CLASSES OF EQUATIONS OF THE TYPE y2=x31k
HAVING NO RATIONAL SOLUTIONS

HUGH M. EDGAR

The equation 3* = x*+ %, k£ an integer, has been discussed by many authors.
Mordell [1] has found many classes of 2 values for which the equation has no
integral solutions. Fueter [2], Mordell [3] and Chang [4] have found classes
of k values for which the equation has no rational solutions. The following
two theorems exhibit two more sets of conditions which give rise to classes

of & values for which the corresponding equations have no rational solutions.

TuroreM 1. The equation ¥ = x* + k has no rational solutions if k is a square
free positive integer and
(1) k=2 o7 3 (mod 4), k= - 3(mod 9),
i.e., k=6 or 15(mod 36),
(2) 3+ H, H the class number of RV k),
(3) U=3 or 6(mod 9) where (T, U) is the fundamental solution of the Pellian

equation
Yi-kX®=1, -
(4) 3+h, h the class number of R(/— %k)

(5) the integer solutions of p°+ g;qz =3 when h=1(mod 3), do not satisfy

o

q= £ 1(mod 9), and when h= —1(mod 3), do not satisfy q= +2 (%)
(mod 9).

THEOREM 2. The equation y* = x°+ k has no rational solutions if k is a square
free positive integer and
(1') =5(mod 8) and 2= — 3(mod 9),
i.e., k= —3(mod 72),
(2") 3+ H, H the class number of R(V k),

(3) U=3 or 6(mod 9), U the least positive value of q satisfying the Pellian
equation
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P —kg'= +4,
@) 3+h, h the class number of R( /_ vlfk).
t] 4 \ 3

(5') a, B and v, & the respective integer solutions of the equations —i (az +

1 2\ _oh 1 2 ~]_ 2\ _ 24 . . .
3 kB ) =27 4 (r + 3 ko ) =3"" satisfy the conditions:

(a) (i) a%=0(mod 9) when % is odd,
(ii) B=x=0(mod 9) when h is even;

(b) when h=3n+1, {a iﬁ%k"’,6$ +2(mod 9)
and 8% *2(mod 9),
when h=3n~1, {a( k)= 8}o% = 2(mod 9)

2
and 3 4 (—;e—) (mod 9) were the signs are all independent of

each other.

Proof of Theorem 1. The set of conditions used in Theorem 1 arises from
a theorem proved by Mordell [3] upon replacing his condition (3), in which
he assumes that Uz0, +1(mod 9), by the condition (3) as shown in the
statement of Theorem 1. Hence it suffices to prove that at that point of the
argument where Mordell [3] obtains a contradiction by imposing the conditions
U%0, £1(mod 9) it is possible to obtain a contradiction by imposing instead
the conditions U = 0(mod 3) and U%0(mod 9) (i.e., U=3 or 6(mod 9)). Upon
referring to the paper of Mordell [3] one sees that it is enough to show that
the equation

(6) Y4+VEZ*=(T+ UNEY(A+BVE)
cannot be solved in rational integers Y, Z, A and Bif (Y, k)=1 and U=3
or 6(mod 9).

Upon equating coefficients in (6) one obtains the two equations

(7 Z%= + AU(A*+ 3kB®) + TB(3 A*+ EB®), and
(8 Y = TA(A*+3 kB? = UkB(3 A*+ kB?).

Upon taking residues modulo 3 in equation (7) one obtains Z = + UA(mod 3).
Since it is being assumed that U = 0(mod 3) it follows that Z = 0(mod 3). Again,
taking residues modulo 3 in equation (8) one obtains Y= TA(mod 3). Since
(Y, k) =1 it follows that A £0(mod 3) and T£0(mod 3). Hence A= +1
(mod 9). Next, taking residues modulo 9 in equation (7) one obtains
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k

(9) 0= = U+3TB(4%+ 5'B*) (mod 9).

If B=0 (mod 3) then 3TB(A*+ »’3’ B*)=0 (mod 9)

which implies U =0 (mod 9) contrary to the assumption on U. If B#0 (mod
3) then B*=1(mod 3). Since 2= — 3(mod 9) it follows that I; = — 1(mod 3).
Since A=%£0(mod 3) it follows that A%®=1(mod 3). Hence upon assuming B¥0

(mod 3) one finds that A°+ }é‘ B?=0(mod 3) so that once again 3TB<A2 + g Bg>
=0(mod 9). Thus one obtains the contradiction U=0(mod 9) also in this
case.

Proof of Theorem 2. The set of conditions used in Theorem 2 arises from
a theorem proved by Chang [4] upon replacing his condition (3), in which he
assumes that Ux0(mod 3) and Ux +2(mod 9) by the condition (3') as shown
in the statement of Theorem 2. The Pellian equation p*— k4" = — 4 need not
enter the discussion of the theorem proved by Chang [4] or Theorem 2 since
this equation is insoluble whenever 2 =0(mod 3). It suffices to prove that at
that point of the argument where Chang [4] obtains a contradiction by imposing
the conditions U%0(mod 3) and U% +2(mod 9) it is possible to obtain a
contradiction by imposing instead the conditions

U=0(mod 3) and U£0(mod 9) (i.e., U=3 or 6 (mod 9)).

Upon referring to the paper of Chang [4] one sees that it is enough to show
that the equation

(10) v+zVE =(Lre Love)(La+ LavE)

cannot be solved in rational integers Y, Z, A and B if (Y,k) =1 and U=3or
6(mod 9). Here (7, U) is the fundamental solution of the Pellian equation
PP—kg= +4.

Upon equating coefficients in (10) one obtains the two equations
(11) 16 Z®= = AU(A*+3kB*) + TB(3 A*+kB®), and
(12) 16 Y= TA(A*+ 3 kB*) = UkB(3 A*+ kB?).

Upon taking residues modulo 3 in equation (11) one obtains Z = = UA(mod 3).
Since it is being assumed that U=0(mod 3) it follows that Z=0 (mod 3).
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Again, taking residues modulo 3 in equation (12) one obtains ¥ = TA(mod 3).
Since (Y, k) =1 it follows that A%0(mod 3) and T#0(mod 3). Hence A’= =1
(mod 9). Next, taking residues modulo 9 in equation (11) one obtains a
contradiction in the form U = 0(mod 9), just as in the proof of Theorem 1.

It seems natural to ask whether it is possible to make any progress when
one assumes # =1 (mod 8) and simultaneously 2= — 3(mod 9) i.e. %= 33(mod
72). If one parallels the work of Chang [4] it is found that the equation

(13) V' -kZ'=X?

can be obtained. The symbols X, Y and Z have the meanings ascribed to
them by Chang [4] and the conditions (Y, Z) = (X, Z) =1 obtain. Upon as-
suming k to be square free one also obtains (Y, #) =1. Since 2=1 (mod 8)
both odd and even values for X are conceivable. If X =1(mod 2) then the
argument proceeds ex;ctly as in Chang [4], provided (2) through (5) of Chang
[4] (or (2') through (5') of Theorem 2) are assumed. Hence in these two
cases one can conclude that there are no solutions of equation (13) with X =1
(mod 2). It may therefore now be assumed that X = 0(mod 2). Upon factorizing
the lefthand side of equation (13) one obtains the ideal equation

(14) [Y+ZNEILY -ZNE1=[XT.

Let A be the greatest common divisor of the two ideals [Y + Z% k] and
[Y—-Z* k] Thenitcan be shown that A|[2]. To prove this fact it is enough
to show that 2 < A, since A|[2] can equivalently be expressed by saying that
A includes (as a set of algebraic integers from the field R(y 2)) [2]. By the
definition of A one has

(15 A= [Y+ZNE] [Y-ZNED
=[Y+ZNkk Y-ZNE]

It will suffice to prove the existence of rational integers a, b, ¢ and d having

the properties

(16) o= (AEDVEY LA LN, (e dVE)(Y=ZNE)
an 7 a=b(mod 2), ¢ =d(mod 2).

The form for the general integer of R(v %2) follows from the assumption 2 =1
(mod 4). Upon equating coefficients on both sides of equation (16) and sim-
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plifying, one obtains

(18) (@a+0)Y+ (b—-dEZ*=4, and
19) b+dY +(a—0)Z*=0.

Equation (19) can be satisfied by putting a=c¢ and 6= —d. Then equation
(18) becomes

20) aY +bkZ*=2.

Now since X =0(mod 2) by assumption, it is necessary to have ¥ =Z = 1(mod
2). Then it follows that Y=%Z%=1(mod 2) from which it follows that if (a,
b) is to be a solution of equation (20) then a =b&(mod 2) is necessary. This
last condition is in accord with equation (17). Equation (20) is a linear
diophantine equation in the two quantities @ and » and has solutions in @ and
b since (Y, kZ®) =1|2. Finally, since a=5(mod 2) is required by equation
(20) the previously imposed conditions ¢=c¢ and 4= —d imply that 4 =d (mod
2). Hence it follows that it is possible to find rational integers a, b, ¢ and d
satisfying equations (16) and (17) and so A|[2] as stipulated.

It will be of use in the sequel to know the canonical decomposition of the
ideal [2] in the field R(V 2). Since it is being assumed that % = 1(mod 4) it
follows (Theorem 872, page 172, Landau [5]) that the discriminant 4 of R(V &)
is given by 4=% = 1(mod 8). Hence 4 is a quadratic residue modulo 8. From
Theorem 879, page 178, Landau [6] with p=2 it follows that [2]= PQ where
P=[2, R+w] and @=1[2, R+0o'] for a suitable rational integer R. Here

1—-}-2‘/—11 and o' = —1-_23/-—13- Also since 2+ 4 it follows from Theorem 880,

page 180, Landau [7] that P% Q. P and @ are prime ideals.

It can be shown that one can choose the prime ideal factors of [2] as
P=[2, vl and @=1[2, »']l. Upon writing PQ=1[2, 0wl[2, 01=[4, 2 0, 20, ve']
one sees that 4, 2 w, 2 @' and ww' are integral (algebraic) multiples of 2 and
so [21/PQ. The element ww' has the value —1~£~k and since 2=1(mod 8) it
follows that we' is an even rational integer. Also 2=2 w+ 2 o' so that PQ|[2].
Hence PQ=1[2].

The next step is to determine under what conditions P and @ are principal
ideals. In order that P and @ be principal ideals it is necessary and sufficient

that the number 2 have a non-trivial representation of the form
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S

(21) 2

where a, b, u and v are rational integers satisfying the conditions @ = 5(mod 2),

=v(mod 2). The term non-trivial refers to the requirement that

a+33/i and XFTOVE

o) not be units of R(VZ).

From the ideal equationvgorresponding to equation (21) it follows that one can
identify P with [ﬁigﬂ;l and @ with [u_—tgxﬂz_J Now it is known that
N(P) =N(Q) =2, and so, using the fact that N([5]) =|N(8)| where 8 is any
integer of R(V %), one sees that the two equations

(22) la®—kb’| =8

(23) |2® — k®| =8

must be satisfied. Since x*—ky*= +8 is insoluble whenever % =0(mod 3),
equations (22) and (23) become

(24) a®—kb’= -8,

(25) w—kv'= -8

Upon equating coefficients on both sides of equation (21) one obtains the two

equations
(26) au+bvk=8
27 av + bu = 0.

If one multiplies equation (26) by » and substitutes for av from equation (27)
it is found, using equation (25), that b=v». Hence also #= —a and thus
equation (21) becomes

o 2= (HHE ) Ze30E ),

It is seen that, since 2=1(mod 4), the parity restrictions on a, b, # and v
must be met if equations (24) and (25) are to be satisfied.

. —

Since £ =1(mod 4) and since Y =2Z%=1 (mod 2) it follows that Y_+~22*ng‘

—— 3 b e - -
and —Y:‘rwg—l/ k_ are integers of R(vV k). In other words [2]1|[YV+ Z*V k] and

[2]I[Y—-Z% k]. Putting this fact together with the previous result that A|[2]
shows that A =[2]. From equation (14), using the fact that X = 0(mod 2)
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one obtains the equation
Y+ZNENW Y-ZNE ) _ X7
(29) [ ) = e

where the two ideals on the left-hand side of equation (29) are relatively prime.

Upon using the unique factorization of ideals in an algebraic number field, one

obtains the two equations

5
(30) [Y*+ZYE]- oy,
— 3 b
(31) [Y=ZYE)- oy,
Where I, L, D, and D, are ideals in R(Y k) which satisfy the conditions
(I, I) =11,
LL=12], (D, D)) =[1] and D.Ds=[% |
If it is now assumed that the Pellian equation a®— %4® = — 8 can be solved,

it follows that the ideals I; and [, are principal ideals in every case, according
to remarks made previously. Then from equations (30) and (31) it follows
that D} and D} are also principal ideals. Finally, the assumption 3+ H leads
one to conclude that D; and D. are principal ideals. Thus, in particular, one

can write [, = [—‘fizb iEJ and D, = [i‘g‘/—k J From equation (30) one obtains

the equation
(32) [I_Lgi\/_l]=[£_+zlﬂjl c+g*l_k“]’.

From equation (32) one obtains the equation

Y+ZNE a+bNk\(ct+dVE\
(33) SEZVE (SR (2E)
. . . Y-ZNE
where ¢ is a unit of the field R(¥ k). It follows that one can write —y
in the form
Y-ZNE a—bEk\/c—dVEk\®
(34) 2 = e( _2_) <__2ﬁ)

and a corresponding equation in ideals would be

[L=FE || e=pli|[ e=g(E .
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From equations (31) and (35) one obtains the equation

(36) LD =| “_gﬂi{][ c‘g‘/k—r.

D; for if there were a prime ideal R

c— d\/kJ

From equation (36) one has [
c-dVE
2

with the properties Rl[ J and R+ D: then one would necessarily have

R“llz, which is impossible since L|[2]. In the same way, one finds that

D~| : gV J since the conditions on [ a _b\/—kj make it impossible to have

the cube of a prime ideal dividing la_bilg] Hence D. =[ €= d‘/ E} and

[a b‘/kJ Since one now has I, = [a+b\/k7ta b\/kJ [2], the

two possibilities I; =[1] and [, =[2] cannot arise.

If one parallels the treatment of Mordell [3] the following equations result
in those cases where the unit cannot be totally absorbed

37 Y4ZNk _ (T2 UVR)(a+b/k)(CHDVEY,
(38) C’-kD’= -2 X.

In those situations where totail absorption of the unit factor is possible, equation
(38) still applies but equation (37) is replaced by the equation

(39)

X+ZVEk _ ( a+b\/?)( C+D\/‘k‘)3
2 A 2 2 :
From equation (39) one obtains, upon equating coefficients, the equation

(40) 8 Y =aC(C*+ 3 kD?) + bkD(3 C*+ED?).

Upon taking residues modulo 9 in equation (40) it is found, using the fact that
C*0(mod 3), that Y= +a{mod 9). Now if it is assumed that & =0 (mod 3)
then the equation &’ —~kb*= — 8 forces the condition a*=1(mod 9). Thus Y’
=1(mod 9) and upon referring back to equation (13) it can be seen that Z =0
(mod 3) is necessary. Upon equating coefficients of vV 2 in equation (39) one

obtains the equation
(41) 8Z%=aD(3 C*+kD*) +bC(C*+ 3 kD?).

Upon taking residues modulo 9 in equation (41) it is found that & =0 (mod 9)

is required. Thus one cannot find rational integers Y, Z, C and D which
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satisfy equation (39) if it is assumed that 4 =0 (mod 3) and simultaneously
b%0(mod 9).
From equation (37) one obtains, upon equating coefficients of %, the equation

(42) 16 Z° = (Ta = Ubk)(3C*+ kDY D
+ (Tb % Ua) (C* + 3kD?)C.

In equation (42) it is enough to consider the positive sign, upon replacing &
by —b, D by — D and leaving ¢ and C unchanged. This replacement has the
effect of changing Y to —Y. Hence one can replace equation (42) by the

equation

(43) 16 Z° = (Ta + Ubk) (3 C*+ ED® D
+ (T + Ua) (C*+ 3 kD*)C.

Upon taking residues modulo 9 in equation (43) one obtains the relation
(44) —-227Z%= £ (Tb+ Ua)(mod 9).

With the assumptions on U and & it follows that Z=0(mod 3) so that one
would require 76+ Ua = 0(mod 9).

The following result has been established :

TueoreM 3. The equation y* = x*+ k has no rational solutions if k is a square
free positive integer and if the following conditions obtain :
(a) k=1(mod 8) and k= — 3(mod 9),
i.e., £ =33(mod 72),
(b) the conditions (2') through (5') of Theorem 2,
(c) the Pellian equation X®—kY®= —8 is soluble and possesses a solution
(a, ) for which b=0(mod 3) and b£0(mod 9),
i.e., b=3 or 6(mod 9),
(d) T+ Ua£0(mod 9).

REFERENCES

[1] Mordell, L. J., Proc. London Math. Soc., Hodgson, London, 1914, Volume 13, The Dio-
phantine equation y?—k=2x3, Pages 60-80.

[2] Fueter, R., Commentarii Mathematici Helvetici, Societate Mathematica Helvetica,
Zurich, 1930, Volume 2, Ueber kubische diophantische Gleichungen, Pages 69-89.

[3]1 Mordell, L. J., Archiv fur Mathematik og Naturvidenskab B.I.L., NR 6, Oslo, 1947, On
some diophantine equations y?=x3+k with no rational solutions, Pages 143-150.

[4] Chang, K. L., The Quarterly Journal of Mathematics, Oxford University Press, Oxford,

https://doi.org/10.1017/50027763000023916 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023916

58 HUGH M. EDGAR

1948, Volume 19. On some diophantine equations y2=x34% with no rational solutions,
Pages 181-188.

[5]1 Landau, E. G. H., Vorlesungen iiber Zahlentheorie, Chelsea Publishing Company, New
York, 1947, Page 172, Theorem 872.

[6] Landau, E. G. H., Vorlesungen iiber Zahlentheorie, Chelsea Publishing Company, New
York, 1947, Page 178, Theorem 879.

[7] Landau, E. G. H., Vorlesungen iiber Zahlentheorie, Chelsea Publishing Company, New
York, 1947, Page 180, Theorem 880.

San Jose State College, San Jose 14, Calif., U.S.A.

https://doi.org/10.1017/50027763000023916 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023916



