian J by the
involution a ↦ −a, is embedded insideM0 as the locus of non-stable points that are
precisely the singular loci ofM0. First we will show that for any rational curve l inM0
that is not contained entirely inside the Kummer variety, there exists a universal bun-
dle El on X × l . _en we will show that this universal bundle has exactly one jumping
line (see §5) at some point t ∈ X. LetMt

0(R(0, 1)) denote the set of all rational curves
l in M0 such that the universal bundle El with c1(El) trivial, c2(El) = 1, and having
unique jumping line at t. In Section 3, we will show that Mt

0(R(0, 1)) has a structure
of smooth variety. _en we prove the following theorem.

_eorem 1.1 Mx is isomorphic to Mx
0(R(0, 1)).

Remark 1.2 If the explicit description is known forM0, then one can try to give an
explicit description for Mx in terms of lines in M0. For example, if the genus of X is
3, then M0 is known to be isomorphic to a quartic hypersurface in P7 [15].

2 Existence of Universal Bundles on Rational Curves

In this section we will show that for a rational curve l ∈M0 intersecting the Kummer
variety in atmost ûnitelymany points, there exists a universal family of vector bundles
on X parametrised by l .

Let X be a smooth, projective curve over the complex numbers with genus > 3. Let
E be a vector bundle of rank r on X. Recall that a parabolic structure of length p(≤ r)
at a point x ∈ X is a ûltration Ex = F 1Ex ⫆ F2Ex ⫆ ⋅ ⋅ ⋅ ⫆ F pEx , where Ex denotes the
ûbre of E at x and weight α i is attached to F iEx for each i with 0 < α1 < α2 < ⋅ ⋅ ⋅ <
αp < 1, i = 1, . . . , p. Set k i = dim F iEx − dim F i+1Ex . _en the parabolic degree of E
is deûned as pardeg E = deg E +∑ k iα i . We write par µ(E) = pardeg E/rank E.
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IfW is a subbundle of E, it acquires, in an obvious way, a quasi parabolic structure
by taking the induced distinct �ags. To make it a parabolic subbundle, attach weights
as follows. Given i0 with F i0W ⊂ F jE for some j, let j0 be such that F i0W ⊂ F j0E and
F i0W ⊈ F j0+1E. _en the weight of F j0E is deûned to be the weight of F i0W . Deûne
E to be parabolic stable (resp., semistable) if for every proper parabolic subbundle
Wof E, one has par µ(W) < par µ(E) (resp., ≤).

Let E be a vector bundle of rank 2 over X with trivial determinant. Suppose we are
given a parabolic structure at x deûned by a 1-dimensional subspace

F2Ex ⊂ F 1Ex = Ex
with small weights such that
● parabolic semistable is the same as parabolic stable
● parabolic stable implies that the underlying bundle is semistable.
Let T be the torsion OX module given by Tx = Ex/F2Ex and Ty = 0 if y /= x.
Consider the canonical surjective homomorphism E → T , and letW be the kernel

of this map. _en W is locally free of rank 2 and its determinant is isomorphic to
L−1
x . In other words, each parabolic structure at x on E gives a rank 2 vector bundle
as above.

Let H be the moduli space of rank 2 parabolic stable bundles over X with trivial
determinant. Let M0 denote the moduli space of rank 2 semistable vector bundles
over X with trivial determinant over X, and let Mx denote the moduli space of rank
2 stable vector bundles over X with determinant isomorphic to Lx , where x ∈ X is a
ûxed point. _en we have the correspondence

H
ψ

zzttt
ttt

ttt
t

f

  B
BB

BB
BB

B

Mx ≃M−x M0

where the map f sends a parabolic bundle E to the underlying bundle E, and ψ(E) =
W , with W as above. Here we have used the canonical isomorphism ofMx andM−x
via tensoring by O(−x). Denote f −1(Ms

0) by Hs ⊂ H, whereMs
0 denotes the stable

locus. _en we have the following proposition.

Proposition 2.1 _e map ψ∶H → Mx , E → W is a P1-bundle, locally trivial in the
Zariski topology. _e morphism f is such that f ∶Hs →Ms

0 is a P1-bundle.

Proof See [1, Proposition 3.1].

Remark 2.2 _ere exist universal bundles on X ×H [10, 16].

Proposition 2.3 Set S = X × P1. _en any Pn-bundle on S li�s to a vector bundle
on S.

Proof _e obstruction of li�ing a projective bundle to a vector bundle is an element
of the algebraic Brauer group. Since X × P1 is a smooth projective variety, this is
isomorphic to the analytic Brauer group, which is a torsion subgroup of H1(O∗

an).
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From the exact sequence of analytic sheaves

0Ð→ ZÐ→ Oan Ð→ O∗

an Ð→ 1,

we get

H1(S ,O∗

an) Ð→ H2(S ,Z) Ð→ H2(S ,Oan) Ð→ H2(S ,O∗

an) Ð→ H3(S ,Z) Ð→ 0.

Since H2(S ,Oan) and H3(S ,Oan) are zero, H2(S ,O∗

an) ≃ H3(S ,Z). On the other
hand,H3(S ,Z) ≃ H1(X ,Z), which is torsion free. _erefore, the obstruction to li�ing
a Pn bundle to a vector bundle is zero. Hence the proposition follows.

Proposition 2.4 Let l be a rational curve inM0 intersecting the Kummer variety in at
most ûnitely many points, (in other words, l contains at most ûnitely many non-stable
bundles). _en there exists a universal family of vector bundles which determine the
line l .

Proof Case (1): l ⊂ Ms
0. It is known that there is a natural universal projective

bundle on X ×Ms
0. By restricting it to X × l , we get a universal projective bundle on

X × l . Hence by Proposition 2.3 and by the argument given in [17, Lemma 2.1], there
is a universal vector bundle on X parametrised by l . We will denote this universal
vector bundle on X × l by El .
Case (2): l ⊈Ms

0. Let l be a line in M0 intersecting the Kummer variety at ûnitely
many points. _en l s = l ∩Ms

0 is an open subset of l . Now by Proposition 2.1 since
f ∶Hs → Ms is a P1-bundle, f ∣ f −1(l s) ∶ f −1(l s) → l s has a non-zero section σ ∶ l s →
f −1(l s) ⊂ H. Since H is projective, we can complete l s to a line l ′ in H mapping
isomorphically by f to l . By Remark 2.2, there exists a universal bundle on X×H, the
restriction of which on l ′ gives a universal bundle on l . Again by a similar argument
given in [17, Lemma 2.1], we get a universal vector bundle on X which determines the
line l .

3 The Variety M0(R(0, 1))
In this section we will deûne the varietyM0(R(0, 1)) consisting of rational curves in
M0 intersecting the singular locus in atmost ûnitelymany points; the universal family
of vector bundles parametrizing the curve has trivial ûrst Chern class and second
Chern class = 1. We will prove that M0(R(0, 1)) is smooth.

Let Z and Y be projective varieties over a ûeld k. Hom(Z ,Y) is the functor

Hom(Z ,Y)(T) = {T-morphisms ∶ Z × T Ð→ Y × T}.
_en we have the following theorem.

_eorem 3.1 Let Z and Y be projective varieties over a ûeld k. _en Hom(Z ,Y) is
represented by an open subscheme Hom(Z ,Y) ⊂ Hilb(Z × Y), where Hilb(Z × Y) is
the Hilbert scheme of graphs of morphisms Z → Y.

Proof See [4, _eorem 5.23].

Let Z = P1 and Y =M0. Let L be the ample generator of Pic(M0) [3].

https://doi.org/10.4153/CMB-2016-058-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-058-9


Moduli of Rank 2 Stable Bundles and Hecke Curves 869

Let Hom1(P1 ,M0) ⊂ Hom(P1 ,M0) be the subscheme that parametrizes mor-
phisms f ∶P1 → M0 of degree 1 with respect to L and whose image intersects the
smooth locus of M0. We call the points of Hom1(P1 ,M0) lines in M0 and denote
them by l . By Proposition 2.4 for such a line l , the universal bundle El that deter-
mines the embedding, exists.

We set M0(R(0, 1)) = {l ∈ Hom1(P1 ,M0) ∣ c1(El) = 0, c2(El) = 1}. Since the
singular locus (semistable locus ) is of codimension at least 2 in M0, a general line
in M0 consists of stable bundles only. Let El be the universal bundle corresponding
to a generic rational curve l of degree 1 in the stable locus Ms

0. Since genus of X >
3, we have that l is a Hecke curve [17] and thus c1(El) = 0 and c2(El) = 1. _us
M0(R(0, 1)) is open in Hom1(P1 ,M0). _erefore to see that M0(R(0, 1)) is smooth
at l , it is enough to show l is a smooth point of Hom1(P1 ,M0). But it is known that l
is a smooth point of Hom1(P1 ,M0) if Ext1(ΩM0 ∣l ,Ol) = 0 [7,_eorem 2.16]. On the
other hand, ΩM0 ∣l can be identiûed with the sheaf p2∗(ad(El) ⊗ p∗1 K), where p1 , p2
denote the projections of X × l to the ûrst and second factors, respectively, and ad(E)
denotes the bundle of trace free endomorphisms.

Lemma 3.2 Ext1(p2∗(ad(El) ⊗ p∗1 K),Ol) = 0.

Proof By Serre duality,

Ext1(p2∗(ad(El) ⊗ p∗1 K),Ol) ≅ (H1(l , (p2∗(ad(El) ⊗ p∗1 K)∗))∗ .
On the other hand, the sheaf (p2∗(ad(El) ⊗ p∗1 K))∗ can be canonically identiûed
with R1(p2)∗ ad(El). Now there is a spectral sequence E p,q

2 = Hp(l , Rqp2∗ ad(E))
converging to Hp+q(X × l , ad(E)). Since E p,q

2 = 0 for p /= 0, 1, we have a short exact
sequence

0→ E0,n
2 → Hn(X × l , ad(E)) → E1,n−1

2 → 0.
_us we have H1(l , R1p2∗ ad(E)) ≅ H2(X × l , ad(E)). Now consider the sheaf
R i(p1)∗ ad(E). Since Ex ≅ O ⊕ O or O(1) ⊕ O(−1), where Ex = E∣{x}×l ,
R i(p1)∗ ad(E) = 0 for all i ≥ 1. _us by the spectral sequence for the projection
p1, we have H2(X × l , ad(E)) ≅ H2(X , (p1)∗ ad(E)) = 0.

_us the varietyM0(R(0, 1)) is smooth.

4 (0, 1)-Stable Bundles and Hecke Curves

In this section we will recall the notion of (k, l)-stability [14] and deûne the Hecke
curve associated with a vector bundle E ∈Mx . We say this association is a Hecke cor-
respondence. _en we will show that the Hecke correspondence deûnes an injective
morphism from Φ∶Mx →M0(R(0, 1)).

If E is a vector bundle (/= 0) on X and k ∈ Z, we denote by µk(E) the rational
number (deg E + k)/rkE.

Deûnition 4.1 A vector bundle E on X is said to be (k, l)-stable (resp., (k, l)-semi-
stable) if, for every proper subbundle F of E, we have µk(F) < µ−l(E/F) (resp.,
µk(F) ≤ µ−l(E/F)).
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Remark 4.2 Note that usual Mumford stability is equivalent to (0, 0)-stability.

Lemma 4.3 Let x ∈ X and 0 → E′ → E → Ox → 0 be an exact sequence of sheaves
with E′ , E locally free. If E is (k, l)-stable, then E′ is (k, l − 1)-stable. In particular, if E
is (0, 1)-stable, then E′ is stable. Similar statements are valid when stable is replaced by
semistable.

Proof See [14, Lemma 5.5].

Lemma 4.4 (i) Let E be a (0, 1)-stable bundle of rank n and E′ a stable vector
bundle of rank n whose determinant is isomorphic to det E ⊗ L−1

x . If f ∶ E′ → E is
a non-zero homomorphism, we have an exact sequence

0Ð→ E′ Ð→ E Ð→ Ox Ð→ 0.

(ii) Moreover, dimH0(X , Hom(E′ , E)) ≤ 1.

Proof See [14, Lemma 5.6].

Let E be a vector bundle of rank 2 on X. _en any non-zero element of E∗x (the
ûbre of E∗ at x ∈ X) can be thought of as a surjective homomorphism of the sheaf E
onto Ox , the structure sheaf of x. _e kernel depends only on the one-dimensional
subspace of E∗x generated by the given element.

We will indicate how one can construct a family of vector bundles on X parame-
trised by P(E∗x ). _e construction is the same as that in [13], except that here we will
take one vector bundle instead of a family of vector bundles.

_e construction goes as follows. Let p i , p2 denote the ith-projection map from
P(E∗x )×X onto the ûrst and second factors, respectively. Consider the natural surjec-
tive homomorphism βE ∶ p∗2E → p∗2(Ox)⊗p∗1 τ, where τ is the tautological hyperplane
bundle on P(E∗x ). Clearly the kernel of the homomorphism βE , denoted by H(E), is
locally free. _en H(E) is the bundle we are looking for. We denote by K(E) the dual
of H(E).

Remark 4.5 _e construction also works for a family of stable vector bundles. See
[13].

If E ∈ Mx , then K(E) is a family of semistable vector bundles on X with trivial
determinant. More precisely, we have a morphism P(E∗x ) →M0. In fact, this map is
the same as the map f ∣ψ−1(E)∶ψ−1(E) →M0 (Proposition 2.1). We claim that the map
is non-constant.

If E is a (0, 1) stable bundle in Mx , then by [14, Lemma 5.9], the morphism
P(E∗x ) →M0 deûnes a rational curve in M0.

If the above map is constant for some E, then the restriction of the pullback of any
ample line bundle on M0 via f to ψ−1(E) is trivial. On the other hand, (0, 1) stable
bundles form a dense open subset ofMx and restriction of the pullback of an ample
line bundle on M0 at ûbres over (0, 1) stable bundles is not trivial (Remark 4.6), a
contradiction. _us the map P(E∗x ) →M0 deûnes a rational curve inM0. A rational
curve on M0 constructed in this way is called a Hecke curve.
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Remark 4.6 _e Hecke curves are of degree 1 rational curves in M0 with respect
to the ample generator [5].

_e following lemma is well known to the experts but for the lack of proper refer-
ences and for the sake of completeness we include a proof.

Lemma 4.7 If E is a rank 2 stable vector bundle with determinant isomorphic to Lx ,
then E contains ûnitely many line subbundles of degree zero.

Proof Let ξ be a degree zero line subbundle of E.
Case (1): H0(X , ξ−2 ⊗ O(x)) = 0. Consider the base-point-free line bundle

K ⊗ ξ−2 ⊗ O(x), where K is the canonical line bundle over X. _is gives rise to a
morphism

π∶X → P((H0(X ,K ⊗ ξ−2 ⊗O(x)))∗) ≃ P(H1(X , ξ2 ⊗O(−x)))

given by mapping, each y ∈ X to the point in P(H1(X , ξ2 ⊗ O(−x)) corresponding
to the kernel of the surjective map

H1(X , ξ2 ⊗O(−x)) Ð→ H1(X , ξ2 ⊗O(−x) ⊗O(y)).

Clearly, π−1(e)is ûnite, where e is the point in P(H1(X , ξ2⊗O(−x))) correspond-
ing to the bundle E. _erefore, the line bundles ξ, ξ−1 ⊗ O(x) ⊗ O(−x i) such that
x i ∈ π−1(e) are contained in E.
Conversely, if η is a degree zero line sub-bundle of E, then the exact sequence

0Ð→ ξ Ð→ E Ð→ ξ−1 ⊗O(x) Ð→ 0

induces a morphism η → ξ−1 ⊗O(x). If this map is zero, then the map η → E factors
through η → ξ. Since both line bundles are of degree zero, this is an isomorphism.
If the map is not zero, then we have η ⊗ O(y) ≃ ξ−1 ⊗ O(x) for some y ∈ X, i.e.,
η ≃ ξ−1 ⊗O(x) ⊗O(−y).
Case (2): H0(X , ξ−2 ⊗ O(x) /= 0. In other words, ξ−2 ⊗ O(x) = O(y) for some

y ∈ X. In that case, the line bundle K ⊗ ξ−2 ⊗ O(x) is not base point free. Its
base locus is {y} and therefore tensoring it by the line bundle O(−y), we get the
base point free canonical line bundle K. Using the isomorphism of H0(X ,K) and
H0(X ,K ⊗ ξ−2 ⊗O(x)), we again have a morphism

π∶X → P(H0(X ,K)∗) ≃ P(H0(X ,K ⊗ ξ−2 ⊗O(x))∗)) ≃ P(H1(X , ξ2 ⊗O(−x))),

given by mapping each point z ∈ X to the point in P(H1(X , ξ2 ⊗ O(−x))) corre-
sponding to the kernel of the map H1(X ,O) → H1(X ,O(z)). By the same argument
as earlier, E contains only ûnitely many line subbundles of degree zero.

Proposition 4.8 _e Hecke curves intersect the Kummer variety at ûnitely many
points.

Proof Let C be a Hecke curve corresponding to a stable bundle E. If C contains
inûnitely many points of the Kummer variety, then E contains inûnitely many line
bundles of degree zero, a contradiction to Lemma 4.7.
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For each family of stable bundles we have a morphism of the parameter space into
M0. Since these morphisms are clearly functorial, we get a morphism Φ from Mx
which sends E to the scheme of rational curves in M0 given by the associated Hecke
curve.

Proposition 4.9 If E and E′ are two nonisomorphic stable vector bundles inMx , then
the respective associated Hecke curves are distinct.

Proof _is is known if E and E′ are (0, 1) stable bundles [14]. For the sake of com-
pleteness I am including a proof.
Case (1): E and E′ are (0, 1) stable bundles. If not, let F and F′ be two points of

intersection. _en we have the following exact sequences

0 // F
fλ1 // E λ1 // Ox // 0,(4.1)

0 // F
fλ′1 // E′

λ′1 // Ox // 0,(4.2)

0 // F′
fλ2 // E λ2 // Ox // 0,(4.3)

0 // F′
fλ′2 // E′

λ′2 // Ox // 0.(4.4)

Now since F ≃ F∗ and F′ ≃ F′∗, where F∗ denotes its dual, we have two non-zero
homomorphisms from E∗ to E′ of maximal rank, one from the dual sequences of
(4.1) and (4.2) and another from the dual sequences of (4.3) and (4.4). Since λ1 /= λ2
and λ′1 /= λ′2, and fλ i and f ′λ i

are of maximal rank, these two homomorphisms cannot
be equal, which is a contradiction to Lemma 4.3.
Case (2): E and E′ are not (0, 1) stable bundles (in this case the associated Hecke

curves contain at least one S-equivalence class of semistable bundles). _en the bun-
dles E and E′ can be written as extensions of the forms,

0Ð→ ξ Ð→ E Ð→ ξ∗ ⊗O(x) Ð→ 0, 0Ð→ ξ Ð→ E′ Ð→ ξ∗ ⊗O(x) Ð→ 0,

respectively, where ξ is a line bundle of degree zero and ξ∗ denotes its dual. Since the
generic points of Hecke curves are stable bundles, there exists a stable bundle, say F,
in the Hecke curve associated with E. _us we have the following diagram.

0

��
F

��
0 // ξ // E

��

// ξ∗ ⊗O(x) // 0

Ox

��
0
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_is gives a nonzero morphism f ∶ F → ξ∗ ⊗O(x).
Claim: dimHom(F , ξ∗ ⊗O(x)) ≤ 1. Consider the vector bundle F∗ ⊗ ξ∗ ⊗O(x).

Since F is stable, F∗ ⊗ ξ∗ ⊗ O(x) is stable and hence the maximal degree of a line
subbundle is 0. Let s be the integer such that the maximal degree of a line subbundle
of F∗ ⊗ ξ∗ ⊗O(x) is d−s

2 , where d is the degree of F∗ ⊗ ξ∗ ⊗O(x). _en s = d. _en
the claim follows from [2, Corollary 1].

If F also lies in the Hecke curve associated with E′, then the map f can be li�ed to
a map F → E′ in the exact sequence

0Ð→ ξ Ð→ E′ Ð→ ξ∗ ⊗O(x) Ð→ 0,

which means that the corresponding extension class δ(E′) ∈ H1(X , ξ2 ⊗ O(−x)) is
in the kernel of the natural map H1(X , ξ2 ⊗O(−x)) → H1(X , F∗ ⊗ ξ). On the other
hand, we have the exact sequence

0Ð→ ξ ⊗O(−x) Ð→ F Ð→ ξ∗ ⊗O(x) Ð→ 0

which gives the following exact sequence

0Ð→ ξ2 ⊗O(−x) Ð→ F∗ ⊗ ξ Ð→ O(x) Ð→ 0.

Since F is stable, then H0(X , F∗ ⊗ ξ) = 0. _us from the long exact sequence of
cohomology for the above exact sequence we have that the kernel of the map

H1(X , ξ2 ⊗O(−x)) Ð→ H1(X , F∗ ⊗ ξ)

is one-dimensional. _erefore the extension class δ(E) = λδ(E′) for some scalar λ.
Hence E is isomorphic to E′, a contradiction.

Proposition 4.10 Let E be a point in Mx and H(E) be the family of semistable vec-
tor bundles parametrised by the associated Hecke curve. _en c1(H(E)) is trivial and
c2(H(E)) = 1.

Proof Let p1 , p2 denote the projections from P(E∗x ) × X onto the ûrst and second
factors, respectively. Let τ be the tautological hyperplane line bundle on P(E∗x ). _e
natural homomorphism p∗2E → p∗1 τmaps the subsheafH(E) of p∗2E into p∗1 τ⊗p∗2L−1

x .
Now we have the following commutative diagram on P(E∗x ) × X.

0

��

0

��
p∗1 τ ⊗ p∗2L−1

x

��

// p∗1 τ ⊗ p∗2L−1
x

��
0 // H(E)

��

// p∗1 τ ⊗ p∗2L−1
x ⊕ p∗2E

��

// p∗1 τ

��

// 0

0 // H(E) // p∗2E

��

// p∗2Ox ⊗ p∗1 τ

��

// 0

0 0
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From the deûnition of H(E), it is clear that H(E)∣P(E∗x )×y is trivial for y /= x. On
the other hand, we restrict the above diagram to P(E∗x ) × x and note that the map
τ ⊗ L−1

x ∣x → τ is zero. Now, using the canonical exact sequence

0Ð→ Ω1
P(E∗x ) ⊗ τ Ð→ O⊗ E∗x Ð→ τ Ð→ 0,

we have H(E)∣P(E∗x )×x ≃ τ ⊗ L−1
x ∣x ⊕ Ω1

P(E∗x ) ⊗ τ ≃ τ ⊕ τ−1. _e same is true for the
vector bundle K(E). Hence c2(H(E)) = 1.

Since the restriction of H(E) on each ûbre over P(E∗x ) is of trivial determinant,
using the above splitting type of H(E) on ûbres over the ûrst projection, we can con-
clude that c1(H(E)) is trivial.

_us by Remark 4.5 and Proposition 4.10 we have a morphism

(4.5) Φ∶Mx →M0(R(0, 1)),
which is injective by Proposition 4.9.

5 Jumping Line at a Point

Let S = X × P1 be a ruled surface and p1∶ S → X be the projection. _en for any
torsion free sheaf E on the ruled surface S, its restriction to a generic ûbre p−1

1 (t) = St
has the form E∣S t = ⊕n

i=1 OS t(α i)⊕r i , α1 > α2 > ⋅ ⋅ ⋅ > αn . _e α = (α⊕r1
1 , . . . , α⊕rn

n ) is
called the generic splitting type ofE. Any suchE admits a relative Harder–Narasimhan
ûltration 0 = E0 ⊂ E1 ⊂ ⋅ ⋅ ⋅ ⊂ En = E of which the quotient sheaves Fi = Ei/Ei−1 are
torsion free with generic splitting type (α⊕r i

i ), respectively. _en it is easy to see that

(5.1) 2c2(E) = 2
n

∑
i=1
c2(Fi)+2

n

∑
i=1
c1(Ei−1)c1(Fi) = 2

n

∑
i=1
c2(Fi)+c1(E)2−

n

∑
i=1
c1(Fi)2 .

Lemma 5.1 Any torsion free sheaf E of rank r on a ruled surface with generic splitting
type (0⊕r)must have c2(E) ≥ 0.

Proof See [17, Lemma 2.1].

Deûnition 5.2 A rank r vector bundle E on a ruled surface X × P1 with generic
splitting type 0⊕r is said to have a jumping line St = p−1

1 (t) at t ∈ X if

E∣S t =
n
⊕
i=1

OS t(α i)⊕r i , α1 > ⋅ ⋅ ⋅ > αn

with the type (α⊕r1
1 , . . . , α⊕rn

n ) diòerent from (0⊕r).

Remark 5.3 Note that for any E in Mx , the associated Hecke curve has a unique
jumping line at x.

Let E be a rank r vector bundle on a ruled surface S = X ×P1 with generic splitting
type 0⊕r and let St be a jumping line. _en we can perform the elementary transfor-
mation on E along St , by taking F to be the kernel of the surjective homomorphism
φ∶E→ E∣S t → OS t(αn)⊕rn . _en clearly we have the following exact sequence:

(5.2) 0Ð→ F Ð→ EÐ→ OS t(αn)⊕rn Ð→ 0.
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Lemma 5.4 c1(F) = c1(E) − rnSt and c2(F) = c2(E) + rnαn .

Proof By the exact sequence (5.2), the computation is straightforward.

Lemma 5.5 If c2(E) = 1 and E has generic splitting type (0⊕r), then E has exactly
one jumping line St and the elementary transformationF along St is isomorphic to p∗1 V
for a vector bundle V over X.

Proof See [17, Lemma 2.4].

Proposition 5.6 Let l be a line inM0 such that the universal bundle El (which exists
by the previous section) has c1(El) = 0 and c2(El) = 1. _en El has generic splitting
type (0⊕2).

Proof First we claim that 0 = E0 ⊂ E1 = El is the relative Harder–Narasimhan ûltra-
tion for El . If not, let 0 = E0 ⊂ E1 ⊂ E2 = El be the relative Harder–Narasimhan
ûltration, where F1 = E1 and F2 = El /E1 are torsion free. Since Fi , i = 1, 2 are
torsion free of rank 1, c2(Fi) = 0. On the other hand, 0 = c2(Fi) = l(F∨∨i /Fi).
_us Fi , i = 1, 2 are locally free. Let (α1) be the generic splitting type of Fi . _en
Fi ⊗ p∗2(O(−α i)) has the generic splitting type (0). So by [17, Lemma 2.2] Fi =
p∗1 Vi ⊗ p∗2(OP1(α i)), where the Vis are line bundles on X of degree, say, d i . _us we
have c1(Fi) = p∗1 OX(d i)+p∗2OP1(α i), where d i is the degree ofFi on the generic ûber
of p2 and α i is the degree of Fi on the generic ûber of p i . _en c1(Fi)2 = 2d iα i . Since
the degree of E on the generic ûber of p i is zero, from (5.1), we have c2(E) = −2d1α1.
Since d1 and α1 are integers and c2(E) = 1, we get a contradiction. _en the proposi-
tion follows from the fact that c1(El) = 0.

_erefore, fromProposition 5.6 and Lemma 5.5 it follows that for any such l ,El has
exactly one jumping line St at t for some t ∈ X. Also from Lemma 5.1 and Lemma 5.4,
it is clear that El ∣S t = OS t(1) ⊕ OS t(−1). We say that a point l in M0(R(0, 1)) has a
jumping line at x if El has jumping line at x.

Set Mx
0(R(0, 1)) ∶= {l ∈ M0(R(0, 1)) ∣ l has unique jumping line at x}_us by

Remark 5.3, the morphism Φ in (4.5) factors through Mx
0(R(0, 1)). We also denote

this morphism by Φ.

6 Surjectivity of Φ

Let l be a point in Mx
0(R(0, 1)). _en by Lemma 5.5, we have the following exact

sequence on S = X × l :

(6.1) 0Ð→ p∗1 (V) Ð→ El Ð→ OSx (−1) Ð→ 0,

for some vector bundle V on X. For any p ∈ l , let E(l ,p) denote El ∣X×{p}. Restricting
the exact sequence (6.1) to p−1

2 (p) = X × {p}, we get

(6.2) 0Ð→ V Ð→ E(l ,p)
λpÐÐ→ OSx (−1)p Ð→ 0.
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Since E(l ,p) is a rank 2 bundle with trivial determinant, E(l ,p) = E(l ,p)
∗. Taking the

dual of (6.2), we get

0Ð→ E(l ,p) Ð→ V∗
λpÐÐ→ OSx (−1)p Ð→ 0.

Since the line l passes through a stable point, there is a p0 ∈ l such that E(l ,p0)

is stable and therefore V is stable. _us V∗ is also stable. _en it is clear that the
Hecke curve deûned by V∗ is l , which proves the surjectivity of Φ. Since the variety
Mx

0(R(0, 1)) is smooth, we have the following theorem.

_eorem 6.1 Mx is isomorphic to Mx
0(R(0, 1)).

Remark 6.2 _emoduli of (0, 1) stable bundles, which is a non-empty open subset
of Mx , is isomorphic to the variety of minimal degree rational curves (lines) with
respect to −KMs

0
in Ms

0.
In fact, let l be a rational curve in Ms

0. We deûne the degree of l with respect to
the anti-canonical ample line bundle −KMs

0
by the number −KMs

0
.l . Let El be the

vector bundle on X × l that induces the embedding l ⊂Ms
0. _en using the same line

of argument as in [17], it can be shown that the degree of l is minimal if and only if
c1(El) = 0 and c2(El) = 1. On the other hand, it is clear from Lemma 4.3 and Remark
4.6 that this line associated with a (0, 1) stable bundle is contained in Ms

0.
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