CHARACTERS OF PRIME DEGREE

EDITH ADAN-BANTE

Department of Mathematical Science, Northern Illinois University, Watson Hall 320, DeKalb, IL 60115-2888, USA e-mail:EdithAdan@illinoisalumni.org

(Received 4 June 2008; accepted 26 May 2011)

Abstract. Let *G* be a finite nilpotent group, χ and ψ be irreducible complex characters of *G* with prime degree. Assume that $\chi(1) = p$. Then, either the product $\chi\psi$ is a multiple of an irreducible character or $\chi\psi$ is the linear combination of at least $\frac{p+1}{2}$ distinct irreducible characters.

2010 Mathematics Subject Classification. 20c15

1. Introduction. Let *G* be a finite group and $\chi, \psi \in \operatorname{Irr}(G)$ be irreducible complex characters of *G*. We can check that the product $\chi \psi$ of χ and ψ , where $\chi \psi(g) = \chi(g)\psi(g)$ for all *g* in *G*, is a character and so it can be expressed as a linear combination of irreducible characters. Let $\eta(\chi \psi)$ be the number of distinct irreducible constituents of the product $\chi \psi$.

Theorem A. Let G be a finite nilpotent group, χ and ψ be irreducible complex characters of prime degree. Assume that $\chi(1) = p$. Then, one of the following holds:

(i) $\chi \psi$ is the sum of p^2 distinct linear characters.

(*ii*) $\chi \psi$ is the sum of p distinct linear characters of G and of p - 1 distinct irreducible characters of G with degree p.

(iii) all the irreducible constituents of $\chi \psi$ are of degree p. Also, either $\chi \psi$ is a multiple of an irreducible character, or it has at least $\frac{p+1}{2}$ distinct irreducible constituents and at most p distinct irreducible constituents, i.e.

either
$$\eta(\chi\psi) = 1$$
 or $\frac{p+1}{2} \le \eta(\chi\psi) \le p$.

(iv) $\chi \psi$ is an irreducible character.

It is proved in Theorem A of [1] that given any prime *p*, any *p*-group *P*, any faithful characters $\chi, \psi \in \operatorname{Irr}(P)$, either the product $\chi\psi$ is a multiple of an irreducible, or $\chi\psi$ is the linear combination of at least $\frac{p+1}{2}$ distinct irreducible characters, i.e. either $\eta(\chi\psi) = 1$ or $\eta(\chi\psi) \ge \frac{p+1}{2}$. It is proved in [4] that given any prime *p* and any integer n > 0, there exists a *p*-group *P* and characters $\varphi, \gamma \in \operatorname{Irr}(P)$ such that $\eta(\varphi\gamma) = n$. Thus, without the hypothesis that the characters in Theorem A of [1] are faithful, the result may not hold. In this note, we are proving that if the characters have 'small' degree then the values that $\eta(\chi\psi)$ can take have the same constraint as if they were faithful.

Present address: Department of Mathematics, University of Saint Thomas, 2115 Summit Avenue, Saint Paul, MN 55105-1079, USA

2. Proofs. We are going to use the notation of [5]. In addition, we denote by $\text{Lin}(G) = \{\chi \in \text{Irr}(G) \mid \chi(1) = 1\}$ the set of linear characters, and by $\text{Irr}(G \mod N) = \{\chi \in \text{Irr}(G) \mid \text{Ker}(\chi) \ge N\}$ the set of irreducible characters of G that contain in their kernel the subgroup N. Also, denote by $\overline{\chi}$ the complex conjugate of χ , i.e. $\overline{\chi}(g) = \overline{\chi(g)}$ for all g in G.

Lemma 2.1. Let G be a finite group and $\chi, \psi \in Irr(G)$. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$, for some n > 0, be the distinct irreducible constituents of the product $\chi \psi$ and a_1, a_2, \ldots, a_n be the unique positive integers such that

$$\chi\psi=\sum_{i=1}^n a_i\alpha_i.$$

If $\alpha_1(1) = 1$, then $\psi \overline{\alpha_1} = \overline{\chi}$. Hence, the distinct irreducible constituents of the character $\chi \overline{\chi}$ are 1_G , $\overline{\alpha_1} \alpha_2$, $\overline{\alpha_1} \alpha_2$, ..., $\overline{\alpha_1} \alpha_n$, and

$$\chi \overline{\chi} = a_1 \mathbf{1}_G + \sum_{i=2}^n a_i (\overline{\alpha_1} \alpha_i).$$

Proof. See Lemma 4.1 of [3].

Lemma 2.2. Let G be a finite p-group for some prime p and $\chi \in Irr(G)$ be a character of degree p. Then, one of the following holds:

(*i*) $\chi \overline{\chi}$ is the sum of p^2 distinct linear characters.

(*ii*) $\chi \overline{\chi}$ is the sum of p distinct linear characters of G and of p - 1 distinct irreducible characters of G with degree p.

Proof. See Lemma 5.1 of [2].

Lemma 2.3. Let G be a finite p-group, for some prime p, and $\chi, \psi \in \text{Irr}(G)$ be characters of degree p. Then, either $\eta(\chi\psi) = 1$ or $\eta(\chi\psi) \ge \frac{p+1}{2}$.

Proof. Assume that the lemma is false. Let G and $\chi, \psi \in \text{Irr}(G)$ be a counterexample of the statement, i.e. $\chi(1) = \psi(1) = p$ and $1 < \eta(\chi\psi) < \frac{p+1}{2}$.

Working with the group $G/(\text{Ker}(\chi) \cap \text{Ker}(\psi))$, by induction on the order of G, we may assume that $\text{Ker}(\chi) \cap \text{Ker}(\psi) = \{1\}$. Set $n = \eta(\chi\psi)$. Let $\theta_i \in \text{Irr}(G)$, for i = 1, ..., n, be the distinct irreducible constituents of $\chi\psi$. Set

$$\chi \psi = \sum_{i=1}^{n} m_i \theta_i \tag{2.4}$$

where $m_i > 0$ is the multiplicity of θ_i in $\chi \psi$.

If $\chi \psi$ has a linear constituent, then by Lemmas 2.1 and 2.2 we have that $\eta(\chi \psi) \ge p$. If $\chi \psi$ has an irreducible constituent of degree p^2 , then $\chi \psi \in Irr(G)$ and so $\eta(\chi \psi) = 1$. Thus, we may assume that $\theta_i(1) = p$ for i = 1, ..., n.

Since G is a p-group, there must exist a subgroup H and a linear character ξ of H such that $\xi^G = \chi$. Then, $|G:H| = \chi(1) = p$ and thus H is a normal subgroup. By Clifford theory, we have then

$$\chi_H = \sum_{i=1}^p \xi_i \tag{2.5}$$

for some $\xi_1 = \xi, \dots, \xi_p$ distinct linear characters of *H*.

Claim 2.6. *H* is an abelian group.

Proof. Suppose that $\psi_H \in \operatorname{Irr}(H)$. Since $(\xi \psi_H)^G = \chi \psi$ by Exercise 5.3 of [5], and $\xi \psi_H \in \operatorname{Irr}(H)$, it follows that either $\xi \psi_H$ induces irreducibly, and thus $\eta(\chi \psi) = 1$, or $\xi \psi_H$ extends to *G* and thus $(\xi \psi_H)^G$ is the sum of the *p* distinct extensions of $\xi \psi_H$, i.e. $\eta(\chi \psi) = p$. Therefore, $\psi_H \notin \operatorname{Irr}(G)$ and since *H* is normal in *G* of index *p* and $\psi(1) = p$, ψ is induced from some $\tau \in \operatorname{Lin}(H)$.

Since both ξ and τ are linear characters, we have that $\operatorname{Ker}(\xi) \cap \operatorname{Ker}(\tau) \ge [H, H]$. Observe that $\operatorname{core}_G(\operatorname{Ker}(\xi) \cap \operatorname{Ker}(\tau)) = \operatorname{core}_G(\operatorname{Ker}(\xi)) \cap \operatorname{core}_G(\operatorname{Ker}(\tau)) = \operatorname{Ker}(\chi) \cap \operatorname{Ker}(\psi)$. Since *H* is a normal subgroup of *G*, so is [H, H] and thus $\{1\} = \operatorname{Ker}(\chi) \cap \operatorname{Ker}(\psi) \ge [H, H]$. Therefore, *H* is abelian.

By the previous claim, observe that ψ is also induced by some linear character τ of *H* and thus

$$\psi_H = \sum_{i=1}^p \tau_i \tag{2.7}$$

for some $\tau_1 = \tau, ..., \tau_p$ distinct linear characters of *H*. Observe also that the centre of both χ and ψ is contained in *H*.

Claim 2.8. $Z(G) = Z(\chi) = Z(\psi)$.

Proof. Suppose that $\mathbf{Z}(\chi) \neq \mathbf{Z}(\psi)$. Set $U = \mathbf{Z}(\chi) \cap \mathbf{Z}(\psi)$. Either U is properly contained in $\mathbf{Z}(\chi)$, or it is properly contained in $\mathbf{Z}(\psi)$. We may assume that $U < \mathbf{Z}(\psi)$ and thus we may find a subgroup $T \leq \mathbf{Z}(\psi)$ such that T/U is chief factor of G. Since H is abelian, $\mathbf{Z}(\psi) < H$ and $\tau^G = \psi$, then $\psi_T = p\tau_T$ and so $(\tau_i)_T = \tau_T$ for i = 1, ..., p. Because $\xi^G = \chi$, $\xi \in \text{Lin}(H)$ and $T \not\leq \mathbf{Z}(\chi)$, the stabilizer of ξ_T is H. Thus, the stabilizer of $\xi_T \tau_T$ in G is H. By Clifford theory, we have that $\xi \tau_i \in \text{Lin}(H)$ induces irreducibly and $\xi \tau_i$ are distinct characters for i = 1, ..., p. By (2.7), we have that $\chi \psi = (\xi \psi_H)^G = (\xi (\tau_1 + \cdots + \tau_p))^G = (\xi \tau_1)^G + \cdots + (\xi \tau_p)^G$, and thus $\eta(\chi \psi) = p$. We conclude that such T cannot exist and so $\mathbf{Z}(\chi) = \mathbf{Z}(\psi)$.

Given any $z \in Z(\chi)$ and $g \in G$, we have $z^g \cong z \pmod{\operatorname{Ker}(\chi)}$ since $Z(G/\operatorname{Ker}(\chi)) = Z(\chi)/\operatorname{Ker}(\chi)$. Hence, $[z, g] = z^{-1}z^g$ lies in $\operatorname{Ker}(\chi)$. This same z lies in $Z(\psi) = Z(\chi)$. Hence, [z, g] also lies in $\operatorname{Ker}(\psi)$. Therefore, $[z, g] \in \operatorname{Ker}(\chi) \cap \operatorname{Ker}(\psi) = 1$ for every $z \in Z(\chi) = Z(\psi)$ and every $g \in G$. This implies that $Z(\chi) = Z(\psi) = Z(G)$.

Set $Z = \mathbf{Z}(G)$. Since Z is the centre of $G, \xi^G = \chi$ and $\tau^G = \psi$, we have

$$\chi_Z = p\xi_Z \text{ and } \psi_Z = p\tau_Z. \tag{2.9}$$

Because $\chi_Z \psi_Z = p^2 \xi_Z \tau_Z$, (2.4) implies that

$$(\theta_i)_Z = p\xi_Z \tau_Z \tag{2.10}$$

for all i = 1, ..., n.

Let Y/Z be a chief factor of G with $Y \le H$. Since Z is the centre of G and $Z = \mathbb{Z}(\chi)$, the set Lin $(Y | \xi_Z)$ of all extensions of ξ_Z to linear characters is $\{(\xi_1)_Y = \xi_Y, (\xi_2)_Y, \dots, (\xi_p)_Y\}$ and it is a single G-conjugacy class. By Clifford theory, we have

that

422

$$\chi_Y = \sum_{i=1}^p (\xi_i)_Y.$$
 (2.11)

Since *H* is the stabilizer of τ_Y in *G* and $\psi(1) = p$, as before we have that the set Lin $(Y | \tau_z) = \{(\tau_1)_Y = \tau_Y, (\tau_2)_Y, \dots, (\tau_p)_Y\}$ and

$$\psi_Y = \sum_{i=1}^p (\tau_i)_Y.$$
 (2.12)

Claim 2.13. The stabilizer $G_{\xi_Y\tau_Y} = \{g \in G \mid (\xi_Y\tau_Y)^g = \xi_Y\tau_Y\}$ of $\xi_Y\tau_Y \in \text{Lin}(Y)$ in G is H.

Proof. Assume notation (2.4). Since *H* is an abelian subgroup of index *p* in *G*, we have that $G_{\xi_{Y}\tau_{Y}} \ge H$ and thus either $G_{\xi_{Y}\tau_{Y}} = H$ or $G_{\xi_{Y}\tau_{Y}} = G$. Suppose $\xi_{Y}\tau_{Y}$ is a *G*-invariant character, i.e. $G_{\xi_{Y}\tau_{Y}} = G$. Since |Y : Z| = p and $\xi_{Y}\tau_{Y}$ is an extension of $\xi_{Z}\tau_{Z}$, it follows then that all the extensions of $\xi_{Z}\tau_{Z}$ to *Y* are *G*-invariant. Thus, by (2.4) and (2.10), given any *i*, there exists some extension $v_{i} \in \text{Lin}(Y)$ of $\xi_{Z}\tau_{Z}$ such that $(\theta_{i})_{Y} = pv_{i}$. Thus, $(\chi\psi)_{Y} = (\sum_{i=1}^{n} m_{i}\theta_{i})_{Y} = \sum_{i=1}^{n} m_{i}(v_{i})_{Y} = \sum_{i=1}^{n} m_{i}pv_{i}$ has at most $n < \frac{p+1}{2}$ distinct irreducible constituents. On the other hand, by (2.11) and (2.12) we have

$$(\chi\psi)_Y = \chi_Y\psi_Y = \left(\sum_{i=1}^p (\xi_i)_Y\right)\left(\sum_{j=1}^p (\tau_j)_Y\right) = p\sum_{j=1}^p \xi_Y(\tau_j)_Y,$$

and so $(\chi \psi)_Y$ has *p* distinct irreducible constituents. That is a contradiction and thus $G_{\xi_Y \tau_Y} = H$.

By Clifford theory and the previous claim, we have that for each i = 1, ..., n, there exists a unique character $\sigma_i \in \text{Lin}(H | \xi_Y \tau_Y)$ such that

$$\theta_i = (\sigma_i)^G. \tag{2.14}$$

If Y = H, then $|G:Z| = |G:H||H:Z| = p^2$. Since $\chi(1) = \psi(1) = p$, by Corollary 2.30 of [5] we have that χ and ψ vanish outside Z. Since $\theta_i(1) = p$ for all *i* and $|G:Z| = |G: \mathbb{Z}(\theta_i)| = p^2$, it follows that there exists a unique irreducible character lying above $\xi_Z \tau_Z$ and thus $\eta(\chi \psi) = 1$.

2.15. Fix a subgroup $X \le H$ of G such that X/Y is a chief factor of G. Let α , $\beta \in \text{Lin}(X)$ be the linear characters such that

$$\alpha = \xi_X$$
 and $\beta = \tau_X$.

Since σ_i lies above $\xi_Y \tau_Y \in \text{Lin}(Y)$ for all *i* and *X*/*Y* is a chief factor of a *p*-group, there is some $\delta_i \in \text{Irr}(X \mod Y)$ such that

$$(\sigma_i)_X = \delta_i \alpha \beta. \tag{2.16}$$

Claim 2.17. The subgroup [X, G] generates Y = [X, G]Z modulo Z.

Proof. Working with the group $\overline{G} = G/\text{Ker}(\chi)$, using the same argument as in the proof of Claim 3.26 of [1], we have that $[\overline{X}, \overline{G}]$ generates $\overline{Y} = [\overline{X}, \overline{G}]\overline{Z}$ modulo \overline{Z} . Since $Z = \mathbb{Z}(\chi)$, we have that $\text{Ker}(\chi) \leq Z$. Thus, $\overline{Z} = Z/\text{Ker}(\chi)$ and the claim follows. \Box

2.18. Observe that G/H is cyclic of order p. So, we may choose $g \in G$ such that the distinct cosets of H in G are H, Hg, Hg^2 , ..., Hg^{p-1} .

Since $\chi = \xi^G$ and $\xi_X = \alpha$, it follows from 2.15 that

$$\chi_X = \alpha + \alpha^g + \cdots + \alpha^{g^{p-1}} = \sum_{i=0}^{p-1} \alpha^{g^i}.$$

Similarly, we have that

$$\psi_X = \beta + \beta^g + \dots + \beta^{g^{p-1}} = \sum_{j=0}^{p-1} \beta^{g^j}.$$

Combining the two previous equations, we have that

$$\chi_X \psi_X = \left(\sum_{j=0}^{p-1} \alpha^{g^j}\right) \left(\sum_{j=0}^{p-1} \beta^{g^j}\right) = \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} \alpha^{g^j} \beta^{g^j}.$$
 (2.19)

By (2.4) and (2.16), we have that

$$(\chi\psi)_X = \left(\sum_{i=1}^n m_i\theta_i\right)_X = \sum_{i=1}^n m_i \left[\sum_{j=0}^{p-1} (\delta_i\alpha\beta)^{g^j}\right].$$
 (2.20)

Claim 2.21. Let $g \in G$ be as in 2.18. For each i = 0, 1, ..., p-1, there exist $j \in \{0, 1, ..., p-1\}$ and $\delta_{g^i} \in \text{Lin}(X \mod Y)$ such that

$$\alpha \beta^{g'} = (\alpha \beta)^{g'} \delta_{g^i}. \tag{2.22}$$

Also, $|\{\delta_{g^i} \mid i = 0, 1, 2, ..., p - 1\}| \le n$.

Proof. See Proof of Claim 3.30 of [1].

Claim 2.23. Let $g \in G$ be as in 2.18. Then, there exist three distinct integers $i, j, k \in \{0, 1, 2, ..., p - 1\}$, and some $\delta \in Irr(Xmod Y)$, such that

$$\alpha\beta^{g'} = (\alpha\beta)^{g'}\delta, \ \alpha\beta^{g'} = (\alpha\beta)^{g'}\delta \ and \ \alpha\beta^{g^{\kappa}} = (\alpha\beta)^{g'}\delta,$$

for some $r, s, t \in \{0, 1, 2, \dots, p-1\}$.

Proof. See Proof of Claim 3.34 of [1].

Claim 2.24. We can choose the element g in 2.18 such that one of the following holds: (i) There exists some j = 2, ..., p - 1 such that

$$\alpha\beta^g = (\alpha\beta)^{g^r}$$
 and $\alpha\beta^{g^i} = (\alpha\beta)^{g^s}$,

for some $r, s \in \{0, 1, ..., p-1\}$ with $r \neq 1$.

(ii) There exist j and k such that 1 < j < k < p, and

$$\alpha\beta^{g} = (\alpha\beta)^{g^{r}}\delta, \ \alpha\beta^{g^{i}} = (\alpha\beta)^{g^{s}}\delta \ and \ \alpha\beta^{g^{k}} = (\alpha\beta)^{g^{r}}\delta,$$

for some $\delta \in Irr(X \mod Y)$ and some $r, s, t \in \{0, 1, \dots, p-1\}$ with $r \neq 1$.

Proof. See Proof of Claim 3.35 of [1].

Let g be as in Claim 2.24. Since X/Y is cyclic of order p, we may choose $x \in X$ such that X = Y < x >. Since H is abelian, we have [X, H] = 1. Suppose that $[x, g^{-1}] \in Z$. Then, x centralizes both g^{-1} and H modulo Z. Hence, $xZ \in \mathbb{Z}(G/Z)$ and so $[x, G] \leq Z$. Since Y/Z is a chief section of the p-group G, we have that $[Y, G] \leq Z$ and so $[< x > Y, G] = [X, G] \leq Z$ which is false by Claim 2.17. Hence $[x, g^{-1}] \in Y \setminus Z$ and so

$$Y = Z < y >$$
 is generated over Z by $y = [x, g^{-1}]$. (2.25)

Since $[Y, G] \leq Z$, we have that $z = [y, g^{-1}] \in Z$. If z = 1, then G = H < g > centralizes Y = Z < y >, since *H* centralizes Y < X by 2.15, and *G* centralizes *Z*. This is impossible because $Z = \mathbb{Z}(G) < Y$. Thus,

$$z = [y, g^{-1}]$$
 is a non-trivial element of Z. (2.26)

By (2.25), we have $y = [x, g^{-1}] = x^{-1}x^{g^{-1}}$. By (2.26), we have $z = [y, g^{-1}] = y^{-1}y^{g^{-1}}$. Finally, $z^{g^{-1}} = z$ since $z \in Z$. Since $X = Z < x, y > \le H$ is abelian, it follows that

$$z^{g^{-j}} = z, \ y^{g^{-j}} = yz^j \text{ and } x^{g^{-j}} = xy^j z^{\binom{j}{2}},$$
 (2.27)

for any integer j = 0, 1, ..., p - 1. Because $g^{-p} \in H$ centralizes X by 2.15, we have

 $z^p = 1$ and $y^p z^{\binom{p}{2}} = 1$.

Observe that the statement is true for $p \le 3$ since then $\frac{p+1}{2} \le 2$. Thus, we may assume that *p* is odd. Hence, *p* divides $\binom{p}{2} = \frac{p(p-1)}{2}$ and $z\binom{p}{2} = 1$. Therefore,

$$y^p = z^p = 1. (2.28)$$

It follows that y^i , z^i and $z^{i/2}$ depend only on the residue of *i* modulo *p*, for any integer $i \ge 0$.

2.29. Observe that $\text{Ker}(\xi_Z) \cap \text{Ker}(\tau_Z) \leq \text{Ker}(\chi) \cap \text{Ker}(\psi) = 1$ implies that z is not in both $\text{Ker}(\xi_Z)$ and $\text{Ker}(\tau_Z)$. Without loss of generality, we may assume that $\tau_Z(z) \neq 1$. Since β is an extension of τ_Z , we may assume that $\beta(z) \neq 1$.

Claim 2.30. $\xi_Z \tau_Z(z)$ is primitive pth root of unit.

Proof. Suppose that $(\xi_Z \tau_Z)(z) = 1$. Then, $(\xi_Z \tau_Z)([y, g^{-1}]) = 1$ and so $(\xi_Z \tau_Z)^g(y) = (\xi_Z \tau_Z)(y)$. Since *H* is abelian, |G : H| = p, θ_i lies above $\xi_Z \tau_Z$ for all *i* and $g \in G \setminus H$, it follows that $Y = \langle y, \mathbf{Z}(G) \rangle$ is contained in $\mathbf{Z}(\theta_i)$. This is contradiction with Claim 2.13. Thus, $(\xi_Z \tau_Z)(z) \neq 1$. Since *z* is of order *p* and $\xi_Z \tau_Z$ is a linear character, the claim follows.

Claim 2.31. Suppose that

$$\alpha\beta^g = (\alpha\beta)^{g'}\delta, \tag{2.32}$$

and

$$\alpha\beta^{g'} = (\alpha\beta)^{g'}\delta, \qquad (2.33)$$

for some $j \in \{0, 1, ..., p-1\}$, $j \neq 1$, some $\delta \in Irr(X \mod Y)$ and some $r, s \in \{0, 1, ..., p-1\}$. Then,

$$\delta(x) = \beta(z)^{hj(r-1)}, \qquad (2.34)$$

where $2h \equiv 1 \mod p$.

Proof. By Claim 2.30 and the same argument as in the proof of Claim 3.40 of [1], the statement follows. \Box

Suppose that Claim 2.24 (ii) holds. Then, by Claim 2.31, we have that $\delta(x) = \beta(z)^{hj(r-1)}$ and $\delta(x) = \beta(z)^{hk(r-1)}$. Since $\beta(z) = \tau_Z(z)$ is a primitive *p*th root of unit by 2.29, we have that $hj(r-1) \equiv hk(r-1) \mod p$. Since $r \neq 1 \mod p$ and $2h \equiv 1 \mod p$, we have that $k \equiv j \mod p$, which is a contradiction. Thus, Claim 2.24 (i) must hold.

We now apply Claim 2.31 with $\delta = 1$. Thus, $1 = \delta(x) = \beta(z)^{hj(r-1)}$. Therefore, $hj(r-1) \equiv 0 \mod p$. Since $2h \equiv 1 \mod p$, either $j \equiv 0 \mod p$ or $r-1 \equiv 0 \mod p$. Neither is possible. That is our final contradiction and Lemma 2.3 is proved.

Proof of Theorem A. Since *G* is a nilpotent group, *G* is the direct product $G_1 \times G_2$ of its Sylow *p*-subgroup G_1 and its Hall *p'*-subgroup G_2 . We can then write $\chi = \chi_1 \times \chi_2$ and $\psi = \psi_1 \times \psi_2$ for some characters $\chi_1, \psi_1 \in \operatorname{Irr}(G_1)$ and some characters $\chi_2, \psi_2 \in$ $\operatorname{Irr}(G_2)$. Since $\chi(1) = p$, we have that $\chi_2(1) = 1$ and thus $\chi_2\psi_2 \in \operatorname{Irr}(G_2)$. If $\psi(1) \neq p$, since $\psi(1)$ is a prime number, we have that $\psi_1(1) = 1$ and thus $\chi_1\psi_1$ is an irreducible. Therefore, $\chi \psi \in \operatorname{Irr}(G)$ and (iv) holds. We may assume then that $\psi(1) = p$ and thus $\psi_2(1) = 1$. Then, $\chi_2\psi_2$ is a linear character and so we may assume that *G* is a *p*-group.

If $\chi \psi$ has a linear constituent, by Lemmas 2.1 and 2.2, we have that (i) or (ii) holds. So, we may assume that all the irreducible constituents of $\chi \psi$ are of degree at least p. If $\chi \psi$ has an irreducible constituent of degree p^2 , then $\chi \psi \in \text{Irr}(G)$ and (iv) holds. We may assume then that all the irreducible constituents of $\chi \psi$ have degree p. Since $\chi \psi(1) = p^2$, it follows that $\eta(\chi \psi) \leq p$. By Lemma 2.3, we have that either $\eta(\chi \psi) = 1$ or $\eta(\chi \psi) \geq \frac{p+1}{2}$, and so (iii) holds.

Examples. Fix a prime p > 2

(i) Let *E* be an extraspecial group of order p^3 and $\phi \in Irr(E)$ of degree *p*. We can check that the product $\phi \overline{\phi}$ is the sum of all the linear characters of *E*.

(ii) In the proof of Proposition 6.1 of [2], an example is constructed of a *p*-group *G* and a character $\chi \in Irr(G)$ such that $\chi \overline{\chi}$ is the sum of *p* distinct linear characters and of p-1 distinct irreducible characters of degree *p*.

(iii) Given an extraspecial group *E* of order p^3 , where p > 2, and $\phi \in Irr(E)$ a character of degree *p*, we can check that $\phi\phi$ is a multiple of an irreducible. In Proposition 6.1 of [1], an example is provided of a *p*-group *G* and a character $\chi \in Irr(G)$ such that $\eta(\chi\chi) = \frac{p+1}{2}$. In [6], an example is provided of a *p*-group *P* and two faithful characters $\delta, \epsilon \in Irr(P)$ of degree *p* such that $\eta(\delta\epsilon) = p - 1$.

Let *G* be the wreath product of a cyclic group of order p^2 with a cyclic group of order *p*. Thus, *G* has a normal abelian subgroup *N* of order $(p^2)^p$ and index *p*. Let $\lambda \in \text{Lin}(N)$ be a nontrivial character. We can check that $\chi = \lambda^G$ and $\psi = (\lambda^2)^G$ are irreducible characters of degree *p* and $\chi \psi$ is the sum of *p* distinct irreducible characters of degree *p*.

EDITH ADAN-BANTE

We wonder if there exists a *p*-group *P* with characters $\chi, \psi \in \text{Irr}(P)$ of degree *p* such that $\frac{p+1}{2} < \eta(\chi\psi) < p-1$.

(iv) Let Q be a p-group and $\kappa \in Irr(Q)$ be a character of degree p. Set $P = Q \times Q$, $\chi = \kappa \times 1_G$ and $\psi = 1_G \times \kappa$. Observe that χ , ψ and $\chi \psi$ are irreducible characters of P.

ACKNOWLEDGEMENTS. I would like to thank Professor Everett C. Dade for his suggestions. Also, I thank Irene S. Suarez for her encouragement.

REFERENCES

1. E. Adan-Bante, Products of characters and finite p-groups, J. Algebra 277 (2004) 236–255.

2. E. Adan-Bante, Products of characters and finite p-groups II, *Arch. Math.* **82**(4) (2004), 289–297.

3. E. Adan-Bante, Products of characters and derived length II, *J. Group Theory* **8** (2005), 453–459.

4. E. Adan-Bante, Restriction of characters and products of characters, *Israel J. Math* 174(1) (2009), 221–225.

5. I. M. Isaacs, *Character theory of finite groups* (Academic Press, New York-San Francisco–London, 1976)

6. M. Loukaki and A. Moreto, On the number of constituents of products of characters, *Algebra Colloq.* 14(2) (2007), 207–208.