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POINTWISE FINITE FAMILIES OF MAPPINGS 

BY 

JAMES W. ROBERTS 

In [3], Montgomery proved that if A is a pointwise periodic homeomorphism 
of a connected manifold without boundary onto itself, then h is periodic. Kaul 
generalized this result in [2] by showing that if X is a connected metrizable manifold 
without boundary and if (X, T) is a transformation group with T countable such 
that T is pointwise periodic, then T is periodic. Yang [6] has shown that Kaul's 
theorem remains true if the assumption of metrizability is dropped. In this note 
we prove a fairly general theorem about families of continuous mappings. We then 
apply this theorem to obtain the theorems of Kaul and Yang. 

THEOREM 1. Suppose X and Y are topological spaces such that X is a locally 
connected Baire space and Y is a Hausdorjf space. If Fis a family of continuous maps 

from X to Y such that for every x e X9 F(x)={t(x) :t e F} is finite, then there exists 
U open in X and tl9 . . . , tns F such that if t e F9 then for some i, 1 < / < « , t=t{ 

on U. 

Proof. If F is a finite set, then we shall let \E\ denote the number of elements in 
E. Now for K=l,2,... let EK={x eX:\F(x)\<K}. Each EK is closed and 
\Jk=iEK=*X. Thus since X is a Baire space, there exists a positive integer m 
such that Ellj

e:0. NOW choose xeE^ such that \F(x)\=max{\F(y)\:ye E^} = 
n<m. Then there exists tl9. . . , tne F such that F(x)={t1(x)9. . . , tn(x)}. Let 
Vl9 . . . , Vn be pairwise disjoint open sets in Y such that tt{x) e V{. Since X is 
locally connected, there exists an open connected set U such that x e U and 
U^nLi ti\Vt) n El IfyeU9 then \F(y)\<n. Since each t.iy) G Vi9 the t,{y) 
are all distinct. Thus \F(y)\=n and in fact F^—^iy),. . . , tn(y)} for every 
ye U. Hence F(U)^ [J^i V{. Now suppose teF. Then r(x)=^(x) for some /, 
\<i<n. But / ( C O ^ U J L I ^ -

 s i n c e U i s connected t(U)^Vi. Hence if y e U 
/ ( J ) = ^ ( J ; ) . Thus t=tt on U. 

Let (X, T) be a transformation group. In what follows we shall use the ter
minology and notation in [1]. If x e X9 then T=EA is a decomposition of T for 
x if A is compact and E^{t:xt=x}. In this case T is said to be periodic at x. 
T=EA is a decomposition of T if it is a decomposition for every x e X. T is said 
to be periodic when such a decomposition exists. T is pointwise periodic if T is 
periodic at every point of X. Now suppose that T is a countable Hausdorff topo
logical group and T=EA is a decomposition of T for x G X. We may suppose that 
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E={t:xt=x}. Hence E is a closed subgroup. But then T\E=A\E is a countable 
compact Hausdorff topological group and is therefore finite. Thus there exists A0 

finite such that T=EA0 is a decomposition of T for x. Similarly it can be shown 
that if T=EA is a decomposition of T with E={t e T:xt=x for every x e X}, 
then there exists A0 finite such that T=EA0. Thus the theorems of Kaul and Yang 
can be equivalently stated as follows : 

THEOREM 2 (Kaul, Yang). If X is a connected manifold without boundary and 
{X, T) is a transformation group such that for every x e X, xT is finite, then there 
exists A c T such that A is finite and ifE={t e T:xt=xfor all x e X} then A • £ = T. 

Proof. By theorem 1 there exists U open and tl9 . . . , tne T such that if t e T, 
then for some /, 1 <i<n, xt—xti for all x eU. Now the homeomorphism induced 
by t^1 is pointwise periodic by assumption and therefore is periodic by the result 
of Montgomery [3]. But then tj-1 e Eby Smith [5] (or see Montgomery and Zippin 
[4]). Thus if we let A = {t1, . . . , Q then AE=T. 
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