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On Mutually m-permutable Products of
Smooth Groups

A. M. Elkholy and M. H. Abd El-Latif

Abstract. Let G be a finite group and H, K two subgroups of G. A group G is said to be a mutually
m-permutable product of H and K if G = HK and every maximal subgroup of H permutes with K
and every maximal subgroup of K permutes with H. In this paper, we investigate the structure of a
finite group that is a mutually m-permutable product of two subgroups under the assumption that its
maximal subgroups are totally smooth.

1 Introduction

Finite groups will be considered in this paper. We use the standard notions and nota-
tions as in Schmidt [6]. In addition, n will denote the maximal length of the subgroup
lattice L(G), and the set of all distinct primes dividing |G| will be denoted by π(G).

Two subgroups H and K of a group G are said to permute if HK = KH. It is easily
seen that H and K permute if the set HK is a subgroup of G. A subgroup of G is said
to be permutable in G if it permutes with every subgroup of G. A subgroup H of a
group G is called modular in G if it is modular in the subgroup lattice, L(G), of G.
It is well known that the subgroup H of a finite group G is permutable if and only if
H is modular and subnormal in G (see [6, p. 201, Theorem 5.1.1]). The permutable
subgroups have been studied by several authors. For example, Ore [4] showed that
every permutable subgroup of a group is subnormal. Following Ballester-Bolinches
et al. [2], a group G is said to be a mutually m-permutable product of the subgroups
H and K if G = HK and H permutes with every maximal subgroup of K and K
permutes with every maximal subgroup of H. By using the mutually m-permutable
concept, solvability and supersolvability have been studied by several authors such as
Ballester-Bolinches et al. [2] and Asaad [1].

A maximal chain 0 = a0 < a1 < a2 < · · · < an = I in a subgroup lattice L
with least element 0 and greatest element I is called smooth if [ai+ j/a j] ∼= [ai/0] for
all i, j ∈ N such that i + j ≤ n. A group G is called smooth if its subgroup lattice
L(G) has a smooth chain. Finite smooth groups have been studied by Schmidt [5].
A subgroup lattice L is called totally smooth if all maximal chains of elements of L
are smooth. A group G is said to be totally smooth if its subgroup lattice L(G) is
totally smooth. Finite totally smooth groups have been studied in [3]. A group G is
a P-group if it is either elementary abelian of order pm or a semidirect product of an
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elementary abelian P of order pm−1 by a group Q of prime order q 6= p that induces
a nontrivial power automorphism on P, m ≥ 2 (see [6, p. 49]).

The purpose of this paper is to restrict our attention to the structure of a finite
group that is a mutually m-permutable product of two subgroups under the assump-
tion that its maximal subgroups are totally smooth. More precisely, we prove the
following result.

Theorem 1.1 (Main Theorem) Assume that G is a mutually m-permutable product
of its proper subgroups H and K with |π(G)|geq2. Suppose further that all maximal
subgroups of G are totally smooth. Then one of the following holds:

(i) G is a nonabelian P-group;
(ii) G is cyclic of square free order;
(iii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in π(G);
(iv) n = 3 and |G| = p2q, where p and q are distinct primes in π(G).

Since every subgroup lattice of length at most 2 is totally smooth, it follows that the
structure of groups with this property is well known. So we will usually assume that
n ≥ 3.

2 The Proof of the Main Theorem

We need the following lemma.

Lemma 2.1 A group G is totally smooth if and only if one of the following holds:

(i) G is cyclic of prime power order;
(ii) G is a P-group;
(iii) G is cyclic of square free order. (See [3, Theorem 1].)

The proof of the Main Theorem will be included in the following theorems.

Theorem 2.2 Assume that G is a mutually m-permutable product of its proper sub-
groups H and K with |π(G)| = 2. Suppose further that all maximal subgroups of G are
totally smooth. Then one of the following holds:

(i) G is a nonabelian P-group;
(ii) n = 3 and |G| = p2q, where p and q are distinct primes in π(G).

Proof Let H∗ and K∗ be maximal subgroups of H and K, respectively. By hypoth-
esis, H∗ and K∗ are totally smooth. Lemma 2.1 implies that the maximal subgroups
of G are cyclic of prime power order, P-group, or cyclic of square free order. As
|π(G)| = 2, we have the following cases.

Case 1: Both H and K are of prime power orders.
As |π(G)| = 2, H would be of order pα with α ≥ 1 and K would be of order qβ

with β ≥ 1 and q 6= p. If both H and K are cyclic groups and since every maximal
subgroup of H permutes with K, it follows by hypothesis that H∗K is totally smooth,
and by Lemma 2.1, H∗K would be a nonabelian P-group or cyclic of square free
order. Since H and K are cyclic groups, |H∗| = p and |K| = q. Hence |H| = p2, and
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so |G| = p2q. So assume that H is cyclic and K is elementary abelian with β > 1.
If H∗K is cyclic, we get a contradiction, since |K| = q. Thus H∗K is a nonabelian
P-group. since H∗ is a permutable Sylow p-subgroup of H∗K, H∗ normal in H∗K
and hence p > q. We get |K| = q, a contradiction. Thus n ≥ 4.

If H centralizes a proper subgroup K1 of K, we get n = 3, a contradiction. Thus H
does not centralize any subgroup of K, |H| = p, and p < q. This implies that every
subgroup containing H is a P-group. Then every subgroup of K is normal in G. Then
H induces a universal power automorphism on K and G is a nonabelian P-group.

At the end of this case, assume that both H and K are elementary abelian with
α > 1 and β > 1. Let p > q. Since every maximal subgroup of H permutes with K,
H∗K is a maximal subgroup of G. Hence H∗K would be a nonabelian P-group and
so |K| = q, a contradiction. Similar, if p < q, we get a contradiction.

Case 2: H is cyclic of prime power order and |π(K)| = 2.
Suppose, first, that K is a nonabelian P-group of order pβq with β ≥ 1 (p > q).

If β = 1, then n = 3 and either |G| = p2q or |G| = pq2, and (ii) holds. So
assume that β > 1. Hence K has a maximal nonabelian P-group K∗. If |H| = qα,
HK∗ is a maximal subgroup of G which is a nonabelian P-group. Then G = K, a
contradiction. Thus |H| = pα. Since H is cyclic, we get |H| = p. If Q is a Sylow
q-subgroup of G, we get that Q normalizes every p-subgroup of G and does not
centralize any subgroup of G, which implies that G is a nonabelian P-group, and we
are done. So assume that K is cyclic of order pq and let |H| = pα. Then there exists
a maximal subgroup M containing H with q

∣∣ |M| by the hypothesis, and hence M is
totally smooth. By Lemma 2.1, M is cyclic of square order or nonabelian p-group.
Since H is cyclic, H would be of order p. Then |G| = p2q and n = 3.

Case 3: H is elementary abelian and |π(K)| = 2.
Suppose first, that K is a nonabelian P-group of order pβq, β ≥ 1. If |H| = qα

with α > 1, there exists a maximal subgroup M of G containing H with p
∣∣ |M|,

and hence [M/1] is not smooth which contradicts our assumption that all maximal
subgroups of G are totally smooth. Thus |H| = pα. Let Q be a Sylow q-subgroup
of G and let P be a Sylow p-subgroup of G. Hence P is cyclic or elementary abelian
by Lemma 2.1. Since |H| = pα with α > 1, P would be elementary abelian. Let
M1 be a maximal subgroup of G containing H and Q. Clearly, M1 is totally smooth.
Lemma 2.1 implies that M1 is a nonabelian P-group as α > 1. Hence all maximal
subgroups of G are P-groups. Therefore, Q induces a power automorphism on P,
which is nontrivial. Then G is a nonabelian P-group.

Now consider the case where K is cyclic of order pq. Let H be elementary abelian
with α > 1. By hypothesis, H∗K is a maximal subgroup of G that is totally smooth.
Since K cyclic, it follows by Lemma 2.1 that H∗K would be cyclic of square free order.
Then |H| = p2 and hence |G| = p2q.

Case 4: H is a nonabelian P-group of order pαq.
Assume first that K is a nonabelian P-group. Since |π(G)| = 2, we can assume

that |K| = pβq. Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of
G. We argue that |Q| = q.
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Let M be a maximal subgroup of G containing Q with p
∣∣ |M|. Since M is totally

smooth, Lemma 2.1 shows that M is a nonabelian P-group. Hence |Q| = q, and
so P C G, where P is a Sylow p-subgroup of G. Since P is totally smooth, it follows
by Lemma 2.1 that P is cyclic or elementary abelian. If P is cyclic, then n = 3 and
|G| = p2q. So assume that P is elementary abelian. Since every proper subgroup
of G is totally smooth, it follows that every proper subgroup containing Q of G is a
nonabelian P-group. Then Q does not centralize any p-subgroup of G, and hence G
is a nonabelian P-group of order pn−1q.

So let K be cyclic of order pq and let P1 be a Sylow p-subgroup of H. It is clear
that P1K is a maximal subgroup of G. Hence by our assumption, P1K would be
totally smooth. Since K is cyclic and H is a nonabelian P-group, we get |P1K| = pq.
Therefore, n = 3 and |G| = pq2, and we are done.

Case 5: H and K are cyclic groups of square free orders.
As |π(G)| = 2, we get H is cyclic of order pq and K is cyclic of order pq. Therefore,

n = 3 and hence |G| = p2q. This completes our proof.

Now we can assume that |G| is divisible by m ≥ 3 different primes.

Theorem 2.3 Assume that G is a mutually m-permutable product of its proper sub-
groups H and K with |π(G)| ≥ 3. Suppose further that all maximal subgroups of G are
totally smooth. Then one of the following holds:

(i) G is cyclic of square free order;
(ii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in π(G).

Proof As all maximal subgroups of G are totally smooth, Lemma 2.1 shows that the
maximal subgroups of G are cyclic of prime power order, P-group, or cyclic of square
free order. Since |π(G)| ≥ 3, we have the following cases.

Case 1: H is cyclic of prime power order and |π(K)| ≥ 2.
Suppose first that K is a nonabelian P-group of order pα1 p2, p1 > p2. Then

|π(G)| = 3, and so we can assume that |H| = pβ . Let Pi be a Sylow pi-subgroup
of K, (i = 1, 2). Since H permutes with every maximal subgroup of K, HP1 is a
maximal subgroup of G. Hence it is totally smooth and by Lemma 2.1, HP1 is cyclic
of square free order or a nonabelian P-group. If HP1 is cyclic of square free order,
|H| = p and |P1| = p1. Then n = 3 and |G| = p1 p2 p3, and (ii) holds. So suppose
HPi is a nonabelian P-group (i = 1, 2). If p is the largest prime dividing the order
of G and since H is cyclic, it follows that |H| = p, and hence |G| = pp1 p2 and (ii)
holds. Therefore, p < pi for each i = 1, 2. Hence H would be of order p.

So assume, for a contradiction, that |P1| > p1. Then P1 has a normal subgroup
L of G and hence LHP2 is a subgroup of G that is totally smooth. Lemma 2.1 shows
that LHP2 is cyclic of square free order. Then P2 centralizes L, which contradicts our
choice of K since LP2 < K and K is a nonabelian P-group. Thus |P1| = p1 and
|G| = pp1 p2.

Now assume that K is cyclic of order p1 p2 · · · pm with m > 1. Let H be of order
pα and let Pi be Sylow pi-subgroups of K, i = 1, 2, . . . ,m. If n = 3, |K| = p1 p2.
By hypothesis and Lemma 2.1, HPi is cyclic or nonabelian P-group with i = 1, 2. If

https://doi.org/10.4153/CMB-2014-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-009-x


On Mutually m-permutable Products of Smooth Groups 281

HPi is cyclic for some i, |G| would be of order p1 p2 p3 or cyclic of square free order.
So HPi is a nonabelian P-group for every i = 1, 2. If α > 1, then H has a normal
subgroup L of G. Since LK is totally smooth and |π(LK)| = 3, it follows by Lemma
2.1 that LK is cyclic, a contradiction. Thus n ≥ 4.

Hence there exists a maximal subgroup M of G containing H with |π(M)| ≥ 3.
Since M is totally smooth, Lemma 2.1 shows that M would be cyclic of square free
order. This implies that |H| = p and H centralizes every subgroup of K. Then G is
cyclic of square free order.

Case 2: H is elementary abelian and |π(K)| ≥ 2.
Assume that K is a nonabelian P-group of order pα1 p2 with p1 > p2. Then

|π(G)| = 3. Let Pi be a Sylow pi-subgroup of K (i = 1, 2). If |P1| > p1, there
exists a totally smooth maximal subgroup HK∗ of G with |π(HK∗)| = 3. Since K
is a nonabelian P-group, [HK∗/1] is not smooth, which contradicts our assump-
tion. Thus |P1| = p1. If H would have a maximal subgroup H∗, then H∗K is totally
smooth subgroup of G. As |π(H∗K)| = 3, Lemma 2.1 shows that H∗K would be
cyclic, contradicting the choice of K. Thus H would be of prime order, and hence
|G| = p1 p2 p3.

So assume that K is cyclic of order p1 p2 · · · pm with m > 1. Let H be of order pα.
Consider |π(G)| > 3. Let K∗ be a maximal subgroup of K. Then HK∗ is a subgroup
of G by the hypothesis. Hence HK∗ is totally smooth, which would be cyclic of square
free order by Lemma 2.1. Then |H| = p and H centralizes every subgroup of K, since
K∗ is any subgroup of K. Therefore, G is cyclic of square free order and (i) holds. So
assume that |π(G)| = 3. We argue that |H| = p. If not, p would be the largest prime
dividing |G|. Hence H C G and it has a proper subgroup L that is normal in G. Then
LK is totally smooth by the hypothesis. This implies that LK is cyclic of square free
order, since |π(LK)| = 3 and by Lemma 2.1. Hence |H| = p2.

Let Pi be a Sylow pi-subgroup of K for some i = 1, 2. Then HPi is a totally
smooth subgroup of G. Since L centralizes Pi , it follows by Lemma 2.1 that HPi

would be cyclic of square free order. Hence |H| = p, a contradiction since |H| = p2.
Thus H would be of prime order and so |G| = pqr.

Case 3: H and K are nonabelian P-groups.
Since H and K are nonabelian P-groups, |π(G)| would be at most 4. Let |π(G)| =

4 and let K∗ be a maximal subgroup of K. Then HK∗ is a totally smooth subgroup of
G by the hypothesis. Since |π(HK∗)| ≥ 3, it is clear by Lemma 2.1 that HK∗ is cyclic.
As H is a nonabelian P-group, we get a contradiction. Thus |π(G)| = 3. Let Pi be a
Sylow pi-subgroups of G, i = 1, 2, 3.

If |G| = p1 p2 p3, we get that (ii) holds and we are done. So suppose, for a contra-
diction, that |Pi | > pi for some i; i = 1, 2, 3.

As both H and K are nonabelian P-groups, we get |P1| > p1, where p1 is the
largest prime in π(G). Then G has a normal p1-subgroup N of P1. Hence we get by
the hypothesis that NP2P3 is a totally smooth subgroup of G that is cyclic of square
free order by Lemma 2.1, a contradiction, since both H and K are nonabelian P-
group. Thus |P1| = p1, and this completes the proof of this case.

Case 4: H is a nonabelian P-group and K is cyclic of order p1 p2 · · · pm with m > 1.
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Let H∗ be a maximal subgroup of H with |π(H∗)| = 2. Hence H∗K is a totally
smooth subgroup of G. We get by Lemma 2.1 that H∗K is cyclic of square free order
that contradicts our choice of H. Thus H∗ would be of prime order, which implies
that |H| = pq. If H ∩ K = 1 and since |π(K)| ≥ 2, it follows that |π(HK∗)| ≥ 3.
Then by Lemma 2.1, HK∗ would be cyclic, a contradiction, since H is a nonabelian
P-group. Thus H ∩ K 6= 1. Let q be the smallest prime in π(G) and let Q be a
Sylow q-subgroup of G. Then G has a normal q-complement N, say. It follows by
the hypothesis and Lemma 2.1 that N is a nonabelian P-group or cyclic. If N is a
nonabelian P-group, |π(G)| = 3 and N has a proper normal subgroup L of G.

Suppose, for a contradiction, that p2
j

∣∣ |N| for some prime p j ∈ π(G). It follows
that G has a maximal subgroup M containing both L and Q with |π(M)| ≥ 3. By
the hypothesis and Lemma 2.1, M is cyclic, a contradiction since N is a nonabelian
P-group. Thus |N| = p1 p2, and hence |G| = p1 p2 p3. Thus N is cyclic of square
free order. We argue that |π(N)| = 2. If not, then there is a maximal subgroup
M of G containing H with |π(M)| ≥ 3. Since H is a nonabelian P-group, [M/1]
is not smooth, which contradicts the hypothesis. Thus |π(N)| = 2. Once again,
|G| = p1 p2 p3.

Case 5: H and K are cyclic groups of square free orders.
If K∗ is a maximal subgroup of K, it follows by the hypothesis that HK∗ is a

maximal subgroup of G, and hence it is totally smooth. Then HK∗ would be cyclic
of square free order as H cyclic by Lemma 2.1. Hence every maximal subgroup of
G containing H or K is cyclic of square free order, which implies that every Sylow
subgroup of G is of prime order and would be normal in every maximal subgroup
containing it. Therefore, G is cyclic of square free order. This final case completes the
proof of the Main Theorem.
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