Canad. Math. Bull. Vol. **57** (2), 2014 pp. 277–282 http://dx.doi.org/10.4153/CMB-2014-009-x © Canadian Mathematical Society 2014



# On Mutually *m*-permutable Products of Smooth Groups

A. M. Elkholy and M. H. Abd El-Latif

Abstract. Let G be a finite group and H, K two subgroups of G. A group G is said to be a mutually m-permutable product of H and K if G = HK and every maximal subgroup of H permutes with K and every maximal subgroup of K permutes with H. In this paper, we investigate the structure of a finite group that is a mutually m-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth.

# 1 Introduction

Finite groups will be considered in this paper. We use the standard notions and notations as in Schmidt [6]. In addition, n will denote the maximal length of the subgroup lattice L(G), and the set of all distinct primes dividing |G| will be denoted by  $\pi(G)$ .

Two subgroups H and K of a group G are said to permute if HK = KH. It is easily seen that H and K permute if the set HK is a subgroup of G. A subgroup of G is said to be permutable in G if it permutes with every subgroup of G. A subgroup H of a group G is called modular in G if it is modular in the subgroup lattice, L(G), of G. It is well known that the subgroup H of a finite group G is permutable if and only if G is modular and subnormal in G (see G in G in G in G in G in G in the permutable subgroups have been studied by several authors. For example, Ore G is all showed that every permutable subgroup of a group is subnormal. Following Ballester-Bolinches et al. G is a group G is said to be a mutually G in G in

A maximal chain  $0 = a_0 < a_1 < a_2 < \cdots < a_n = I$  in a subgroup lattice L with least element 0 and greatest element I is called smooth if  $[a_{i+j}/a_j] \cong [a_i/0]$  for all  $i, j \in N$  such that  $i + j \leq n$ . A group G is called smooth if its subgroup lattice L(G) has a smooth chain. Finite smooth groups have been studied by Schmidt [5]. A subgroup lattice L is called totally smooth if all maximal chains of elements of L are smooth. A group G is said to be totally smooth if its subgroup lattice L(G) is totally smooth. Finite totally smooth groups have been studied in [3]. A group G is a P-group if it is either elementary abelian of order  $p^m$  or a semidirect product of an

Received by the editors November 17, 2012; revised November 27, 2013.

Published electronically March 3, 2014.

AMS subject classification: 20D10, 20D20, 20E15, 20F16.

Keywords: permutable subgroups, m-permutable, smooth groups, subgroup lattices.

elementary abelian P of order  $p^{m-1}$  by a group Q of prime order  $q \neq p$  that induces a nontrivial power automorphism on P,  $m \geq 2$  (see [6, p. 49]).

The purpose of this paper is to restrict our attention to the structure of a finite group that is a mutually *m*-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth. More precisely, we prove the following result.

**Theorem 1.1** (Main Theorem) Assume that G is a mutually m-permutable product of its proper subgroups H and K with  $|\pi(G)|$  geq2. Suppose further that all maximal subgroups of G are totally smooth. Then one of the following holds:

- (i) G is a nonabelian P-group;
- (ii) *G* is cyclic of square free order;
- (iii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in  $\pi(G)$ ;
- (iv) n = 3 and  $|G| = p^2q$ , where p and q are distinct primes in  $\pi(G)$ .

Since every subgroup lattice of length at most 2 is totally smooth, it follows that the structure of groups with this property is well known. So we will usually assume that  $n \ge 3$ .

# 2 The Proof of the Main Theorem

We need the following lemma.

**Lemma 2.1** A group G is totally smooth if and only if one of the following holds:

- (i) *G* is cyclic of prime power order;
- (ii) *G* is a *P*-group;
- (iii) G is cyclic of square free order. (See [3, Theorem 1].)

The proof of the Main Theorem will be included in the following theorems.

**Theorem 2.2** Assume that G is a mutually m-permutable product of its proper subgroups H and K with  $|\pi(G)| = 2$ . Suppose further that all maximal subgroups of G are totally smooth. Then one of the following holds:

- (i) G is a nonabelian P-group;
- (ii) n = 3 and  $|G| = p^2q$ , where p and q are distinct primes in  $\pi(G)$ .

**Proof** Let  $H^*$  and  $K^*$  be maximal subgroups of H and K, respectively. By hypothesis,  $H^*$  and  $K^*$  are totally smooth. Lemma 2.1 implies that the maximal subgroups of G are cyclic of prime power order, P-group, or cyclic of square free order. As  $|\pi(G)| = 2$ , we have the following cases.

*Case 1*: Both *H* and *K* are of prime power orders.

As  $|\pi(G)| = 2$ , H would be of order  $p^{\alpha}$  with  $\alpha \ge 1$  and K would be of order  $q^{\beta}$  with  $\beta \ge 1$  and  $q \ne p$ . If both H and K are cyclic groups and since every maximal subgroup of H permutes with K, it follows by hypothesis that  $H^*K$  is totally smooth, and by Lemma 2.1,  $H^*K$  would be a nonabelian P-group or cyclic of square free order. Since H and K are cyclic groups,  $|H^*| = p$  and |K| = q. Hence  $|H| = p^2$ , and

so  $|G| = p^2 q$ . So assume that H is cyclic and K is elementary abelian with  $\beta > 1$ . If  $H^*K$  is cyclic, we get a contradiction, since |K| = q. Thus  $H^*K$  is a nonabelian P-group. since  $H^*$  is a permutable Sylow p-subgroup of  $H^*K$ ,  $H^*$  normal in  $H^*K$  and hence p > q. We get |K| = q, a contradiction. Thus  $n \ge 4$ .

If H centralizes a proper subgroup  $K_1$  of K, we get n = 3, a contradiction. Thus H does not centralize any subgroup of K, |H| = p, and p < q. This implies that every subgroup containing H is a P-group. Then every subgroup of K is normal in G. Then H induces a universal power automorphism on K and G is a nonabelian P-group.

At the end of this case, assume that both H and K are elementary abelian with  $\alpha > 1$  and  $\beta > 1$ . Let p > q. Since every maximal subgroup of H permutes with K,  $H^*K$  is a maximal subgroup of G. Hence  $H^*K$  would be a nonabelian P-group and so |K| = q, a contradiction. Similar, if p < q, we get a contradiction.

# Case 2: H is cyclic of prime power order and $|\pi(K)| = 2$ .

Suppose, first, that K is a nonabelian P-group of order  $p^{\beta}q$  with  $\beta \geq 1$  (p > q). If  $\beta = 1$ , then n = 3 and either  $|G| = p^2q$  or  $|G| = pq^2$ , and (ii) holds. So assume that  $\beta > 1$ . Hence K has a maximal nonabelian P-group  $K^*$ . If  $|H| = q^{\alpha}$ ,  $HK^*$  is a maximal subgroup of G which is a nonabelian P-group. Then G = K, a contradiction. Thus  $|H| = p^{\alpha}$ . Since H is cyclic, we get |H| = p. If Q is a Sylow q-subgroup of G, we get that Q normalizes every p-subgroup of G and does not centralize any subgroup of G, which implies that G is a nonabelian P-group, and we are done. So assume that K is cyclic of order pq and let  $|H| = p^{\alpha}$ . Then there exists a maximal subgroup M containing H with  $q \mid |M|$  by the hypothesis, and hence M is totally smooth. By Lemma 2.1, M is cyclic of square order or nonabelian p-group. Since H is cyclic, H would be of order P. Then  $|G| = p^2q$  and P and P and P are P and P and P are P are P and P are P and P are P are P and P are P are P are P and P a

## Case 3: H is elementary abelian and $|\pi(K)| = 2$ .

Suppose first, that K is a nonabelian P-group of order  $p^{\beta}q$ ,  $\beta \geq 1$ . If  $|H| = q^{\alpha}$  with  $\alpha > 1$ , there exists a maximal subgroup M of G containing H with  $p \mid |M|$ , and hence [M/1] is not smooth which contradicts our assumption that all maximal subgroups of G are totally smooth. Thus  $|H| = p^{\alpha}$ . Let Q be a Sylow q-subgroup of G and let P be a Sylow p-subgroup of G. Hence P is cyclic or elementary abelian by Lemma 2.1. Since  $|H| = p^{\alpha}$  with  $\alpha > 1$ , P would be elementary abelian. Let  $M_1$  be a maximal subgroup of G containing H and Q. Clearly,  $M_1$  is totally smooth. Lemma 2.1 implies that  $M_1$  is a nonabelian P-group as  $\alpha > 1$ . Hence all maximal subgroups of G are P-groups. Therefore, Q induces a power automorphism on P, which is nontrivial. Then G is a nonabelian P-group.

Now consider the case where K is cyclic of order pq. Let H be elementary abelian with  $\alpha > 1$ . By hypothesis,  $H^*K$  is a maximal subgroup of G that is totally smooth. Since K cyclic, it follows by Lemma 2.1 that  $H^*K$  would be cyclic of square free order. Then  $|H| = p^2$  and hence  $|G| = p^2q$ .

## Case 4: *H* is a nonabelian *P*-group of order $p^{\alpha}q$ .

Assume first that K is a nonabelian P-group. Since  $|\pi(G)| = 2$ , we can assume that  $|K| = p^{\beta}q$ . Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. We argue that |Q| = q.

Let M be a maximal subgroup of G containing Q with  $p \mid M \mid$ . Since M is totally smooth, Lemma 2.1 shows that M is a nonabelian P-group. Hence |Q| = q, and so  $P \triangleleft G$ , where P is a Sylow p-subgroup of G. Since P is totally smooth, it follows by Lemma 2.1 that P is cyclic or elementary abelian. If P is cyclic, then P = 1 and P = 1 is a sum that P = 1 is elementary abelian. Since every proper subgroup of P = 1 is totally smooth, it follows that every proper subgroup containing P = 1 is a nonabelian P = 1 is an onabelian P = 1 is a nonabelian P = 1 is a nonabe

So let K be cyclic of order pq and let  $P_1$  be a Sylow p-subgroup of H. It is clear that  $P_1K$  is a maximal subgroup of G. Hence by our assumption,  $P_1K$  would be totally smooth. Since K is cyclic and H is a nonabelian P-group, we get  $|P_1K| = pq$ . Therefore, n = 3 and  $|G| = pq^2$ , and we are done.

Case 5: H and K are cyclic groups of square free orders.

As  $|\pi(G)| = 2$ , we get H is cyclic of order pq and K is cyclic of order pq. Therefore, n = 3 and hence  $|G| = p^2q$ . This completes our proof.

Now we can assume that |G| is divisible by  $m \ge 3$  different primes.

**Theorem 2.3** Assume that G is a mutually m-permutable product of its proper subgroups H and K with  $|\pi(G)| \ge 3$ . Suppose further that all maximal subgroups of G are totally smooth. Then one of the following holds:

- (i) *G* is cyclic of square free order;
- (ii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in  $\pi(G)$ .

**Proof** As all maximal subgroups of G are totally smooth, Lemma 2.1 shows that the maximal subgroups of G are cyclic of prime power order, P-group, or cyclic of square free order. Since  $|\pi(G)| \geq 3$ , we have the following cases.

*Case 1: H* is cyclic of prime power order and  $|\pi(K)| \ge 2$ .

Suppose first that K is a nonabelian P-group of order  $p_1^{\alpha}p_2$ ,  $p_1 > p_2$ . Then  $|\pi(G)| = 3$ , and so we can assume that  $|H| = p^{\beta}$ . Let  $P_i$  be a Sylow  $p_i$ -subgroup of K, (i = 1, 2). Since H permutes with every maximal subgroup of K,  $HP_1$  is a maximal subgroup of G. Hence it is totally smooth and by Lemma 2.1,  $HP_1$  is cyclic of square free order or a nonabelian P-group. If  $HP_1$  is cyclic of square free order, |H| = p and  $|P_1| = p_1$ . Then n = 3 and  $|G| = p_1p_2p_3$ , and (ii) holds. So suppose  $HP_i$  is a nonabelian P-group (i = 1, 2). If p is the largest prime dividing the order of G and since H is cyclic, it follows that |H| = p, and hence  $|G| = pp_1p_2$  and (ii) holds. Therefore,  $p < p_i$  for each i = 1, 2. Hence H would be of order p.

So assume, for a contradiction, that  $|P_1| > p_1$ . Then  $P_1$  has a normal subgroup L of G and hence  $LHP_2$  is a subgroup of G that is totally smooth. Lemma 2.1 shows that  $LHP_2$  is cyclic of square free order. Then  $P_2$  centralizes L, which contradicts our choice of K since  $LP_2 < K$  and K is a nonabelian P-group. Thus  $|P_1| = p_1$  and  $|G| = pp_1p_2$ .

Now assume that K is cyclic of order  $p_1p_2\cdots p_m$  with m>1. Let H be of order  $p^{\alpha}$  and let  $P_i$  be Sylow  $p_i$ -subgroups of K,  $i=1,2,\ldots,m$ . If n=3,  $|K|=p_1p_2$ . By hypothesis and Lemma 2.1,  $HP_i$  is cyclic or nonabelian P-group with i=1,2. If

 $HP_i$  is cyclic for some i, |G| would be of order  $p_1p_2p_3$  or cyclic of square free order. So  $HP_i$  is a nonabelian P-group for every i=1,2. If  $\alpha>1$ , then H has a normal subgroup L of G. Since LK is totally smooth and  $|\pi(LK)|=3$ , it follows by Lemma 2.1 that LK is cyclic, a contradiction. Thus  $n \geq 4$ .

Hence there exists a maximal subgroup M of G containing H with  $|\pi(M)| \ge 3$ . Since M is totally smooth, Lemma 2.1 shows that M would be cyclic of square free order. This implies that |H| = p and H centralizes every subgroup of K. Then G is cyclic of square free order.

#### Case 2: H is elementary abelian and $|\pi(K)| \geq 2$ .

Assume that K is a nonabelian P-group of order  $p_1^{\alpha}p_2$  with  $p_1 > p_2$ . Then  $|\pi(G)| = 3$ . Let  $P_i$  be a Sylow  $p_i$ -subgroup of K (i = 1, 2). If  $|P_1| > p_1$ , there exists a totally smooth maximal subgroup  $HK^*$  of G with  $|\pi(HK^*)| = 3$ . Since K is a nonabelian P-group,  $[HK^*/1]$  is not smooth, which contradicts our assumption. Thus  $|P_1| = p_1$ . If H would have a maximal subgroup  $H^*$ , then  $H^*K$  is totally smooth subgroup of G. As  $|\pi(H^*K)| = 3$ , Lemma 2.1 shows that  $H^*K$  would be cyclic, contradicting the choice of K. Thus H would be of prime order, and hence  $|G| = p_1 p_2 p_3$ .

So assume that K is cyclic of order  $p_1p_2\cdots p_m$  with m>1. Let H be of order  $p^\alpha$ . Consider  $|\pi(G)|>3$ . Let  $K^*$  be a maximal subgroup of K. Then  $HK^*$  is a subgroup of G by the hypothesis. Hence  $HK^*$  is totally smooth, which would be cyclic of square free order by Lemma 2.1. Then |H|=p and H centralizes every subgroup of K, since  $K^*$  is any subgroup of K. Therefore, G is cyclic of square free order and (i) holds. So assume that  $|\pi(G)|=3$ . We argue that |H|=p. If not, p would be the largest prime dividing |G|. Hence  $H \lhd G$  and it has a proper subgroup L that is normal in G. Then LK is totally smooth by the hypothesis. This implies that LK is cyclic of square free order, since  $|\pi(LK)|=3$  and by Lemma 2.1. Hence  $|H|=p^2$ .

Let  $P_i$  be a Sylow  $p_i$ -subgroup of K for some i = 1, 2. Then  $HP_i$  is a totally smooth subgroup of G. Since L centralizes  $P_i$ , it follows by Lemma 2.1 that  $HP_i$  would be cyclic of square free order. Hence |H| = p, a contradiction since  $|H| = p^2$ . Thus H would be of prime order and so |G| = pqr.

## *Case 3*: *H* and *K* are nonabelian *P*-groups.

Since H and K are nonabelian P-groups,  $|\pi(G)|$  would be at most 4. Let  $|\pi(G)| = 4$  and let  $K^*$  be a maximal subgroup of K. Then  $HK^*$  is a totally smooth subgroup of K by the hypothesis. Since  $|\pi(HK^*)| \ge 3$ , it is clear by Lemma 2.1 that  $HK^*$  is cyclic. As K is a nonabelian K-group, we get a contradiction. Thus  $|\pi(G)| = 3$ . Let K be a Sylow K subgroups of K is K and K is a nonabelian K

If  $|G| = p_1 p_2 p_3$ , we get that (ii) holds and we are done. So suppose, for a contradiction, that  $|P_i| > p_i$  for some i; i = 1, 2, 3.

As both H and K are nonabelian P-groups, we get  $|P_1| > p_1$ , where  $p_1$  is the largest prime in  $\pi(G)$ . Then G has a normal  $p_1$ -subgroup N of  $P_1$ . Hence we get by the hypothesis that  $NP_2P_3$  is a totally smooth subgroup of G that is cyclic of square free order by Lemma 2.1, a contradiction, since both H and K are nonabelian P-group. Thus  $|P_1| = p_1$ , and this completes the proof of this case.

Case 4: *H* is a nonabelian *P*-group and *K* is cyclic of order  $p_1 p_2 \cdots p_m$  with m > 1.

Let  $H^*$  be a maximal subgroup of H with  $|\pi(H^*)| = 2$ . Hence  $H^*K$  is a totally smooth subgroup of G. We get by Lemma 2.1 that  $H^*K$  is cyclic of square free order that contradicts our choice of H. Thus  $H^*$  would be of prime order, which implies that |H| = pq. If  $H \cap K = 1$  and since  $|\pi(K)| \ge 2$ , it follows that  $|\pi(HK^*)| \ge 3$ . Then by Lemma 2.1,  $HK^*$  would be cyclic, a contradiction, since H is a nonabelian P-group. Thus  $H \cap K \ne 1$ . Let q be the smallest prime in  $\pi(G)$  and let Q be a Sylow q-subgroup of G. Then G has a normal q-complement N, say. It follows by the hypothesis and Lemma 2.1 that N is a nonabelian P-group or cyclic. If N is a nonabelian P-group,  $|\pi(G)| = 3$  and N has a proper normal subgroup L of G.

Suppose, for a contradiction, that  $p_j^2 |N|$  for some prime  $p_j \in \pi(G)$ . It follows that G has a maximal subgroup M containing both L and Q with  $|\pi(M)| \geq 3$ . By the hypothesis and Lemma 2.1, M is cyclic, a contradiction since N is a nonabelian P-group. Thus  $|N| = p_1 p_2$ , and hence  $|G| = p_1 p_2 p_3$ . Thus N is cyclic of square free order. We argue that  $|\pi(N)| = 2$ . If not, then there is a maximal subgroup M of G containing H with  $|\pi(M)| \geq 3$ . Since H is a nonabelian P-group, [M/1] is not smooth, which contradicts the hypothesis. Thus  $|\pi(N)| = 2$ . Once again,  $|G| = p_1 p_2 p_3$ .

Case 5: H and K are cyclic groups of square free orders.

If  $K^*$  is a maximal subgroup of K, it follows by the hypothesis that  $HK^*$  is a maximal subgroup of G, and hence it is totally smooth. Then  $HK^*$  would be cyclic of square free order as H cyclic by Lemma 2.1. Hence every maximal subgroup of G containing H or K is cyclic of square free order, which implies that every Sylow subgroup of G is of prime order and would be normal in every maximal subgroup containing it. Therefore, G is cyclic of square free order. This final case completes the proof of the Main Theorem.

**Acknowledgments** I would like to express my appreciation and sincere thanks to Prof. Dr. M. Asaad for his excellent guidance and continuous encouragement.

## References

- M. Asaad, A condition for the supersolvability of finite groups. Comm. Algebra 38(2010), no. 10, 3616–3620.
  http://dx.doi.org/10.1080/00927870903200927
- [2] A. Ballester-Bolinches, J. Cossey, and M. C. Pedraza-Aguilera, On the products of finite supersolvable groups. Comm. Algebra 29(2001), no. 7, 3145–3152. http://dx.doi.org/10.1081/AGB-5013
- [3] A. M. Elkholy, On totally smooth groups. Int. J. Algebra 1(2007), no. 1-4, 63-70.
- [4] O. Ore, Contributions to the theory of groups of finite order. Duke Math. J. 5(1939), 431–460. http://dx.doi.org/10.1215/S0012-7094-39-00537-5
- [5] R. Schmidt, Smooth groups. Geom. Dedicata 84(2001), no. 1–3. 183–206. http://dx.doi.org/10.1023/A:1010333719254
- [6] \_\_\_\_\_, Subgroup lattices of groups. Walter de Gruyter, Berlin, 1994.

Beni Suef University, Faculty of Science, Mathematics Department, Beni-Suef 62511, Egypt e-mail: aelkholy9@yahoo.com