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OSCILLATION OF SEMILINEAR ELLIPTIC 
INEQUALITIES BY RICCATI 

TRANSFORMATIONS 

E. S. NOUSSAIR AND C. A. SWANSON 

1. Introduction. A generalized Riccati transformation will be utilized 
to derive a Riccati-type inequality (3) associated with a semilinear 
elliptic inequality yL(y\ x) ^ 0 possessing a positive solution y in an 
exterior domain in Euclidean n-space. On the basis of (3), general suf­
ficient conditions for the elliptic inequality to be oscillatory are developed 
in § 3. The matrix of coefficients of the second derivative terms in 
L(y;x) (i.e. ( i ^ ) in (1)) is not restricted in any way beyond the usual 
ellipticity hypothesis (iv) below, and thereby one of the difficulties 
mentioned in [9] and inherent in the method there is resolved. Further­
more, the nonlinear term B{x, y) in (1) is not required to be one-signed. 

In § 4 the results are specialized to the case that L(y; x) is a perturba­
tion of a linear elliptic operator, without sign restrictions. The theorems 
are not deducible via comparison theorems since the coefficients are not 
uniformly one-signed. Several corollaries yield sharper oscillation criteria 
than those known previously, even in the case of linear Schrôdinger 
operators. Examples are given of oscillatory operators by our criteria for 
which earlier criteria give no information. 

The superlinear results in § 5 are obtained by first establishing a priori 
lower bounds R(r) for positive solutions, and then applying our Com­
parison Theorem 10. In particular, the theorems of §§ 3 and 4 can be 
applied to yield new superlinear oscillation criteria, thereby extending 
earlier results of the authors [9] for Schrôdinger inequalities to the case 
that A is not the identity matrix in (1). Some of these criteria are of 
Allegretto's type [1,2], but are sharper and more specific under the inter­
section of his and our hypotheses. The sublinear result in § 6 improves 
a recent result of Kitamura and Kusano [6] in the 2-dimensional Schrô­
dinger case. Some limitations and open questions are mentioned in the 
conclusion. 

2. Preliminaries. Points in ^-dimensional Euclidean space En will be 
denoted by x = (xi, . . . , xn), the Euclidean length of x by \x\, and 
differentiation with respect to xt by Dt, i = 1, . . . , n. Let Sa denote the 
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sphere of radius a, G (a, b) the annulus between spheres of radii a and b, 
and Ga the complement in En of the closed ball of radius a: 

Sa = {x e En: \x\ = a], a > 0 

G(a,b) = {x G En: a < \x\ < b} 

Ga = G(a,co). 

Let (r,6) be hyperspherical coordinates of a point x in En\ r = |x|, 
0 = 0i, . . . , 0n_i. The measure on 5 a and S1 will be denoted by 5 and co, 
respectively; thus ds = an~ldo), s(Sa) = an_1co(5i). The outward unit 
normal v to 5G a t x Ç 5 a has components ^ = x z / a , i = 1, . . . , n. For 
an exterior domain 12 in En, there exists a positive number a such tha t 
GaCV. 

The partial differential inequality under consideration is yL(y; x) ^ 0, 
where 

(1) L(y;x)= Y, DilAuWDrf + Bix.y) 

under the assumptions listed below. 

Assumptions. 
(i) B(x, t) is continuous in 12 X E1; 

(ii) B(x, t) ^ P(x)<t>(t) for all x £ 12 and for all t ^ 0, where p is con­
tinuous in 12, <f> £ C^O, oo ), and <j)(t) > 0 if t > 0; 

(iii) i?(x, /) ^ —pi(x)(j)i( — t) for all x £ 12 and for all / < 0, where 
pi is continuous in 12, </>i Ç C^O, oo ) and </>i(/) > 0 if t > 0. 

(iv) Each ^4^- involved in (1) is a real-valued function of class 0(12), 
and the matrix A =• (A tj) is symmetric and positive definite in 12 
(ellipticity condition). 

Motivated by the one-dimensional and matrix Riccati transformation 
used by Coles [3], Howard [5], Reid [11] and others, we employ a general 
Riccati transformation defined in terms of an arbi t rary positive abso­
lutely continuous function a in [0, oo ). This transformation maps positive 
C1 functions y in 12 into w-vector functions w defined by 

(2) w^--^i)^v^>-
Matrix notation will be used throughout ; in particular A~l denotes the 
inverse of A and * denotes the transpose. 

LEMMA 1. If y is a positive-valued solution of L(y; x) ^ 0 in 12, under 
the preceding assumptions ( i ) - ( iv ) , then the n-vector function w given by 
(2) satisfies the Riccati inequality 

(3) div wipe) ^ a(r)p(x) + - £ & M ) (w*A~lw)(x) + 2 ^ w*(*>(*) , 
a{r) a[r) 

where v(x) = x/r is the outward unit normal to Sr, r = \x\. 
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Proof. Differentiation of the i-th component of (2) with respect to 
x t gives 

(AVy)i air) 
DtWi = —a'(r)Dir-

</>Cy) <t>'(y) 
tWllDMijDjy) 

- 4>'(y) TtAijDtyDjy 
3 

for i — 1, . . . , n. Since Dtr = xt/r = vu summation over i and use of 
(1) leads to 

In view of hypothesis (ii) we obtain 

div w è - ^ T T (^4V^)*^ + «(r)p(x) + ~P~ (A~lw)*AA-lw, 
4>\y) oi{r) 

which is equivalent to (3). 

We note that Lemma 1 is considerably simplified in the case of a 
linear elliptic differential equation 

n 

(5) Ly EB £ ^ [ ^ . ( x ) ^ ] + £(*)? = 0. 

LEMMA 2. If y is a zero-free solution of (5) in il where p is continuous in 
12 and assumption (iv) holds, then the n-vector function w — —ay~lAVy 
satisfies the Riccati equation below in 12: 

(6) divw(x) = a(r)p(x) H 7-7- (w*A~lw)(x) H r-r-w*(x)v(x). 
a(r) a[r) 

In fact, equality occurs in (4) on account of (5),0(y) = y, and B(x,y) = 
p(x)y\ consequently (4) implies (6) if y is a positive-valued solution of 
(5). The same is true if y is negative-valued since Y = — y is a positive-
valued solution of (5) and 

y-'AVy = Y~lAVY. 

3. The main theorems. The Riccati inequality (3) will be used to 
derive sufficient conditions for the nonexistence of positive solutions of 
L(y;x) S 0, and hence oscillation criteria for elliptic differential in­
equalities. Our approach is a (considerable) amplification of the method 
used by Coles [3] in the one-dimensional case of (1 ). Various specializations 
of Theorems 1 and 2 give new oscillation criteria for a class of nonlinear 
inequalities yL(y;x) rg 0 and also sharpen known linear oscillation 
criteria. 
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Let X(x) denote the largest (necessarily positive) eigenvalue of the 
matrix (A 7 J(x)) and l e t / be any piecewise C1 function in (0, oo ) satisfying 
f(r) ^ max | a i = r X(x). 

T H E O R E M 3. The elliptic inequality L(y;x) ^ 0 has no eventually 
positive solution y in an exterior domain Œ of En if there exists a positive 
absolutely continuous function a in [0, oo ) and positive numbers a and k 
such that the following conditions are satisfied: 

(7) </>'(/) ^ k for all t > 0; 

(8) lim 
T-^co J 

d G(a,r) 

. (l,l). (x )_I^i^_(M dx 

+ fr(S1)k-1r1l-1f(r)a'(r)} = +^ 

and 

/

>to rX~ndr 

a a(r)f(r) 

where oo(Si) denotes the area of the unit sphere in En. 

Proof. Suppose to the contrary tha t y is a positive solution of 
L(y;x) ^ 0 in 12 C\ Gb for some b ^ 0. Since 12 is an exterior domain, we 
can assume tha t b is large enough so tha t Gb C &, & ̂  Gb = Gb; then the 
Riccati inequality (3) holds in Gb. Since X_1(x) is the smallest (neces­
sarily positive) eigenvalue of A~l(x), 

(10) (w^A-^ix) ^ X-1 (*)!«>(*) I2 ^ [ / ( r ) ] - 1 ! ^ ^ ) ! 2 . 

Since <t>'(y(x)) ^ & by hypothesis (7), inequalities (3) and (10) imply 
tha t 

/ i i \ A- ( \ ^ / \ w \ i £|w(a;)|2 , ^ r(r)(w*ï/)(x) 
(11) div w(x) è a(r)p(x) + -7~Y77 V + — - ^ V T • 

a(r)f(r) a[r) 
Define 

(12) P^(x) = w(x) + (2^)~ 1 / ( r )« / ( r )Kx) , * Ç G„. 

An easy calculation using (12) transforms (11) into 

(13) div w è d i v ^ + ap - tteO- + A ̂ /* ,̂ 
2& 4&a a/ 

where the dependence on x (: Gb has been suppressed in the notation. 
Integrating (13) over G(b, r) and using the divergence theorem we 

obtain 

(14) I div W(x)dx = I W*vds - I W*vds ^ I ^-ds 
J G(b,r) J Sr J Sb J Sr 2& 

- I ~rds+j g(x)dx + R(r) 
J Sb *K J G(b,r) 
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where 

(15) g(x) = a(r)p(x) -
W(r)]2f(r) 

4:ka(r) 

kW*(x)W(pc) 

r = \x\ 

(16) R(r) - . . 

and consequently 

cfc dr, 

d2? 

•J. W*(x)W(x)^. 
dr a(r)f(r) *J sr 

An application of the Cauchy-Schwarz inequality gives 

(17) ^ > 
kr1"1 

dr = w (5 i )« ( r ) / ( r ) II W*(x)v(x)ds 

In view of hypothesis (8), it is seen from (14) t ha t there exists a number 
fi ^ b such tha t 

(18) I W*(x)v(x)dS > R(r) ^ 0 

for r ^ ri , and consequently (17) implies t ha t 

(19) ^ > _ * L ^ ! W _ 
y ' dr = « ( 5 i ) a ( r ) / ( r ) " 

I t follows from (16) and the Cauchy-Schwarz inequali ty again tha t 

I W*{x)v(x)ds\ £r"-lu(Si)\ W*(x)W(x)ds, 

(20) î (r) ^ f S ^ W U ^ [ f 

>Sr 

W*(x)v(pc)ds dr 

and therefore -K(r) > 0 from (18) whenever r ^ Y\. Then integration of 
(19) over (r i? r) gives 

I _ ^ frR'iàâL > k fr rl~ndr 

(rx) > J r i # 2 ( r ) = co(Si) J rx a(r)f(r) ' * 0 

This proves t ha t the right side is a bounded function of r, contradict ing 
hypothesis (9). 

A f u n c t i o n / : 12 —» E1 is called (weakly) oscillatory in 12 if, and only if, 
f(x) has a zero in 12 C\ Gb for all 6 ^ 0 . T h e inequali ty yL{y\ x) ^ 0 is 
called oscillatory in 12 whenever every solution y of the inequali ty is 
oscillatory in 12. Define 

(21) p(x) = m'm{p(x),p1(x)\, x G 12. 
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THEOREM 4. The inequality yL(y;x) ^ 0 is oscillatory in an exterior 
domain 12 of En if there exists a positive absolutely continuous function a in 
[0, zo ) and positive numbers a and k such that (7), (9), and the following 
conditions are fulfilled: 

(22) 0 / ( 0 ^ k for all t > 0/ 

W(\x\)]2f(\x\)~ 
(23) lim 

7"->00 {/ 
W G(a,r) 

"<I*I)P(*) 4MM) dx 

+ M S i ) * ~ V ^ ( r ) a ' ( r U = +oo. 

Proof. Since p{x) ^ £(#) for all x G 12, (23) implies (8), and hence no 
solution y of the differential inequality can remain positive in 12 C\ Gb for 
b è 0 by Theorem 3. If 3> were a negative-valued solution of L(;y; x) ^ 0 
throughout 12 C\ Gb for some ^ ^ 0, then by (1) and assumption (iii), 
z — — y would be a positive-valued solution of 

J^DtlAvfàDfis] S B(x, -z) g -£i(*)*i(*)-

This has the same form as the inequality in Lemma 1 and Theorem 3 with 
p and $ replaced by pi and </>i, respectively, and therefore Theorem 3 is 
contradicted in view of the hypotheses (22) and (23). 

4. Linear and perturbed linear equations. The results of § 3 will 
now be specialized to the case that B(x, y) in (1) has the form 

j 

(24) B(x,y) = qi(x)y + £ <Zi(*)*;(30, x 6 12 

under the assumptions listed below. 

Assumptions. 
(v) Each Çj is a continuous real-valued function in 12; j = 1, 2, . . . , J; 

(vi) Each i/̂  is an odd C1 function in ( — 00,00) with \pj(t) > 0 and 
t/(t) ^ Ofor I > 0. 

It is not required that any of the functions a:) be everywhere positive in 
12. Define 

(25) p(x) = min [qi(x), q2(x), . . . , gj(x)] 

(26) * ( y ) = y + E ^ ( y ) . 

Then £(x, 3/) ^ p(x)<j>(y) for all 3/ > 0 and for all # G 12, and 

B(x, y) rg —p(x)(t>( — y) for all y < 0 and x £ 12. 

Consequently the basic assumptions (ii) and (iii) of § 2 are satisfied with 
pi = p and 4>i — <£. 
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If each qj(x) > 0 throughout fi (j = 2, . . . , J) then a solution y of 

yL(y; x) ^ 0 satisfies 

(27) Q1(x) = qi(x) + T.qjfày-ifrWMx)) > 2iW 
7=2 

for all x G 12 with ;y(x) ^ 0, and oscillation criteria for L(y;x) = 0 
follow from known nodal oscillation criteria for linear (only) differential 
equations 

n 

(28) L(y;x) = £ P , [ ^ 0 ( x ) ^ ] + ffl(^)y = 0. 
M = I 

The lat ter criteria, sufficient for the existence of a nontrivial solution of 
(28) with a nodal domain i n l l H Ga for all a > 0, have been known for 
some time [4, 8]. If a one-signed solution of yL(y; x) rg 0 existed under 
such nodal oscillation criteria, then y(x) would satisfy a linear inequality 
of type (28) with qx replaced by Qi. In view of (27), a s tandard linear 
comparison theorem would yield a contradiction. However, this argument 
cannot be accomplished in any straightforward way when the functions 
Qj in (24) change sign in 12. 

Since assumptions (ii) and (iii) are satisfied under the s t ructure (24), 
and (7), (22) hold with k = 1 by (26), conditions (9), (23) of Theorem 
4 (or (8), (9) of Theorem 3) with k = 1 are oscillation criteria for the 
perturbed linear inequality yL(y; x) rg 0. Specializations of these results 
to the cases a(r) = log r (r > 1) if n = 2 and a(r) = r2~n (r > 0) if 
n ^ 3 are as follows: 

T H E O R E M Ô . The perturbed linear inequality yL(y\x) ^ 0 given by 
(1), (24) is oscillatory in an exterior domain 12 of E2 under assumptions 
(iv), (v) , and (vi) if the largest eigenvalue X(x) of A (x) satisfies 

(29) m a x k | = r X(x) ^ C[log (log r ) ] s , r > e 

for some numbers C > 0 and <5, 0 < 5 ̂  1, and 

(30) f"[rlogrpM(r) ^ dr = +oo 
4r log r\ 

for some a > 0, where pM{r) denotes the spherical mean 

(31) pM(r) = —r-T I p(x)dœ. 

T H E O R E M 6. The perturbed linear inequality yL(y\x) ^ 0 given by (1), 
(24) is oscillatory in an exterior domain of En (n ̂  3) under assumptions 
(iv), (v) , and (vi) if 

(32) max | x I = r \(x) è C(log r ) 5 , r > 1 
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for some numbers C > 0 and 8, 0 < 5 ^ 1, and 

\dr = +oo (33, J" [„„M _ iï^Ûfcï 
r 

/or some a > 0, where PM{T) is given by (31). 

Proofs. For n = 2, we set fc = 1 and a ( r ) = log r (r > 1) in (23) and 
note tha t (9) is satisfied fo r / ( r ) = C[log (log r ) ] 5 , C > 0, 0 < 5 g 1: 

CœJ^dr_ = 1 f00 <fr = 

J a(r)f(r) CJ r log r[log (log r)]8 

The first term on the left side of (23) reduces to 

Km J ( \p(x)\ogr - 7 ! ^ - r̂ co dr, 

which diverges to +00 by (30) and (31). The conclusion of Theorem 5 
then follows from Theorem 4. 

For n ^ 3 we set k = 1 and a(r) = r2~n in (23) and again see tha t (9) 
is satisfied in view of (32), and (23) is satisfied because of (33). Theorem 
6 then also follows as a special case of Theorem 4. 

The case tha t A (x) is bounded above is included in Theorems 5 and 6, 
and the case of a constant matrix A leads to the following simplification. 

COROLLARY 7. For a constant matrix A, the inequality yL(y;x) ^ 0 
given by (1), (24) is oscillatory in an exterior domain 12 of En under assump­
tions (iv), (v), and (vi) if 

r\ogrpM(r) - — 
4r log r 

dr = + ° o , n = 2 

rpAr)-^-2^ dr = + 0 0 , n ^ 3 
r 

for some a > 0, where X denotes the largest eigenvalue of A. 

If the growth condition (29) or (32) fails, oscillation criteria are still 
available by different choices of a(r) in Theorem 4. The following is 
obtained f o r a ( r ) = 1 identically. 

T H E O R E M 8. The perturbed linear inequality yL(y; x) :g 0 is oscillatory 
in an exterior domain 12 of En under assumptions (iv), (v), and (vi) if 

(34) I p(x)dx = + 00 

and 

/ • 

r dr 
——-— = +GO , for some a > 0. 
f(r) 
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Theorems 4, 5, 6 and 8 give new oscillation criteria even in the case of a 
linear equation (28) or inequality yL(y; x) ^ 0. The first reason for this 
is that p(x) = qi(x) in (28) is allowed to change sign in 12, and the second 
reason is that (30) and (33) are sharper than the usual criteria, e.g. those 
in [9]. For example, (30) is satisfied if (28) is the Schrôdinger equation 
A;y + p(x)y = 0 and if either 

lim inf r2pM(r) (log r)2 > \ 

or 

. , x L_ . __ _ _ ^ 

as Y —> oo for some C > 0 , 0 < <5 ^ 1. The standard criterion [9] 

/
r(log r)ppM{r)dr = +oo , p < 1 

« 

(and also the criterion (34)) are stronger than (30) and are not always 
fulfilled in the preceding examples. Similar remarks can be made attesting 
to the sharpness of (33) in dimensions n ^ 3. 

5. Superlinear inequalities. In this section results similar to those in 
§ 4 will be obtained for yL(y\ x) ^ 0 under the superlinear hypotheses 
below. 

Superlinear Assumptions. 
(vii) The functions p and pi in assumptions (ii) and (iii) are identical 

and everywhere nonnegative in 12; 
(viii) The functions <j> and <f>\ are identical and \p{t) = 4>{t)/t is non-

decreasing for all t > 0. 

Theorem 4 cannot be applied since (/> does not satisfy condition (7): 

</>'(/) ^ k > 0 for all / > 0. 

For example, (7) fails for the superlinear prototype <p(t) = V, y > 1. 
Instead Lemma 9 below will be employed, replacing (7) by an a priori 
lower bound Y(a)R(\x\) on any positive solution y(x) of L(y;x) ^ 0 
in 12, where Y (a) and R(r) are defined by (38) and (37) below, respec­
tively. The superlinear oscillation criteria can then be deduced from the 
linear results in § 4. Alternatively, we could have employed the Riccati 
inequality (3) directly to obtain analogues of Theorems 3 and 4 when 
(7) is replaced by the a priori bound in Lemma 9. 
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The following notation will be used: 

(35) U(y,x)= £ Dt[Ati(x)D,y] 

(36) p(r) = sup |L0( |x| ;x) | £ Aij(x)Di\x\Dj\x\ 
\X] = T L i,j 

S(r; b) = I exp I — p(s)ds \dt, a ^ r ^ b 

R(r;b) = S(r;b)/S(a;b) 

(37) R(r) = l i m ^ i^(r;&) 

(38) F(a) = infu , . f ly(x). 

LEMMA 9. Every positive solution y of L0(y; x) rg 0 for \x\ ^ a satisfies 
the inequality y(x) ^ Y(a)R(\x\) for \x\ ^ a. 

Proof. The function w defined in [a, b] by w(r) = F(a)i?(r; b) is the 
unique solution of the ordinary boundary problem 

(39) 
u"(r) - p(r)\uf(r)\ = 0, a ^ r S b 
u(a) = F(a), w(6) = 0, 

as is well-knowrn and easily checked by direct substitution. We define 
v(x) = u(\x\) = u(r) and compute L0(v; x) using (35), (36), and (39): 

U(v)x) = £ (AtJDtrDf)u"(r) + £ Dt(AtJDy)w'(r) 
i,j i,j 

= £ {AtjDirDjr)u"{r) + L„(|x|;x) 

^AijDifDjr <"( r ) -p ( r ) | « ' ( r ) | ] = 0. 

Then */(#) is a solution of the boundary problem 

JL0(v; X) ^ 0 in a ^ r ^ b 
\ v(x) = Y (a) on \x\ — a; v(x) = 0 on \x\ = b. 

However y(x) satisfies 

Lo(y; x) ^ 0 in a ^ r ^ b 
y(x) ^ F (Û) on \x\ — a; 3>(x) > 0 on \x\ = b, 

and it follows from the Hopf maximum principle [10] applied to the 
annulusG(a, b) that y (x) è v(x) = u(\x\) throughout a ^ |x| ^ b, i.e., 

y(x) ^ Y(a)R(r\b). 

Since this is valid for arbitrary b > a, the proof of Lemma 9 is complete. 
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THEOREM 10. Under assumptions (i)-(iv), (vii), and (viii), the super-
linear inequality yL(y; x) ^ 0 is oscillatory in an exterior domain 12 of E" 
if the linear inequality 

(40) L0(y; x) + p(x)$(tR(\x\))y S 0 

has no eventually positive solution in ttfor any positive number e. 

Proof. If y{x) is a positive solution of yL(y\x) ^ 0 throughout Gb for 
some /; > 0 (chosen large enough so that Gb C & without loss of gener­
ality), then 

0 è U(y(x);x) +B(x,y(x)) 
è L0(y(x);x) + p(x)\p(y(x))y(x) 
è L0(y(x);x) + p(x)t(Y(a)R(\x\))y(x) 

on account of Lemma 9 and the nondecreasing hypothesis (viii) on \p. 
This means that y(x) satisfies (40) with e = Y (a) > 0, and so y(x) 
cannot be eventually positive. 

If y(x) were a negative solution of L(y;x) ^ 0 throughout Gbl then 
z(x) = —y(x) w^ould be a positive solution of 

0 ^ LQ( — Z(X)\ X) + B(x, — z(x)) 
g —Lo(z(x);x) — p(x)\//(z(x))z(x) 

and consequently 

0 è £o(z(*)ï*) + £ (x)^ (Z(a^( |x | ) ) S (x ) , 

which is impossible by the first part of the proof. 

COROLLARY 11. Under the same assumptions, the superlinear inequality 
yL(y; x) ^ 0 is oscillatory in an exterior domain En if there exists a positive 
absolutely continuous function a in [0, oo ) and a positive number a such that 

(41) lim 

and 

/ f r , , . . „ . , . . , . , n / , . . m K(1*1)]!/(|X|) 
/ 
u G(a,r) 

a(\x\)p(x)4,(<RQx\)) - 4 a ( j x | ) dx 

+ MSiV-'firWir)} = +œ 

(42) I -~rzjr^ = +oo 
a{r)f{r) 

for all e > 0. 

Proof. The linear elliptic inequality (40) is of the type considered in 
Theorem 3 in the special case </>(/) = t, so (7) and (8) hold for k = 1, with 
p(x) replaced by p(x)\f/(eR(\x\)). 

COROLLARY 12. Under the same assumptions and (29) in addition, the 
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superlinear inequality yL(y;x) ^ 0 is oscillatory in an exterior domain 

12 of E2 if there exists a positive number a such that 

(43) 
/ : 

r log r\f/(tR(r))pM(r) — 
fir) 

dr = +co 

(44) XI rt(eR(r))pM(r) 

4r log r j 

for all e > 0, where pAi(r) denotes the spherical mean (31). 

COROLLARY 13. Under the same assumptions and (32) in addition, 
yL(y, x) ^ 0 is oscillatory in an exterior domain of En (n ^ 3) if there 
exists a positive number a such that 

in - 2)2 /(r)~L 
r J 

for all e > 0. 

Proofs. For n = 2 we choose a(r) = log r (r > 1) in Corollary 11 
and note tha t (42) is satisfied for 

f(r) = C[log (log r)]0, C> 0, 0 < 5 S 1. 

Fur thermore (41) is satisfied by assumption (43) as in the proof of 
Theorem 5. For n ^ 3 we choose a(r) = r2_w in (41) and (42) and argue 
similarly. 

The next corollary is a specialization to the Emden-Fowler prototype 

(45) L(y; x) = Ay + p(x)yy = 0, y > 1 

where 7 is a quot ient of odd integers. 

COROLLARY 14. Under the same assumptions, (45) is oscillatory in an 
exterior domain in En if there exists a positive number a such that 

(46) / " [ « H o g r M O - ^ j dr = +00 (n = 2) 

(47) /;[ trapM(r) 
(n - 2)2 

dr = +00 (n ^ 3), 

for all e > 0, where a = (n — 1) — y(n — 2). 

Proof. In the case L0(:y;x) = Ay , one checks from (37) tha t R(r) = 
(a/r)w~2 , » ^ 2. F o r / ( r ) = 1 and ^(eiR(r)) = e{*~1 = e, (43) specializes 
to (46). F o r / ( r ) = 1 and 

*(eiR(r)) = 
- ( ; ) • 

7 - 1 
(2-rc.) (7 -1 ) 

where e = (eiOn~2)y~1, and consequently 

r\p(eiR{r)) = era
f a = n — I — y(n — 2), 

(44) specializes to (47). 
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The criteria (46) and (47) are very similar to those obtained by the 
authors [9] using the totally different method of spherical means and 
ordinary differential inequalities. 

6. A sublinear oscillation criterion. The Riccati method will be 
illustrated in the case that (1) reduces to the Schrôdinger operator 

2 

(48) L(y\x) = Ay + B(x,y), A = T,DiDi, x £ É1. 

The assumptions are (i)-(iii) and the 
Sublinear Assumption. 
(ix) The functions <j> and </>i in (ii), (iii) are identical, #'(/) > 0 for all 

/ > 0, and $(/) < oo for all / > 0, where 

If y is a positive solution of yL(y\ x) ^ 0, then Ay ^ ~P (%)<!> (y) by 
(48) and assumption (ii), and hence (49) gives 

m A t ( y ) = _ |M | v , | . + .|g_Ê_,(x, 
The oscillation theorem below is stated in terms of the spherical mean 

1 f27r . 
(51) pM(r) =-0- I p(r,0)dO, r>0 

where p(r, 6) = p(x) is given by (21). 

THEOREM 15. Under assumptions (i)-(iii) and (ix), the sublinear 
inequality yL(y; x) ^ 0 given by (48) is oscillatory in an exterior domain 
of E* if 

r^co " TQ 

I pp (52) lim I ppM(p)dP = +oo 

for some r0 > 0. 

Proof. Suppose to the contrary that y(x) is a positive solution of 
L(y;x) ^ 0 in Ga for some a > 0. Define 

(53) my(r) = I V$(y(x))*vds = I ^ d^^y^ d)) rdd 
J sr J o or 

for a < r < oo. Let w(x) be defined by (2) with a(r) = 1 identically. 

https://doi.org/10.4153/CJM-1980-069-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-069-8


RICCATI TRANSFORMATIONS 921 

Then (3) can be integrated over G (a, r) to give 

(54) I div w(x)dx ^ I p(x)dx. 
J G(a,r) J G(a,T) 

Let p, 6 denote polar coordinates of x, a ^ p = |x| ^ r. Since 

(w*p)(x) = -d$(y(p,d))/dp 

by (2) and (49), application of the divergence theorem to (54) gives 

mv(r) — mv(a) ^ - 2 T T I ppM{p)dp. 
J a 

By hypothesis (52), there exists a number b ^ a such tha t my(r) S 
K(l < 0 for all r ^ b, and consequently 

f"[*(y(r,0)) - Hy(b,e))]de = f * f'^M£iEldpde 
J 0 •/ 0 ^ 6 Cp 

my(p)~ g 2£alogf 
p /; 

• / • 
• ^ ft 

whenever r ^ b on account of (53). Then 

• 2 T T 

would become negative for sufficiently large rf contrary to the hypothesis 
tha t y(x) > 0 throughout Ga. 

If y(x) < 0 and L(y;x) ^ 0 throughout Ga for some a > 0, then 
z{x) — —y(x) would be a positive solution of 

0 S -Az + B(x, -z) ^ - Az - £i(*)*i(*0 

by assumption (iii), or equivalently Az ^ — p(x)<j>(z) by (ix). Since 
this is exactly the inequality leading to (3), a contradiction is obtained 
as in the first par t of the proof. 

We remark tha t none of the functions B(x, t), p(x), and piix) are 
required to be everywhere positive for Theorem 15. A similar result was 
obtained recently by Ki tamura and Kusano [6] in the case of a Schrô-
dinger equation A;y + p(x)<j>(y) = 0. 

7. C o n c l u s i o n . T h e Riccati partial differential inequality (3) has led to 
new oscillation criteria for several types of nonlinear elliptic operators, 
especially perturbed linear and superlinear operators. Specialization to 
linear problems actually sharpened and extended earlier results. Several 
open questions s tated in [9] have been resolved: (1) The matrix A(x) 
in (1) is not required to have constant entries, as in [9], e tc ; (2) The usual 
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sign restrictions on B(x, t), p(x)} etc. are relaxed; and (3) Sublinear and 
perturbed linear problems are treated. Also, unbounded domains £2 
which are not exterior domains could easily be treated formally, as in 
[7], by simply adjoining the boundary condition V^*^ ^ 0 on d!2 C\ Ga 

for some a > 0, e.g. the Robin condition \7y*v = \y for a nonnegative 
boundary function A. This approach, however, shows the existence of an 
oscillatory solution of yL(y; x) ^ 0 only if a solution satisfying the above 
boundary condition is known to exist. A more realistic approach offered 
recently by Allegretto [2] proves that all solutions oscillate in a class of 
unbounded domains under suitable conditions, but sharp and explicit 
oscillation criteria of our type here are still lacking. 

The sharpness of our criteria can be seen by considering the known 
one-dimensional results: Either the radial ordinary differential equation 
associated with L can be examined, or the authors' differential inequality 
approach [9] can be compared. It turns out to be true, in fact, that (46), 
(47) are very close to necessary and sufficient conditions for oscillation of 
superlinear operators. These results will appear elsewhere. [Indiana Univ. 
Math. J. 28 (1979), 993-10031 

Some open questions are: 
(1) As already mentioned, are there sharp and/or explicit criteria 

(similar to linear ones) guaranteeing the existence of an oscillatory 
solution in a nonexterior unbounded domain? 

(2) In view of the sharpness of the superlinear criteria, is it possible 
to obtain analogous sublinear criteria? (The result derived in § 6 and in 
[6] would seem to be not sharp in view of the well known necessary and 
sufficient condition for oscillation in 1 dimension.) 

(3) How can one obtain sublinear criteria when A is not the identity 
matrix? 

Added in proof. Lemma 9 is closely related to a result of Allegretto 
[1, p 935]. 
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