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Abstract. Let G be a finite nilpotent group, χ and ψ be irreducible complex
characters of G with prime degree. Assume that χ (1) = p. Then, either the product χψ

is a multiple of an irreducible character or χψ is the linear combination of at least p+1
2

distinct irreducible characters.
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1. Introduction. Let G be a finite group and χ,ψ ∈ Irr(G) be irreducible complex
characters of G. We can check that the product χψ of χ and ψ , where χψ(g) =
χ (g)ψ(g) for all g in G, is a character and so it can be expressed as a linear combination
of irreducible characters. Let η(χψ) be the number of distinct irreducible constituents
of the product χψ .

Theorem A. Let G be a finite nilpotent group, χ and ψ be irreducible complex characters
of prime degree. Assume that χ (1) = p. Then, one of the following holds:

(i) χψ is the sum of p2 distinct linear characters.
(ii) χψ is the sum of p distinct linear characters of G and of p − 1 distinct irreducible

characters of G with degree p.
(iii) all the irreducible constituents of χψ are of degree p. Also, either χψ is a

multiple of an irreducible character, or it has at least p+1
2 distinct irreducible constituents

and at most p distinct irreducible constituents, i.e.

either η(χψ) = 1 or
p + 1

2
≤ η(χψ) ≤ p.

(iv) χψ is an irreducible character.

It is proved in Theorem A of [1] that given any prime p, any p-group P, any faithful
characters χ,ψ ∈ Irr(P), either the product χψ is a multiple of an irreducible, or
χψ is the linear combination of at least p+1

2 distinct irreducible characters, i.e. either
η(χψ) = 1 or η(χψ) ≥ p+1

2 . It is proved in [4] that given any prime p and any integer
n > 0, there exists a p-group P and characters ϕ, γ ∈ Irr(P) such that η(ϕγ ) = n. Thus,
without the hypothesis that the characters in Theorem A of [1] are faithful, the result
may not hold. In this note, we are proving that if the characters have ‘small’ degree
then the values that η(χψ) can take have the same constraint as if they were faithful.
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2. Proofs. We are going to use the notation of [5]. In addition, we denote by
Lin(G) = {χ ∈ Irr(G) | χ (1) = 1} the set of linear characters, and by Irr(GmodN) =
{χ ∈ Irr(G) | Ker(χ ) ≥ N} the set of irreducible characters of G that contain in their
kernel the subgroup N. Also, denote by χ the complex conjugate of χ , i.e. χ (g) = χ (g)
for all g in G.

Lemma 2.1. Let G be a finite group and χ,ψ ∈ Irr(G). Let α1, α2, . . . , αn, for some
n > 0, be the distinct irreducible constituents of the product χψ and a1, a2, . . . , an be the
unique positive integers such that

χψ =
n∑

i=1

aiαi.

If α1(1) = 1, then ψα1 = χ . Hence, the distinct irreducible constituents of the
character χχ are 1G, α1α2, α1α2, . . . , α1αn, and

χχ = a11G +
n∑

i=2

ai(α1αi).

Proof. See Lemma 4.1 of [3]. �
Lemma 2.2. Let G be a finite p-group for some prime p and χ ∈ Irr(G) be a character of
degree p. Then, one of the following holds:

(i) χχ is the sum of p2 distinct linear characters.
(ii) χχ is the sum of p distinct linear characters of G and of p − 1 distinct irreducible

characters of G with degree p.

Proof. See Lemma 5.1 of [2]. �
Lemma 2.3. Let G be a finite p-group, for some prime p, and χ,ψ ∈ Irr(G) be characters
of degree p. Then, either η(χψ) = 1 or η(χψ) ≥ p+1

2 .

Proof. Assume that the lemma is false. Let G and χ,ψ ∈ Irr(G) be a
counterexample of the statement, i.e. χ (1) = ψ(1) = p and 1 < η(χψ) <

p+1
2 .

Working with the group G/(Ker(χ ) ∩ Ker(ψ)), by induction on the order of G,
we may assume that Ker(χ ) ∩ Ker(ψ) = {1}. Set n = η(χψ). Let θi ∈ Irr(G), for i =
1, . . . , n, be the distinct irreducible constituents of χψ . Set

χψ =
n∑

i=1

miθi (2.4)

where mi > 0 is the multiplicity of θi in χψ .
If χψ has a linear constituent, then by Lemmas 2.1 and 2.2 we have that η(χψ) ≥ p.

If χψ has an irreducible constituent of degree p2, then χψ ∈ Irr(G) and so η(χψ) = 1.
Thus, we may assume that θi(1) = p for i = 1, . . . , n.

Since G is a p-group, there must exist a subgroup H and a linear character ξ of
H such that ξG = χ . Then, |G : H| = χ (1) = p and thus H is a normal subgroup. By
Clifford theory, we have then

χH =
p∑

i=1

ξi (2.5)
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for some ξ1 = ξ, . . . , ξp distinct linear characters of H.

Claim 2.6. H is an abelian group.

Proof. Suppose that ψH ∈ Irr(H). Since (ξψH)G = χψ by Exercise 5.3 of [5], and
ξψH ∈ Irr(H), it follows that either ξψH induces irreducibly, and thus η(χψ) = 1, or
ξψH extends to G and thus (ξψH)G is the sum of the p distinct extensions of ξψH , i.e.
η(χψ) = p. Therefore, ψH �∈ Irr(G) and since H is normal in G of index p and ψ(1) = p,
ψ is induced from some τ ∈ Lin(H).

Since both ξ and τ are linear characters, we have that Ker(ξ ) ∩ Ker(τ ) ≥ [H, H].
Observe that coreG(Ker(ξ ) ∩ Ker(τ )) = coreG(Ker(ξ )) ∩ coreG(Ker(τ )) = Ker(χ ) ∩
Ker(ψ). Since H is a normal subgroup of G, so is [H, H] and thus {1} = Ker(χ ) ∩
Ker(ψ) ≥ [H, H]. Therefore, H is abelian. �

By the previous claim, observe that ψ is also induced by some linear character τ

of H and thus

ψH =
p∑

i=1

τi (2.7)

for some τ1 = τ, . . . , τp distinct linear characters of H. Observe also that the centre of
both χ and ψ is contained in H.

Claim 2.8. Z(G) = Z(χ ) = Z(ψ).

Proof. Suppose that Z(χ ) �= Z(ψ). Set U = Z(χ ) ∩ Z(ψ). Either U is properly
contained in Z(χ ), or it is properly contained in Z(ψ). We may assume that U < Z(ψ)
and thus we may find a subgroup T ≤ Z(ψ) such that T/U is chief factor of G.
Since H is abelian, Z(ψ) < H and τG = ψ , then ψT = pτT and so (τi)T = τT for
i = 1, . . . , p. Because ξG = χ , ξ ∈ Lin(H) and T �≤ Z(χ ), the stabilizer of ξT is H.
Thus, the stabilizer of ξTτT in G is H. By Clifford theory, we have that ξτi ∈ Lin(H)
induces irreducibly and ξτi are distinct characters for i = 1, . . . , p. By (2.7), we have
that χψ = (ξψH)G = (ξ (τ1 + · · · + τp))G = (ξτ1)G + · · · + (ξτp)G, and thus η(χψ) = p.
We conclude that such T cannot exist and so Z(χ ) = Z(ψ).

Given any z ∈ Z(χ ) and g ∈ G, we have zg ∼= z (mod Ker(χ )) since Z(G/Ker(χ )) =
Z(χ )/Ker(χ ). Hence, [z, g] = z−1zg lies in Ker(χ ). This same z lies in Z(ψ) = Z(χ ).
Hence, [z, g] also lies in Ker(ψ). Therefore, [z, g] ∈ Ker(χ ) ∩ Ker(ψ) = 1 for every
z ∈ Z(χ ) = Z(ψ) and every g ∈ G. This implies that Z(χ ) = Z(ψ) = Z(G). �

Set Z = Z(G). Since Z is the centre of G, ξG = χ and τG = ψ , we have

χZ = pξZ and ψZ = pτZ. (2.9)

Because χZψZ = p2ξZτZ, (2.4) implies that

(θi)Z = pξZτZ (2.10)

for all i = 1, . . . , n.
Let Y/Z be a chief factor of G with Y ≤ H. Since Z is the centre of G and

Z = Z(χ ), the set Lin( Y | ξZ ) of all extensions of ξZ to linear characters is {(ξ1)Y =
ξY , (ξ2)Y , . . . , (ξp)Y } and it is a single G-conjugacy class. By Clifford theory, we have
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that

χY =
p∑

i=1

(ξi)Y . (2.11)

Since H is the stabilizer of τY in G and ψ(1) = p, as before we have that the set
Lin( Y | τz ) = {(τ1)Y = τY , (τ2)Y , . . . , (τp)Y } and

ψY =
p∑

i=1

(τi)Y . (2.12)

Claim 2.13. The stabilizer GξY τY = {g ∈ G | (ξYτY )g = ξYτY } of ξYτY ∈ Lin(Y ) in G
is H.

Proof. Assume notation (2.4). Since H is an abelian subgroup of index p in G,
we have that GξY τY ≥ H and thus either GξY τY = H or GξY τY = G. Suppose ξYτY is a
G-invariant character, i.e. GξY τY = G. Since |Y : Z| = p and ξYτY is an extension of
ξZτZ, it follows then that all the extensions of ξZτZ to Y are G-invariant. Thus, by
(2.4) and (2.10), given any i, there exists some extension υi ∈ Lin(Y ) of ξZτZ such that
(θi)Y = pυi. Thus, (χψ)Y = (

∑n
i=1 miθi)Y = ∑n

i=1 mi(υi)Y = ∑n
i=1 mipυi has at most

n <
p+1

2 distinct irreducible constituents. On the other hand, by (2.11) and (2.12) we
have

(χψ)Y = χYψY =
( p∑

i=1

(ξi)Y

) ⎛
⎝ p∑

j=1

(τj)Y

⎞
⎠ = p

p∑
j=1

ξY (τj)Y ,

and so (χψ)Y has p distinct irreducible constituents. That is a contradiction and thus
GξY τY = H. �

By Clifford theory and the previous claim, we have that for each i = 1, . . . , n, there
exists a unique character σi ∈ Lin( H | ξYτY ) such that

θi = (σi)G. (2.14)

If Y = H, then |G : Z| = |G : H||H : Z| = p2. Since χ (1) = ψ(1) = p, by
Corollary 2.30 of [5] we have that χ and ψ vanish outside Z. Since θi(1) = p for
all i and |G : Z| = |G : Z(θi)| = p2, it follows that there exists a unique irreducible
character lying above ξZτZ and thus η(χψ) = 1.

2.15. Fix a subgroup X ≤ H of G such that X/Y is a chief factor of G. Let α,
β ∈ Lin(X) be the linear characters such that

α = ξX and β = τX .

Since σi lies above ξYτY ∈ Lin(Y ) for all i and X/Y is a chief factor of a p-group, there
is some δi ∈ Irr(X mod Y ) such that

(σi)X = δiαβ. (2.16)

Claim 2.17. The subgroup [X, G] generates Y = [X, G]Z modulo Z.
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Proof. Working with the group Ḡ = G/Ker(χ ), using the same argument as in the
proof of Claim 3.26 of [1], we have that [X̄, Ḡ] generates Ȳ = [X̄, Ḡ]Z̄ modulo Z̄. Since
Z = Z(χ ), we have that Ker(χ ) ≤ Z. Thus, Z̄ = Z/Ker(χ ) and the claim follows. �
2.18. Observe that G/H is cyclic of order p. So, we may choose g ∈ G such that the
distinct cosets of H in G are H, Hg, Hg2, . . ., Hgp−1.

Since χ = ξG and ξX = α, it follows from 2.15 that

χX = α + αg + · · · + αgp−1 =
p−1∑
i=0

αgi
.

Similarly, we have that

ψX = β + βg + · · · + βgp−1 =
p−1∑
j=0

βgj
.

Combining the two previous equations, we have that

χXψX =
⎛
⎝p−1∑

j=0

αgj

⎞
⎠)

⎛
⎝p−1∑

j=0

βgj

⎞
⎠ =

p−1∑
i=0

p−1∑
j=0

αgi
βgj

. (2.19)

By (2.4) and (2.16), we have that

(χψ)X =
(

n∑
i=1

miθi

)
X

=
n∑

i=1

mi

⎡
⎣p−1∑

j=0

(δiαβ)gj

⎤
⎦ . (2.20)

Claim 2.21. Let g ∈ G be as in 2.18. For each i = 0, 1, . . . , p − 1, there exist j ∈
{0, 1, . . . , p − 1} and δgi ∈ Lin(XmodY ) such that

αβgi = (αβ)gj
δgi . (2.22)

Also, |{δgi | i = 0, 1, 2, . . . , p − 1}| ≤ n.

Proof. See Proof of Claim 3.30 of [1]. �
Claim 2.23. Let g ∈ G be as in 2.18. Then, there exist three distinct integers i, j, k ∈
{0, 1, 2, . . . , p − 1}, and some δ ∈ Irr(XmodY ), such that

αβgi = (αβ)gr
δ, αβgj = (αβ)gs

δ and αβgk = (αβ)gt
δ,

for some r, s, t ∈ {0, 1, 2, . . . , p − 1}.
Proof. See Proof of Claim 3.34 of [1]. �

Claim 2.24. We can choose the element g in 2.18 such that one of the following holds:
(i) There exists some j = 2, . . . , p − 1 such that

αβg = (αβ)gr
and αβgj = (αβ)gs

,

for some r, s ∈ {0, 1, . . . , p − 1} with r �= 1.
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(ii) There exist j and k such that 1 < j < k < p, and

αβg = (αβ)gr
δ, αβgj = (αβ)gs

δ and αβgk = (αβ)gt
δ,

for some δ ∈ Irr(XmodY ) and some r, s, t ∈ {0, 1, . . . , p − 1} with r �= 1.

Proof. See Proof of Claim 3.35 of [1]. �
Let g be as in Claim 2.24. Since X/Y is cyclic of order p, we may choose x ∈ X such

that X = Y < x >. Since H is abelian, we have [X, H] = 1. Suppose that [x, g−1] ∈ Z.
Then, x centralizes both g−1 and H modulo Z. Hence, xZ ∈ Z(G/Z) and so [x, G] ≤ Z.
Since Y/Z is a chief section of the p-group G, we have that [Y, G] ≤ Z and so [< x >

Y, G] = [X, G] ≤ Z which is false by Claim 2.17. Hence [x, g−1] ∈ Y \ Z and so

Y = Z < y > is generated over Z by y = [x, g−1]. (2.25)

Since [Y, G] ≤ Z, we have that z = [y, g−1] ∈ Z. If z = 1, then G = H < g > centralizes
Y = Z < y >, since H centralizes Y < X by 2.15, and G centralizes Z. This is
impossible because Z = Z(G) < Y . Thus,

z = [y, g−1] is a non-trivial element of Z. (2.26)

By (2.25), we have y = [x, g−1] = x−1xg−1
. By (2.26), we have z = [y, g−1] = y−1yg−1

.
Finally, zg−1 = z since z ∈ Z. Since X = Z < x, y >≤ H is abelian, it follows that

zg−j = z, y g−j = yz j and x g−j = xy jz( j
2), (2.27)

for any integer j = 0, 1, . . . , p − 1. Because g−p ∈ H centralizes X by 2.15, we have

zp = 1 and ypz(p
2) = 1.

Observe that the statement is true for p ≤ 3 since then p+1
2 ≤ 2. Thus, we may assume

that p is odd. Hence, p divides
(p

2

) = p(p−1)
2 and z(p

2) = 1. Therefore,

yp = zp = 1. (2.28)

It follows that yi, zi and zi/2 depend only on the residue of i modulo p, for any
integer i ≥ 0.

2.29. Observe that Ker(ξZ) ∩ Ker(τZ) ≤ Ker(χ ) ∩ Ker(ψ) = 1 implies that z is not in
both Ker(ξZ) and Ker(τZ). Without loss of generality, we may assume that τZ(z) �= 1.
Since β is an extension of τZ, we may assume that β(z) �= 1.

Claim 2.30. ξZτZ(z) is primitive pth root of unit.

Proof. Suppose that (ξZτZ)(z) = 1. Then, (ξZτZ)([y, g−1]) = 1 and so (ξZτZ)g(y) =
(ξZτZ)(y). Since H is abelian, |G : H| = p, θi lies above ξZτZ for all i and g ∈ G \ H, it
follows that Y =< y, Z(G) > is contained in Z(θi). This is contradiction with Claim
2.13. Thus, (ξZτZ)(z) �= 1. Since z is of order p and ξZτZ is a linear character, the claim
follows. �
Claim 2.31. Suppose that

αβg = (αβ)gr
δ, (2.32)
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and

αβgj = (αβ)gs
δ, (2.33)

for some j ∈ {0, 1, . . . , p − 1}, j �= 1, some δ ∈ Irr(XmodY ) and some r, s ∈
{0, 1, . . . , p − 1}. Then,

δ(x) = β(z)hj(r−1), (2.34)

where 2h ≡ 1 mod p.

Proof. By Claim 2.30 and the same argument as in the proof of Claim 3.40 of [1],
the statement follows. �

Suppose that Claim 2.24 (ii) holds. Then, by Claim 2.31, we have that δ(x) =
β(z)hj(r−1) and δ(x) = β(z)hk(r−1). Since β(z) = τZ(z) is a primitive pth root of unit by
2.29, we have that hj(r − 1) ≡ hk(r − 1) mod p. Since r �≡ 1 mod p and 2h ≡ 1 mod p,
we have that k ≡ j mod p, which is a contradiction. Thus, Claim 2.24 (i) must hold.

We now apply Claim 2.31 with δ = 1. Thus, 1 = δ(x) = β(z)hj(r−1). Therefore, hj(r −
1) ≡ 0 mod p. Since 2h ≡ 1 mod p, either j ≡ 0 mod p or r − 1 ≡ 0 mod p. Neither is
possible. That is our final contradiction and Lemma 2.3 is proved. �

Proof of Theorem A. Since G is a nilpotent group, G is the direct product G1 × G2

of its Sylow p-subgroup G1 and its Hall p′-subgroup G2. We can then write χ = χ1 × χ2

and ψ = ψ1 × ψ2 for some characters χ1, ψ1 ∈ Irr(G1) and some characters χ2, ψ2 ∈
Irr(G2). Since χ (1) = p, we have that χ2(1) = 1 and thus χ2ψ2 ∈ Irr(G2). If ψ(1) �= p,
since ψ(1) is a prime number, we have that ψ1(1) = 1 and thus χ1ψ1 is an irreducible.
Therefore, χψ ∈ Irr(G) and (iv) holds. We may assume then that ψ(1) = p and thus
ψ2(1) = 1. Then, χ2ψ2 is a linear character and so we may assume that G is a p-group.

If χψ has a linear constituent, by Lemmas 2.1 and 2.2, we have that (i) or (ii) holds.
So, we may assume that all the irreducible constituents of χψ are of degree at least
p. If χψ has an irreducible constituent of degree p2, then χψ ∈ Irr(G) and (iv) holds.
We may assume then that all the irreducible constituents of χψ have degree p. Since
χψ(1) = p2, it follows that η(χψ) ≤ p. By Lemma 2.3, we have that either η(χψ) = 1
or η(χψ) ≥ p+1

2 , and so (iii) holds. �
Examples. Fix a prime p > 2
(i) Let E be an extraspecial group of order p3 and φ ∈ Irr(E) of degree p. We can

check that the product φφ is the sum of all the linear characters of E.
(ii) In the proof of Proposition 6.1 of [2], an example is constructed of a p-group G

and a character χ ∈ Irr(G) such that χχ is the sum of p distinct linear characters and
of p − 1 distinct irreducible characters of degree p.

(iii) Given an extraspecial group E of order p3, where p > 2, and φ ∈ Irr(E) a
character of degree p, we can check that φφ is a multiple of an irreducible. In Proposition
6.1 of [1], an example is provided of a p-group G and a character χ ∈ Irr(G) such that
η(χχ ) = p+1

2 . In [6], an example is provided of a p-group P and two faithful characters
δ, ε ∈ Irr(P) of degree p such that η(δε) = p − 1.

Let G be the wreath product of a cyclic group of order p2 with a cyclic group of
order p. Thus, G has a normal abelian subgroup N of order (p2)p and index p. Let
λ ∈ Lin(N) be a nontrivial character. We can check that χ = λG and ψ = (λ2)G are
irreducible characters of degree p and χψ is the sum of p distinct irreducible characters
of degree p.
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We wonder if there exists a p-group P with characters χ,ψ ∈ Irr(P) of degree p
such that p+1

2 < η(χψ) < p − 1.
(iv) Let Q be a p-group and κ ∈ Irr(Q) be a character of degree p. Set P = Q × Q,

χ = κ × 1G and ψ = 1G × κ. Observe that χ , ψ and χψ are irreducible characters
of P.
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