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Abstract. We discuss the relationship between the n-reflexivity of a linear sub-space S
in B(H), property (A,;,), Class Cy and strictly n-separating vectors. We also show that every
algebraic operator with property (A,) is hyperreflexive.

1. Introduction. Let H be a complex Hilbert space and let B(H) denote the collection of
all bounded linear operators on H. For a linear subspace S C B(H) the reflexive closure of &
is defined as Ref S = {T € B(H) : Tx € [Sx] for all x € H}, where Sx = {Sx: S € S} and []
denotes the closure in the norm topology. A linear subspace S C B(H) is reflexive if
S = Ref S. It is easily proved that reflexive subspaces are weakly closed and it is also easy to
verify that Ref A = Alglat A if A is an algebra containing I, where lat 4 is the lattice of
invariant subspace for A, and Alglat A = {T € B(H) : lat A C lat T}. We recall that a sub-
space S of B(H) is hyperreflexive if there is a K> 1 such that, for every T in B(H),
dist(T, S) < Ksup{dist(Tx, Sx):xeH, x| < l}. The smallest such K = K{(S) is the constant
of hyperreflexivity of S. Clearly, hyperreflexivity implies reflexivity, but not vice versa [13].
We say that an operator T is reflexive(hyperreflexive) if the weakly closed algebra Wy gen-
erated by Iy and T is reflexive(hyperreflexive).

For a vector x € H and a linear subspace S C B(H), we define the evaluation map
E.:S— Hby E.(T) = Tx. A vector x in H separates S if E, is injective on S and a vector x
in H strictly separates S if E, is bounded below on S. By the open mapping theorem, it is
easy to see that x strictly separates S if and only if x separates S and Sx is norm closed. We
write S® = {S® € B(H™) : S € S} as the n-fold ampliation of S, where S® is the direct
sum of n copies of the operators acting on H"” = H @ ... ® H.S is said to be n-reflexive(n-
hyperreflexive) if and only if S" is reflexive(hyperreflexive). S is n-reflexive(n-hyperreflexive)
implies S is (n + 1)-reflexive((n + 1)-hyperreflexive), but the converse does not hold. We say
that S has a strictly n-separating vector if S™ has a strictly separating vector. It is easy to see
that if S has a strictly n-separating vector, then S has a strictly (n + 1)-separating vector. For
a linear subspace S C B(H) and a linear subspace M of H, we define n:S5| M by
n(S) = § | M. A linear subspace M is said to be a strictly separating subspace for S if there
exists € > 0 such that [|S|M| > ¢||S||, for all S e S. It is easily seen that M is a strictly
separating subspace for S if and only if the only member S € S satisfying S(M) = {0} is
S=0and S| M is norm closed.

For vectors x and y in ‘H, we write x® y for the rank one operator defined by
(x® y)(W) = (u, y)x,u € H. Let S C B(H) be a weak*-closed subspace and » is a positive
integer. We say that S has property (Ay/,) if every weak*-continuous functional ¢ on S can
be written as

9= Z[x,- ® y;] for some x; and y; in H. 4))

i=1
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Furthermore, S has property (A1/,)(r), r > 1if it has property (Ay;,) and if for any C > r the
decomposition(1) can be realized with 3, |Ixillllyill < Cllgll. Suppose m and n are cardinal
numbers such that 1 <m, n < Ry. We say that S C B(H) has property (A,,,) provided that
for every family {g; : 0 < i < m,0 < < n} of weak*-continuous functional on S, there exist
sequences {x; : 0 </ < m} and {yj :0 < < n} of vectors in H such that

v =[x ®¥] 2

O<i<m
0<j<m

Furthermore, if m, n € N and r is a fixed real number satisfying r > 1, then S € B(H) is said
to have property (An..)(r) if for every s > r, there exist sequences {x;}o<i<m: {¥/ that
satisfy (2) and also satisfy the following conditions:

172
il < (s 3 ||€0fj||) 0 <i<m), 3)

0<j<n

}05j<n

and

172
Iyt < (s Y ||¢f,-u) 0<j<n). 4)

O<i<m

For brevity, we shall denote (A, ,) by (A,).

In {4], H. Bercovici, C. Foias and C. Pearcy [Proposition 9.16] proved that if a weakly
closed subspace S of B(H) has property (A;), then § is 3-reflexive. In Section 2 [Theorem
2.3], we prove the following generalization: a weak*-closed subspace S of B(H) with property
(A1yn) is (2n + 1)-reflexive. In Section 3 [Theorem 3.2}, we prove that every operator of class
Cy is 2-reflexive. It was shown by L. Ding [10, Theorem 2.5] that if S is a fine dimensional
linear subspace of £(V) and S has a k-dimensional separating subspace, then § is (k + 1)-
reflexive. In the last section [Theorem 4.2], we prove that a norm closed linear subspace S of
B(H) with a strictly n-separating vector is (n+ 1)-hyperreflexive. We recover a well-known
result as a special case.

2. Property (A, /,,). If § is a WOT-closed subspace of B(H), then S is weak*-closed but
not conversely. B. Chevreau and J. Esterle [6] proved the following interesting result.

LEMMA 2.1. Let S be a weak*-closed subspace of B(H) with property (Al /,,) for some
ne N. Then S is WOT-closed.

The following elementary Lemma comes from [4, Lemma 9.15].

LEMMA 2.2. Suppose that n € N, T € B(H) and S is a linear subspace of B(H). Then the n-
fold direct sum T belongs to Ref (S(")) if and only if whenever {x, ... x,} and { Pl y,,} are
sequences from H such that Y} _\[x;® y;] =0, we have Y. (Tx; ;) =0. Moreover, T
belongs to the WOT-closure of S if and only if the n-fold direct sum T® belongs to Ref (S*),
for every positive integer n.
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THEOREM 2.3. Let S be a weak*-closed subspace of B(H) with property (Ay/,). Then S is
2n + 1)-reflexive.

Proof. By Lemma 2.1, § is WOT-closed. Much of the proof is based on ideas of [4].
Suppose the (2n + 1)-fold direct sum T7®*+D belongs to Ref (S®*1) for some T'in B(H). We
have to show that T belongs to S. By Lemma 2.2, it suffices to show that the implication

k

k
Z[xj ®yl=0= Z(ij, y)=0 (5)

j=1 Jj=1

holds for all integers k. We proceed by induction on p. By the hypothesis, we know that (5) is
satisfied for k < (2n+ 1). Assume that (5) has been proven for all 2n+ 1 < k < p and let
X1, X2, ..., Xp, Y1, ¥2, ..., ¥p in 'H satisfy the relation

P

Y lx®y]=0. 6)

=1

Since S has property (Al/,,), there exist sequences of vectors {u), ..., u,} and {v;, ..., v} iIn H
such that
n 14
Z[“j ®v] = Z [x ® ] M
J=1 Jj=n+2

Since the equality Y0 [-4;®v;]+ Y0, 2[*x®y]=0 has (p—1) terms, we have

S (=Tui, v) + 328 (T, yj) = 0, or, equivalently,

n

)4
Z(Tuj, v/') = Z (ij', yj) (8)

Jj=1 Jj=n+2

Furthermore, from (6) and (7) we have Y'[x; ® y;] + Yi [ ® v;] = 0. Thus it follows
from the induction hypothesis that
n+1 n

Y (T ) + > _(Tw;, ) =0, ©)

=1 =
since k has (2n + 1)terms. Consequently, by Lemma 2.2, T € S. Hence the proof is complete.
We recover a result in [4] as a special case.

COROLLARY 2.4. Suppose S is a weak*-closed subspace of B(H) with property (A)). Then S
is 3-reflexive.

The following proposition improves a result of A. Loginov and V. Shulman.
PROPOSITION 2.5. Suppose S is a weak*-closed subspace of B(H) and has property (Ay)

and suppose S is n-reflexive. Then every weakly-closed subspace of S is n-reflexive, where n is a
positive integer, (Le., S is hereditarily n-reflexive)).
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Proof. Suppose M be a weakly closed subspace of S and let the n-fold direct sum
T belong to Ref (M™). We have to show T belongs to M. It suffices to show the
impliction T € Ref g (M) = T € M, where E, = E+ E+ ...+ E (n summands). Assume
that 7€ Ref g (M) and T¢ M. Then T¢g M = (Ml)l. Thus there exists ¢ in M* such
that o(T) # 0. Since S has property (Ay/,), there exist sequences of vectors {x, ..., x,},
{¥1, ... ya} in H such that

o~ [xi®y)eSt. (10)
i=1

Thus ¢ € M*NE, and YL (Tx;, y;) #0. Thus we have T ¢ (M* N E,) = Ref g,(M).
Consequently, T € M. Hence the proof is complete.

3. The Class C;. Recall that a completely nonunitary contraction 7 € B(H) (on a
separable Hilbert space H) is an operator of class Cy if u(T) = 0 for some u € H*®, u # 0. The
simplest operators of class Cy are the Jordan Blocks S(®), with ® € H* an inner function,
defined by

S(©) = (S* | (H? @ OH?))", (11)

where S is the unilateral shift. It is known [3] that every operator T of class Cy is quasi-similar
to a Jordan operator S = &,S(®;), where the values of i are ordinal numbers and the inner
function are subject to the conditions ®; = 1 for some i > 0, ©; divides ®; whenever i > j and
®; = ©; whenever card(i) =card(j). We start this section with the following Lemma from [7,
Proposition 6).

LeMMA 3.1. For an inner function ©, the weak*-closed algebra Agse) generated by 1 and
S(®) has property (A;2)(1).

THEOREM 3.2. Every operator of class Cy is 2-reflexive.

Proof. Suppose T € Cy. Then T is quasi-similar to S = @;5(®;). Since Age, has property
(A1,2)(1), Asee,) is weakly closed and 2-reflexive [4, Proposition 9.17], for i=1,2,.... This
implies that Ase, ® As@, ® ... is 2-reflexive. Since As = As@,)@s(0,)0.. 1S contained in
As@) ® As@,) ® ..., As is a weakly closed and has property (A;;)(1), As is 2-reflexive
[Propostion 2.5]. Thus S = &@;5(©;) is 2-reflexive. Since T and S are quasi-similar operators
of class Cy, T is 2-reflexive [3, Collary 3.6]. Hence the proof is complete.

An operator T € B(H) is algebraic if p(T) = 0 for some polynomial p.

COROLLARY 3.3. Every algebraic operator T € B(H) with |T|| <1 is 2-hyperreflexive.
Moreover, every algebraic operator with property (Aj) is hyperreflexive.

Proof. 1t is known that every algebraic operator with property (Ay) is reflexive [5,

Corollary 6]. By [11, Theorem 3.14], every reflexive algebraic operator is hyperreflexive.
Hence we have the corollary.
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4. Strictly n-separating vectors. In this section we study the relationship between n-
hyperreflexity and strictly n-separating vectors. The following lemma comes from [11,
Theorem 4.10].

LeMMA 4.1. Let S be a norm closed linear subspace of B(H). Suppose S has a strictly
separating vector e and a strictly separating closed subspace M such that (SM)=
5P(Sx: S € S, x € M)} satisfies (SM)N Se = {0} and (SM) + Se is norm closed. Then S is
hyperreflexive.

THEOREM 4.2. Let S be a norm closed linear subspace of B(H). Suppose S has a strictly n-
separating vector. Then S is (n + 1)-hyperreflexive for some n € N.

Proof. Suppose S™ has a strictly separating vector e = (ey, ea, ..., e,). We show that S

has the n-dimensional strictly separating subspace M. Suppose = Spanf{e;, ez, ..., e,}. We
must show that § — S | M is injective and S | M is norm closed. Since S™ has a strictly
separating vector e = (er, €z, ..., €y).
15®ell > 8|15 where § > 0. (12)
Thus |
NEIR RSN (13)
|
= 5||5<")(el, e ... enl (14)
1
=5||(Se|,Se2,...,Se,,)|| (15)
1
1 2\
=52 15l (16)
= \/TEMaxlsign”S&'"- (17)

Then we have 5
Jn

We define n: S - S| M by =(S) = S| M. Then we have

ISIMIl = Max ci<allSeill = —=IISII.

) 8
I7(S)Il = —=1ISll = BISIl, where g = — > 0.
n Jn

Thus 7 is injective and ran 7 is norm closed. Let f=e @0 € H"*V. Then fis a strictly
separating vector for SV, Set

— (n+1)
Q_IOGB.(.).GBOeBmlmeM]C'H : (18)
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Then G is a strictly separating subspace for S"*". We also note that S"*fn (§“+Vg) = {0}
and S™Vf+ (§*YG) is norm closed. By Lemma 4.1, S™* is hyperreflexive. Hence S is
(n + 1)-hyperreflexive.

COROLLARY 4.3. Suppose S is a norm closed linear subspace of B(H) and S has a finite
dimensional strictly separating subspace M. Then there is a positive integer n such that S is n-

hyperreflexive.
Proof. We can choose from unit sphere of M a finite collection of vectors v, ..., v s0
that (v, ..., v) is a strictly k-separating vector for S. It follows from the above theorem that

there is a positive integer n(> k) such that S is na-hyperreflexive. Hence the proof is complete.
A subalgebra A C B(H) is said to be strictly cyclic if Ax = H, for some vector x in H.

COROLLARY 4.4. Suppose A® is a strictly cyclic abelian algebra. Then A is (n+ 1)-
hyperreflexive, for some n € N.

PROPOSITION 4.5. A weak*-closed subspace S has a strictly n-separating vector. Such as S
has property (Al/,,)(nr),for somer > 1 andn € N.

Proof. Suppose S has a strictly n-separating vector. Then S® has a strictly separating
vector. Thus S® has property (A,)(r). By Proposition 7.3(1) of [1], S has a property
(A1/n)(nr). The proof is complete.

In the following example, S? = {S@® S| S € S} has a strictly separating subspace M
but SP M is not norm closed.

EXAMPLE 4.6. Suppose S is a norm closed linear subspace of B(H) and S has a strictly
separating vector e. Let f € H and M = sp{e @®0,0 EBj}. Then we have

152 | Ml 2 15D (e ® )| = || Sell (19)
> el|S|| = &l S@). (20)

Thus M is a strictly separating subspace for S®. But since
SOM ={Sie® S:f | $1, S, € S} = Se d Sf, 1))

S M is not norm closed.
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