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1. Introduction

The extensive study of upper conical density properties for Hausdorff measures was pio-
neered by Besicovitch, who studied the conical density properties of purely 1-unrectifiable
fractals on the plane. Since Besicovitch’s time upper density results have played an impor-
tant role in geometric measure theory. Due to the works of Marstrand [7], Salli [12], Mat-
tila [9], and others, the upper conical density properties of Hausdorff measures Hs for all
values of 0 � s � n are very well understood. There are also analogous results for many
(generalized) Hausdorff and packing measures (see [4] and references therein). Conical
density results are useful since they give information on the distribution of the measure
if the values of the measure are known on some small balls. The main applications deal
with rectifiability [10], but often upper conical density theorems may also be viewed as
some kind of anti-porosity theorems (see [9] and [4] for more on this topic).

When working with a Hausdorff or packing-type measure µ, it is useful to study den-
sities such as

lim sup
r↓0

µ(X(x, r, V, α))/h(2r),
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where h is the gauge function used to construct the measure µ and X(x, r, V, α) is a
cone around the point x (see § 2 for the formal definition). However, most measures
are so unevenly distributed that there are no gauge functions that could be used to
approximate the measure in small balls. This is certainly the case for many self-similar
and multifractal-type measures. For these measures the above quoted results give no
information. To obtain conical density results for general measures it seems natural to
replace the value of the gauge h in the denominator by the measure of the ball B(x, r)
and consider upper densities such as

lim sup
r↓0

µ(X(x, r, V, α))/µ(B(x, r)).

Our purpose in this paper is to study densities of this type, and more general types, for
locally finite Borel regular measures on R

n. In particular, we will answer some of the
problems posed in [4].

The paper is organized as follows. In § 2, we set up some notation and discuss auxiliary
results that will be needed later on. In particular, we recall a dimension estimate for
average homogeneous measures obtained in [3]. In § 3, we prove an upper density result
valid for all locally finite Borel regular measures on R

n. The result gives a positive
answer to [4, Question 4.3]. It shows that around typical points a locally finite Borel
regular measure cannot be distributed, so that it lies mostly on only one one-sided cone
at all small scales. In § 4, we obtain more detailed information on the distribution of the
measure µ provided that its Hausdorff dimension is bounded from below. The result,
Theorem 4.1, is analogous to the results of [4,5,9], obtained before for Hausdorff and
packing-type measures, and it gives strong insight into [4, Question 4.1]. In § 5, we give
a negative answer to [4, Question 4.2] and, moreover, we show that Theorem 4.1 is not
valid if we only assume that the measure is purely m-unrectifiable.

2. Notation and preliminaries

We start by introducing some notation. Let n ∈ N, m ∈ {0, . . . , n − 1}, and G(n, n − m)
denote the space of all (n − m)-dimensional linear subspaces of R

n. The unit sphere of
R

n is denoted by Sn−1. For x ∈ R
n, θ ∈ Sn−1, 0 � α � 1 and V ∈ G(n, n − m), we set

H(x, θ, α) = {y ∈ R
n : (y − x) · θ > α|y − x|},

X+(x, θ, α) = H(x, θ, (1 − α2)1/2),

X(x, V, α) = {y ∈ R
n : dist(y − x, V ) < α|y − x|}.

We also denote X+(x, r, θ, α) = B(x, r) ∩ X+(x, θ, α) and X(x, r, V, α) = B(x, r) ∩
X(x, V, α), where B(x, r) is the closed ball centred at x with radius r > 0. Observe
that X+(x, θ, α) is the one side of the two-sided cone X(x, �, α), where � ∈ G(n, 1) is
the line pointing to the direction θ. We usually use the ‘X notation’ for very narrow
cones, whereas the ‘H cones’ are considered as ‘almost half-spaces’. If V ∈ G(n, n − m),
we denote the orthogonal projection onto V by projV . Furthermore, if B = B(x, r) and
t > 0, then by the notation tB, we mean the ball B(x, tr).
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By a measure we will always mean a finite non-trivial Borel regular (outer) measure
defined on all subsets of some Euclidean space R

n. Since all our results are local, and
valid only almost everywhere, we could easily replace the finiteness condition by assuming
that µ is almost everywhere locally finite in the sense that µ({x ∈ R

n : µ(B(x, r)) =
∞ for all r > 0}) = 0. The support of the measure µ is denoted by spt(µ). The (lower)
Hausdorff dimension of the measure µ is defined by

dimH(µ) = inf{dimH(A) : A is a Borel set with µ(A) > 0},

where dimH(A) denotes the Hausdorff dimension of the set A ⊂ R
n [2, § 10]. µ|F denotes

the restriction of the measure µ to a set F ⊂ R
n, defined by µ|F (A) = µ(F ∩ A) for

A ⊂ R
n. Notice that, trivially, dimH(µ) � dimH(µ|F ) whenever F is a Borel set with

µ(F ) > 0. We will use the notation Hs to denote the s-dimensional Hausdorff measure
on R

n. More generally, we denote by Hh a generalized Hausdorff measure constructed
using a gauge function h : (0, r0) → (0,∞) [10, § 4.9].

Next we will recall the definition of the average homogeneity from [3]. If k ∈ N, then
a set Q ⊂ R

n is called a k-adic cube provided that Q = [0, k−l)n + k−lz for some l ∈ N

and z ∈ Z
n. The collection of all k-adic cubes Q ⊂ [0, 1)n with side length k−l is denoted

by Ql
k. If Q ∈ Ql

k and t > 0, then by tQ we denote the cube centred at the same point
as Q but with side length tk−l.

Let k ∈ N and Ik = {1, . . . , kn}. If i = (i1, . . . , il) ∈ I l
k and i ∈ Ik, then we set

i, i = (i1, . . . , il, i) ∈ I l+1
k . Furthermore, if i = (i1, i2, . . . ) ∈ I∞

k := IN

k (or i ∈ I l
k)

and j ∈ N (or j � l), then i|j := (i1, . . . , ij) ∈ Ij
k. For a given measure µ, we will

enumerate k-adic cubes Qi ∈ Q1
k so that µ(Qi) � µ(Qi+1) whenever i ∈ Ik \ {kn}. Given

l ∈ N and i ∈ I l
k, we continue inductively by enumerating the cubes Qi,i ∈ Ql+1

k with
Qi,i ⊂ Qi ∈ Ql

k so that µ(Qi,i) � µ(Qi,i+1) whenever i ∈ Ik \ {kn}. Bear in mind that
this enumeration depends, of course, on the measure. The (upper) k-average homogeneity
of µ of order i ∈ Ik is defined to be

homi
k(µ) = lim sup

l→∞

kn

l

l∑
j=1

∑
i∈Ij

k

µ(Qi,i).

For us it is essential that the Hausdorff dimension of a measure may be bounded above
in terms of homogeneity. The following result was obtained in [3].

Theorem 2.1. If µ is a probability measure on [0, 1)n and homi
k(µ) � knη for some

0 � η � k−n, then

dimH(µ) � − 1
log k

(
iη log η + (1 − iη) log

(
1 − iη

kn − i

))
.

It is well known that although most measures on R
n are non-doubling, still ‘around

typical points most scales are doubling’. This somewhat inexact statement is made quan-
titative in the following lemma. We follow the convention according to which c = c(·, ·)
denotes a constant that depends only on the parameters listed inside the parentheses.
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Lemma 2.2. If n, k ∈ N and 0 < p < 1, then there exists a constant c = c(n, k, p) > 0
such that for every measure µ on R

n and for each γ > 0 we have

lim inf
l→∞

1
l
#{j ∈ {1, . . . , l} : µ(B(x, γk−j)) � cµ(B(x, γk−j+1))} � p

for µ-almost every x ∈ R
n.

Proof. Let c = k−2n/(1−p), fix a measure µ on R
n and γ > 0, and denote

N(x, l) = #{j ∈ {1, . . . , l} : µ(B(x, γk−j)) � cµ(B(x, γk−j+1))} for x ∈ R
n and l ∈ N.

Suppose that x ∈ R
n is a point at which

lim inf
l→∞

1
l
N(x, l) < p.

Then there are arbitrarily large integers l such that N(x, l) < lp. Hence,

µ(B(x, γk−l)) < c(1−p)lµ(B(x, γ))

for any such l and, consequently,

lim sup
r↓0

log µ(B(x, r))
log r

� lim sup
l→∞

log c(1−p)l + log µ(B(x, γ))
log γk−l

= lim sup
l→∞

2n log k−l

log γk−l
= 2n > n.

But this is possible only in a set of µ-measure zero (see, for example, [2, Proposition
10.2]). The claim thus follows. �

3. A general conical density estimate

Our first result is a conical density theorem valid for all measures on R
n. This result is

motivated by [4, Question 4.3] asking if

lim sup
r↓0

inf
θ∈Sn−1

µ(B(x, r) \ H(x, θ, α))
h(2r)

� c(n, α) lim sup
r↓0

µ(B(x, r))
h(2r)

holds µ-almost everywhere for all measures µ on R
n and all doubling gauge functions h.

We shall formulate our result for densities having µ(B(x, r)) in the denominator rather
than h(2r) because we believe that these densities are more natural in this general setting.
The original question may also be answered in the positive by a slight modification of
the proof below.

Theorem 3.1. If n ∈ N and 0 < α � 1, then there exists a constant c = c(n, α) > 0
so that for every measure µ on R

n we have

lim sup
r↓0

inf
θ∈Sn−1

µ(B(x, r) \ H(x, θ, α))
µ(B(x, r))

> c

for µ-almost every x ∈ R
n.
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Figure 1. The covering of the set A ∩ B(z, r1) in the proof of Theorem 3.1. The smallest ball is
the set D1 and the shaded sector is the set D2. The rest of the set is called D3.

Proof. It is sufficient to consider non-atomic measures since

lim sup
r↓0

inf
θ∈Sn−1

µ(B(x, r) \ H(x, θ, α))
µ(B(x, r))

= 1

if µ({x}) > 0.
Because we want to use only a finite set of directions, we cover the set Sn−1 with cones

{H(0, θi, β)}K
i=1, where β = cos(arccos(α/2) − arccos(α)) and K = K(n, α) ∈ N. For all

θ ∈ Sn−1 there is i ∈ {1, . . . , K} so that H(x, θ, α) ⊂ H(x, θi, α/2) for all x ∈ R
n. Given

this, it is enough to show that for all measures µ on R
n we have

lim sup
r↓0

min
i∈{1,...,K}

µ(B(x, r) \ H(x, θi, α/2))
µ(B(x, r))

> c = c(α, n) > 0 (3.1)

for µ-almost all x ∈ R
n.

To prove (3.1) we first apply Lemma 2.2 to find a constant c′ < ∞ depending only on
n (choosing c′ = 32n will suffice) so that for all measures µ and for every radius R > 0
we have the following: for µ-almost every x ∈ R

n there is a scale r < R so that

µ(B(x, 3r)) � c′µ(B(x, r)).

We will prove that (3.1) holds with c = c(n, α) = (9c′K)−1. Assume to the contrary that
this is not the case. Then we find a non-atomic measure µ and r0 > 0 so that the set

A :=
{

x ∈ R
n : min

i∈{1,...,K}

µ(B(x, r) \ H(x, θi, α/2))
µ(B(x, r))

< 2c for every 0 < r � r0

}

has positive µ-measure. Now A is seen to be a Borel set by standard methods and thus
µ-almost all z ∈ A are µ-density points of A [10, Corollary 2.14]. Thus, we may find a
point z ∈ A and a radius 0 < r1 � r0/2 so that

µ(A ∩ B(z, r1)) � 1
2µ(B(z, r1)) (3.2)
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and

µ(B(z, 3r1)) � c′µ(B(z, r1)). (3.3)

Now A ⊂
⋃K

i=1 Ai, where

Ai := {x ∈ A : µ(B(x, 2r1) \ H(x, θi, α/2)) < 2cµ(B(x, 2r1))},

and thus we may find j ∈ {1, . . . , K} so that

µ(Aj ∩ B(z, r1)) � K−1µ(A ∩ B(z, r1)). (3.4)

Next take a point y from the closure of Aj ∩ B(z, r1) so that it maximizes the inner
product x · θj in the closure of Aj ∩ B(z, r1). Since the measure µ is non-atomic, there is
a small radius r2 < r1 so that

µ(B(y, r2)) < c′cµ(B(z, r1)). (3.5)

Now choose any point y′ ∈ Aj ∩ B(z, r1) ∩ B(y, αr2/3) and cover the set A ∩ B(z, r1)
with sets D1, D2 and D3 defined by D1 = B(y, r2), D2 = B(y′, 2r1) \ H(y′, θj , α/2) and
D3 = (A ∩ B(z, r1)) \ (D1 ∪ D2) (see Figure 1).

Observe that D3 ∩ Aj = ∅ and so (3.4) implies

µ(D3) � (1 − K−1)µ(A ∩ B(z, r1)).

Moreover, the inequality (3.5) reads

µ(D1) < c′cµ(B(z, r1)),

and with (3.3) and the fact that y′ ∈ Aj we are able to conclude that

µ(D2) < 2cµ(B(y′, 2r1)) � 2cµ(B(z, 3r1)) � 2c′cµ(B(z, r1)).

Putting these three estimates together yields

µ(A ∩ B(z, r1)) � 3c′cµ(B(z, r1)) + (1 − K−1)µ(A ∩ B(z, r1)),

from which we get

µ(A ∩ B(z, r1)) � 3Kc′cµ(B(z, r1)) = 1
3µ(B(z, r1)).

This contradicts (3.2) and finishes the proof. �

4. Measures with positive Hausdorff dimension

Suppose that Hh is a Hausdorff measure constructed using a non-decreasing gauge func-
tion h : (0, r0) → (0,∞) and µ is its restriction to some Borel set with finite Hh measure.
There are many works (see, for example, [5,9,12]) that give information on the amount
of µ on small cones around (n − m)-planes V ∈ G(n, n − m) when h satisfies suitable
assumptions. These results apply when Hm is purely singular with respect to Hh. In [4],
similar results are obtained also for many packing-type measures. In this section, we
consider general measures with dimH(µ) > m in the same spirit by proving the following
result.
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Theorem 4.1. If n ∈ N, m ∈ {0, . . . , n − 1}, s > m, and 0 < α � 1, then there exists
a constant c = c(n, m, s, α) > 0 so that for every measure µ on R

n with dimH(µ) � s we
have

lim sup
r↓0

inf
θ∈Sn−1,

V ∈G(n,n−m)

µ(X(x, r, V, α) \ H(x, θ, α))
µ(B(x, r))

> c (4.1)

for µ-almost every x ∈ R
n.

We first introduce a couple of geometric lemmas. The first one is proved in [1] with
the correct asymptotics for q(n, α) as α → 0 (see also [5, Lemma 2.1]).

Lemma 4.2. For each 0 < α � 1 there exists q = q(n, α) ∈ N such that in any set of
q points in R

n there are always three points x0, x1 and x2 for which x1 ∈ X+(x0, θ, α)
and x2 ∈ X+(x0,−θ, α) for some θ ∈ Sn−1.

We would like to apply the previous lemma for balls instead of just single points. For
this, we will need the following simple lemma.

Lemma 4.3. For each 0 < α � 1 there exists t = t(α) � 1 such that if x0, y0 ∈ R
n

and rx, ry > 0 are such that B(x0, trx)∩B(y0, try) = ∅ and y0 ∈ X+(x0, θ, α/t) for some
θ ∈ Sn−1, then

B(y0, ry) ⊂ X+(x, θ, α)

for all x ∈ B(x0, rx).

Proof. Fix y ∈ B(y0, ry) and x ∈ B(x0, rx). Our aim is to find t � 1 depending only
on α, so that under the assumptions of the lemma we have

(y − x) · θ > (1 − α2)1/2|y − x|.

Let ε = (1 − (1 − α2)1/2)/2 and choose t � 1 so large that (1 − (α/t)2)1/2 � 1 − ε,
(1 − ε)t − 1 > 0 and (1 − ε)/(1 + 1/t) − 1/(t + 1) > (1 − α2)1/2. According to our
assumptions, we have

|y0 − x0| � t(ry + rx), (4.2)

(y0 − x0) · θ � (1 − ε)|y0 − x0|. (4.3)

Also, we clearly have

(y − x) · θ � (y0 − x0) · θ − (ry + rx) > 0

and
|y − x| � |y0 − x0| + ry + rx.

Hence,
(y − x) · θ

|y − x| � (y0 − x0) · θ

|y0 − x0| + ry + rx
− ry + rx

|y0 − x0| + ry + rx
. (4.4)
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318 M. Csörnyei, A. Käenmäki, T. Rajala and V. Suomala

Now (4.2) yields
ry + rx

|y0 − x0| + ry + rx
� 1

t + 1

and by using (4.3) and (4.2), we get

|y0 − x0| + ry + rx

(y0 − x0) · θ
� 1

1 − ε
+

1
(1 − ε)t

.

The proof is finished by combining these estimates with (4.4) and the choice of t. �

The following somewhat technical proposition reduces the proof of Theorem 4.1 to
finding a suitable amount of roughly uniformly distributed balls inside B(x, r) all having
quite large measure. If this can be done at arbitrarily small scales around typical points,
then Theorem 4.1 follows. Below, we shall denote by #B the cardinality of a collection B.

Remark 4.4. Observe that G = G(n, n − m) endowed with the metric d(V, W ) =
supx∈V ∩Sn−1 dist(x, W ) is a compact metric space and

⋃
d(W,V )<α

{x : x ∈ W} = X(0, V, α)

for all V ∈ G and 0 < α < 1 [12, Lemma 2.2]. Using the compactness, we may thus
choose K = K(n, m, α) ∈ N and (n − m)-planes V1, . . . , VK ∈ G so that for each V ∈ G

there exists j ∈ {1, . . . , K} with

X(x, V, α) ⊃ X(x, Vj , α/2) (4.5)

for all x ∈ R
n.

Proposition 4.5. Let m ∈ {0, . . . , n − 1}, 0 < α � 1, t = t(α/2) be the constant of
Lemma 4.3 and take q = q(n−m, α/(2t)) from Lemma 4.2. Moreover, let K = K(n, m, α)
be as in Remark 4.4 and c > 0. Suppose that µ is a measure on R

n and that for µ-almost
all x ∈ R

n we may find arbitrarily small radii r > 0 and a collection B of sub-balls of
B(x, r) with the following properties:

(i) the collection {2tB : B ∈ B} is pairwise disjoint;

(ii) µ(B) > cµ(B(x, 3r)) for all B ∈ B;

(iii) if B′ ⊂ B with #B′ � #B/K and V ∈ G(n, n − m), then there is a translate of V

intersecting at least q balls from the collection B′.

Then

lim sup
r↓0

inf
θ∈Sn−1,

V ∈G(n,n−m)

µ(X(x, r, V, α) \ H(x, θ, α))
µ(B(x, r))

> c (4.6)

for µ-almost every x ∈ R
n.
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Proof. Let µ be a measure satisfying the assumptions of the proposition and suppose
that (n−m)-planes V1, . . . , VK are as in Remark 4.4. Our aim is to show that, for µ-almost
every x ∈ R

n, there are arbitrarily small radii r > 0 so that for every j ∈ {1, . . . , K}
there is ζ = ζ(x) ∈ Sn−1 ∩ Vj for which

min{µ(X+(x, r, ζ, α/2)), µ(X+(x, r,−ζ, α/2))} > cµ(B(x, r)). (4.7)

From this the claim follows easily. Indeed, take V ∈ G(n, n − m) and choose Vj ∈
{V1, . . . , VK} so that (4.5) holds. Let ζ ∈ Vj ∩ Sn−1 satisfy (4.7). Then

X+(x, r,±ζ, α/2) ⊂ X(x, r, Vj , α/2) ⊂ X(x, r, V, α)

and the claim follows by combining (4.7) with the observation that for all ζ ′, θ ∈ Sn−1

we have

X+(x, r, ζ ′, α) ∩ H(x, θ, α) = ∅ or X+(x, r,−ζ ′, α) ∩ H(x, θ, α) = ∅.

To prove (4.7), we assume on the contrary that there is a Borel set F ⊂ R
n with

µ(F ) > 0 such that the assumptions (i)–(iii) of Proposition 4.5 hold for every x ∈ F in
some arbitrarily small scales and that, for some r0 > 0 and for every 0 < r < r0, there
exists j ∈ {1, . . . , K} so that

µ(X+(x, r, ζ, α/2)) � cµ(B(x, r)) or µ(X+(x, r,−ζ, α/2)) � cµ(B(x, r)) (4.8)

for all ζ ∈ Sn−1 ∩ Vj . Now choose a µ-density point x1 of F and a radius 0 < r1 < r0/3
so that

µ(B(x1, r) \ F ) < cµ(B(x1, r)) � cµ(B(x1, 3r)) (4.9)

for all 0 < r < r1. Next we choose a radius 0 < r < r1 and a collection of balls B inside
B(x1, r) satisfying the assumptions (i)–(iii) of Proposition 4.5. Then we let

Fj = {x ∈ B(x1, r) ∩ F : (4.8) holds with this r for all ζ ∈ Sn−1 ∩ Vj}.

for j ∈ {1, . . . , K}. According to (4.9) each ball of B contains points of F and hence
there is at least one j ∈ {1, . . . , K} so that not less than #B/K balls among B contain
points of Fj . Fix such a j, and let B′ = {B ∈ B : Fj ∩ B 	= ∅}. Then Proposition 4.5 (iii)
implies that we may find z ∈ R

n and q different balls B1, . . . , Bq ∈ B′ so that they all
intersect the affine (n−m)-plane Vj +z. According to Proposition 4.5 (i) and Lemmas 4.2
and 4.3, we may choose three balls B0, B1, B2 among the balls B1, . . . , Bq and a point
x0 ∈ Fj ∩ B0 so that for some θ ∈ Sn−1 ∩ Vj we have

B1 ⊂ X+(x0, θ, α/2) and B2 ⊂ X+(x0,−θ, α/2).

But this contradicts (4.8) since min{µ(B1), µ(B2)} > cµ(B(x1, 3r)) � cµ(B(x0, 2r)) by
Proposition 4.5 (ii). �

To complete the proof of Theorem 4.1, we need to find collections B of balls as in the
previous proposition. To that end, we first work with cubes (instead of balls) and use
Theorem 2.1.
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Lemma 4.6. For any n ∈ N, m ∈ {0, . . . , n − 1}, s > m, M ∈ N, τ � 1
and k > M1/(s−m) there exist constants c = c(n, m, s, M, τ, k) > 0 and 0 < p =
p(n, m, s, M, τ, k) < 1 satisfying the following. For every measure µ on [0, 1)n with
dimH(µ) � s and for µ-almost every x ∈ [0, 1)n,

lim sup
l→∞

1
l
#{j ∈ {1, . . . , l} : µ(Qi,kn−Mkm) > cµ(τQi),

where i ∈ Ij
k is such that x ∈ Qi} > p. (4.10)

Here we use the enumeration of the k-adic cubes introduced in § 2.

Proof. Since log(Mkm)/ log(k) < s, it follows by an easy calculation that we may
choose a number c = c(n, m, s, M, τ, k) > 0 such that 0 < η := 3c(3

√
nτ +2)n < k−n and

− 1
log k

((kn −Mkm)η log η+
(

1− (kn −Mkm)η) log
(

1 − (kn − Mkm)η
Mkm

))
< s. (4.11)

We will prove the claim with this choice of c, and with p = c(3
√

nτ + 2)n. Suppose
to the contrary that there is a Borel set F ⊂ [0, 1)n with µ(F ) > 0 such that (4.10)
does not hold for any point of F . Consider the restriction measure µ|F . In order to use
Theorem 2.1, we scale our original measure so that µ(F ) = 1. Note that this scaling does
not affect the dimension of µ or the condition (4.10). It is sufficient to show that

homkn−Mkm

k (µ|F ) � 3ckn(3
√

nτ + 2)n (4.12)

since this would imply dimH(µ) � dimH(µ|F ) < s by Theorem 2.1 and (4.11). In order
to calculate homkn−Mkm

k (µ|F ), we need to enumerate the k-adic cubes in terms of µ|F
rather than in terms of µ. We denote cubes enumerated in terms of µ|F by Q′

i.
Observe that if Q ∈ Qj

k, then any ball centred at Q with radius
√

nτk−j contains the
cube τQ and is contained in the cube 3

√
nτQ. If x ∈ F is a µ-density point of F , then

µ(B(x, r)) � 2µ(F ∩ B(x, r)) for all sufficiently small r > 0. If j ∈ N is large enough and
µ(Qi,kn−Mkm) � cµ(τQi), where i ∈ Ij

k is such that x ∈ Qi, then also

µ(F ∩ Qi,i) � µ(Qi,kn−Mkm)

� cµ(τQi) � cµ(B(x,
√

nτk−j))

� 2cµ(F ∩ B(x,
√

nτk−j))

� 2cµ(F ∩ 3
√

nτQi)

for all i ∈ {1, . . . , kn − Mkm} and so also

µ(F ∩ Q′
j,kn−Mkm) � 2cµ(F ∩ 3

√
nτQ′

j), (4.13)

where Q′
j = Qi.

We define

Ej
k = {i ∈ Ij

k : µ(F ∩ Q′
i,kn−Mkm) � 2cµ(F ∩ 3

√
nτQ′

i)}
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for j ∈ N and

N(x, l) = #{j ∈ {1, . . . , l} : i|j ∈ Ej
k where i ∈ I l

k is such that x ∈ Q′
i}

for x ∈ [0, 1)n and l ∈ N. It follows from the choice of the set F and (4.13) that

lim inf
l→∞

1
l
N(x, l) � 1 − p

for µ-almost every x ∈ F . Since N(x, l) is constant on Q′
i whenever i ∈ I l

k, this implies

lim inf
l→∞

1
l

l∑
j=1

∑
i∈Ej

k

µ(F ∩ Q′
i) = lim inf

l→∞

1
l

∫
F

N(x, l)dµ(x) � 1 − p

by Fatou’s lemma and, consequently,

lim sup
l→∞

1
l

l∑
j=1

∑
i/∈Ej

k

µ(F ∩ Q′
i) � p.

Moreover, ∑
i∈Ij

k

µ(F ∩ 3
√

nτQ′
i) � (3

√
nτ + 2)n

for every j ∈ N, because each cube Q ∈ Qj
k intersects at most (3

√
nτ + 2)n larger cubes

3
√

nτQ̃, where Q̃ ∈ Qj
k. Combining the previous two estimates and the choice of p, we

now obtain

homkn−Mkm

k (µ|F )

= lim sup
l→∞

kn

l

l∑
j=1

( ∑
i∈Ej

k

µ(F ∩ Q′
i,kn−Mkm) +

∑
i/∈Ej

k

µ(F ∩ Q′
i,kn−Mkm)

)

� lim sup
l→∞

kn

l

l∑
j=1

∑
i∈Ij

k

2cµ(F ∩ 3
√

nτQ′
i) + lim sup

l→∞

kn

l

l∑
j=1

∑
i/∈Ej

k

µ(F ∩ Q′
i,kn−Mkm)

� 2ckn(3
√

nτ + 2)n + pkn

= 3ckn(3
√

nτ + 2)n.

This completes the proof. �

To finish the proof of Theorem 4.1, we just need to combine the previous lemma
and Proposition 4.5 and show how cubes may be replaced by balls. We will choose the
number of cubes Qi,i with µ(Qi,i) > cµ(τQi) (using the notation of Lemma 4.6) large
enough so that we are able to choose sufficiently many appropriately separated balls
Qi,i ⊂ Bi ⊂ τQi. In order to find a ball containing τQi with comparable measure, we
need to work on a doubling scale for the measure µ. For this, we will use Lemma 2.2.
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Proof of Theorem 4.1. Observe that without loss of generality we may assume
µ to be a probability measure with spt(µ) ⊂ [0, 1)n. Let t = t(α/2) � 1 be the
constant of Lemma 4.3 and set q = q(n − m, α/(2t)) from Lemma 4.2. Moreover,
let K = K(n, m, α) be as in Remark 4.4 and choose M = M(n, m, α) ∈ N so that
M � vol(n)(4t + 2)nnn/28mKq, where vol(n) is the n-dimensional volume of the unit
ball.

If Q ∈ Qj
k for some j, k ∈ N and τ = 6

√
n, it follows that

2Q ⊂ B(x, 2
√

nk−j) ⊂ τQ, (4.14)

B(y,
√

nk−j−1) ⊂ B(x, 2
√

nk−j) (4.15)

for every x, y ∈ Q. Choose k = k(n, m, s, α) ∈ N so that k > max{M1/(s−m), 3} and let
c1 = c(n, m, s, M, τ, k) > 0 and 0 < p = p(n, m, s, M, τ, k) < 1 be as in Lemma 4.6 and
let c2 = c(n, k, 1 − p/2) > 0 be the constant of Lemma 2.2. Combining these lemmas, it
follows that for µ-almost all x ∈ [0, 1)n there are arbitrarily large j ∈ N and i ∈ Ij

k with
x ∈ Qi such that with r = 2

√
nk−j we have

µ(B(x, r)) � c2µ(B(x, 2
√

nk−j+1)), (4.16)

µ(Qi,kn−Mkm) > c1µ(τQi). (4.17)

To obtain (4.16), we use Lemma 2.2 with γ = 2
√

n. To complete the proof, the only
thing to check is that with any such x and r we may find a collection B satisfying the
assumptions (i)–(iii) of Proposition 4.5.

Combining (4.17), (4.14) and (4.16) and recalling that k � 3, we have

µ(Qi,i) > c1µ(B(x, r)) � c1c2µ(B(x, 3r)) (4.18)

for every i ∈ {kn −Mkm, . . . , kn}. Let Bi = B(yi,
√

nk−j−1), where yi is the centre point
of Qi,i. Then µ(Bi) > c1c2µ(B(x, 3r)) and Bi ⊂ B(x, r) by (4.15). By a simple volume
argument, we have

#{j : 2tBi ∩ 2tBj 	= ∅} � vol(n)(4t + 2)nnn/2

for every i. Consequently, there is a sub-collection B of the collection {Bi} containing at
least 8mKqkm balls so that the collection {2tB : B ∈ B} is pairwise disjoint and µ(B) >

c1c2µ(B(x, 3r)) for all B ∈ B. To check that Proposition 4.5 (iii) also holds, choose any
sub-collection B′ of B with #B′ � #B/K � 8mqkm and fix V ∈ G(n, n − m). Since the
m-dimensional ball projV ⊥(B(x, r)) may be covered by 8mkm balls of radius

√
nk−j−1,

it follows that some translate of V must hit at least q balls from the collection B′. Here
V ⊥ denotes the orthogonal complement of V . Thus, we have verified the assumptions of
Proposition 4.5 and the claim follows with c = c(n, m, s, α) = c1c2. �

Remark 4.7. (i) Our method to prove Theorem 4.1 could be pushed further to obtain
the following quantitative upper conical density theorem: under the assumptions of The-
orem 4.1, we have

lim sup
l→∞

1
l
#

{
j ∈ {1, . . . , l} : inf

θ∈Sn−1,
V ∈G(n,n−m)

µ(X(x, 2−j , V, α) \ H(x, θ, α))
µ(B(x, 2−j))

> c

}
> p
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for µ-almost all points x ∈ R
n with some constants c = c(α, s, n, m) > 0 and p =

p(α, s, n, m) > 0.

(ii) One could also apply Mattila’s result [9, Theorem 3.1] to obtain results analogous
to Theorem 4.1. More precisely, the quantity

inf
θ∈Sn−1,

V ∈G(n,n−m)

µ(X(x, r, V, α) \ H(x, θ, α))
µ(B(x, r))

can be replaced by

inf
C

µ(Cx ∩ B(x, r))
µ(B(x, r))

,

where the infimum is over all Borel sets C ⊂ G(n, n − m) with γ(C) > δ > 0. Here
Cx =

⋃
V ∈C(V + x) and γ is the natural isometry invariant Borel probability measure

on the Grassmannian G(n, n − m). The constant c > 0 obtained then depends on n, m,
s and δ.

Thus, using Mattila’s method would yield more general results in the sense that the
cones X(x, V, α) could be replaced by the more general cones Cx. On the other hand,
our method also allows consideration of the non-symmetric cones X(x, V, α) \ H(x, θ, α)
and may be used to obtain quantitative estimates as in Remark 4.7 (i).

5. Examples and open problems

Inspecting the proof of Proposition 4.5, we see that the assumptions of Theorem 4.1
imply that we may, in fact, find directions θx,V ∈ Sn−1 ∩ V , depending on the point x,
such that

lim sup
r↓0

inf
V ∈G(n,n−m)

min{µ(X+(x, r, θx,V , α)), µ(X+(x, r,−θx,V , α))}
µ(B(x, r))

> c (5.1)

for µ-almost all x ∈ R
n. If m = 0, we do not know if the assumption dimH(µ) > 0 is

necessary or not.

Question 5.1. Given α > 0 and n ∈ N, does there exist a constant c(n, α) > 0 such
that for all non-atomic measures µ on R

n one could pick θ = θ(x) ∈ Sn−1 for µ-almost
all x ∈ R

n so that

lim sup
r↓0

min{µ(X+(x, r, θ, α)), µ(X+(x, r,−θ, α))}
µ(B(x, r))

> c?

Remark 5.2. (i) A positive answer would also improve Theorem 3.1. However, the
question is relevant only for n � 2. If n = 1, there is no difference between the above
question and Theorem 3.1.

(ii) Examples 5.4 and 5.5 show that we cannot hope to obtain (4.1) if the dimension
of µ is m, even if µ is purely unrectifiable (see the definition before Example 5.5). Thus,
Question 5.1 is really only about non-atomic measures with zero Hausdorff dimension.
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The following example shows why we cannot apply Proposition 4.5 to answer Ques-
tion 5.1. For simplicity, we will work on R, although similar constructions also work in
higher dimensions.

Example 5.3. There is a non-atomic measure µ on R so that it fails to satisfy the
assumptions of Proposition 4.5 with m = 0 for all c > 0.

Construction. We will construct the measure µ on [0, 1). Our aim is to show that
there is no constant c > 0, so that for µ-almost all x ∈ [0, 1) there would be arbitrarily
small radii r > 0 such that we could find intervals I1, . . . , I6 ⊂ (x − r, x + r) for which

3Ii ∩ 3Ij = ∅ whenever i 	= j, (5.2)

µ(Ii) > cµ(x − 3r, x + 3r) for all i. (5.3)

To construct µ, we simply take any sequence 0 < qi < 1
2 so that

∞∑
i=1

qi = ∞

and qi ↓ 0 as i → ∞. Then we construct a binomial-type measure using the weights qi

and pi = 1 − qi. Let µ([0, 1
2 )) = p1 and µ([ 12 , 1)) = q1. If i ∈ N and J ∈ Qi

2, then for
I1, I2 ∈ Qi+1

2 , where I1 ⊂ J is the left-hand side subinterval and I2 ⊂ J is the right-
hand side subinterval, we set µ(I1) = pi+1µ(J) and µ(I2) = qi+1µ(J). This construction
extends to a measure by standard methods.

Suppose there is a constant c > 0 for which (5.2) and (5.3) hold. Choose i0 ∈ N so
that

qi < c/3 for all i > i0. (5.4)

We may assume that (5.2) and (5.3) are valid for I1, . . . , I6 ⊂ I := (x − r, x + r) ⊂ [0, 1)
with r � 2−i0 . Choose l ∈ N for which 2−l−1 � 2r < 2−l. Then I intersects at most three
dyadic intervals of length 2−l−1 and one of these dyadic intervals, say J , must contain at
least two of the intervals I1, . . . , I6, say I1 and I2. Now J ⊂ 3I so µ(I1), µ(I2) > cµ(3I) �
cµ(J).

Let J0 ⊂ J be the largest dyadic subinterval of J with the same left-hand side end
point as J for which

µ(J0) < cµ(J). (5.5)

Let y be the right-hand side end point of J0 and let J1, . . . , Jk be the maximal dyadic
subintervals of J which do not intersect J0. So J = J0 ∪ J1 ∪ · · · ∪ Jk and Ji ∩ Jj = ∅
whenever i 	= j. It follows from the construction of µ and (5.4) that µ(Ji) � 1

2cµ(J) for
all i � 1. So if y /∈ I1, then I1 ∩ J0 = ∅ by (5.5), and I1 has to intersect at least three of
the intervals J1, . . . , Jk. Then Ji ⊂ I1 for at least one i � 1. Since J0 ⊂ 3Ji for all i, it
follows that also J0 ⊂ 3I1. In particular, y ∈ 3I1 in any case. By the same argument, we
also have y ∈ 3I2, so 3I1 ∩ 3I2 	= ∅ contrary to (5.2).

Observe that one may replace 3 in (5.3) by any number a > 1, but then 6 (the number
of the chosen subintervals) needs to be replaced by n = n(a) ∈ N. �
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2α

1α

Figure 2. The construction of the set A in Example 5.4.

To finish the paper, we give the examples mentioned in Remark 5.2 (ii). Suppose that
A ⊂ R

n is purely m-unrectifiable and satisfies 0 < Hm(A) < ∞. We refer the reader
to [10] for the basic properties of unrectifiable sets. If 0 < α < 1 and V ∈ G(n, n − m),
it is well known that

lim sup
r↓0

Hm(A ∩ X(x, r, V, α))
(2r)m

> c(m, α) > 0 (5.6)

for Hm-almost all x ∈ A. The following example, answering [4, Question 4.2], shows that
this cannot be improved to

lim sup
r↓0

inf
V ∈G(n,n−m)

Hm(A ∩ X(x, r, V, α))
(2r)m

> c(m, α) > 0.

Example 5.4. There exists a purely 1-unrectifiable compact set A ⊂ R
2 with 0 <

H1(A) < ∞ so that for every 0 < α � 1,

lim
r↓0

inf
�∈G(2,1)

H1(A ∩ X(x, r, �, α))
2r

= 0 (5.7)

for every x ∈ A.

Construction. We construct the set A using a nested sequence of compact sets. The
first set A0 is just the unit ball B(0, 1). To define the rest of the construction sets, we
apply the ideas found, for example, in [8, § 5.3] and [11, § 5.8].

Define a collection of mappings fi,j with i ∈ N and j ∈ {1, . . . , 2i2} as

fi,j(x, y) =
1

2i2
((cos(αi)x + 2j − 2i2 − 1) − (−1)j sin(αi)y, (−1)j sin(αi)x + cos(αi)y),

where αi = 1/
√

i. Then define sets An for n ∈ N, as

An =
⋃

i∈{1,...,n},

ji∈{1,...,2i2}

f1,j1 ◦ · · · ◦ fn,jn(A0).
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Finally, set A =
⋂∞

n=1 An. See Figure 2 to see the first three steps, A0, A1 and A2, of the
construction. We refer to the radius of a step-n construction ball as Rn. That is R0 = 1
and Rn = Rn−1/2n2 for n � 1.

Let us verify that the set A admits the desired properties. It is evident from the
construction that A ⊂ B(0, 1) is a compact set with 0 < H1(A) � 1. The upper bound is
trivial, as the sum of the diameters of level-n construction balls is always 1. If F ⊂ B(0, 1),
then there exist n and a collection B of level-n construction balls covering F ∩ A so that

∑
B∈B

diam(B) < 10 diam(F ).

This gives the lower bound. Moreover, we have H1(A∩Bn) = RnH1(A) for each construc-
tion ball Bn of level n. For each x ∈ A there is a unique address a(x) = (a1(x), a2(x), . . . )
so that ai(x) ∈ {1, . . . , 2i2} and

{x} =
∞⋂

i=1

f1,a1(x) ◦ · · · ◦ fi,ai(x)(A0).

By Kolmogorov’s Zero-One Law and the three-series criteria (see, for example, [6]), the
series

n∑
i=1

(−1)ai(x)αi

diverges for H1-almost every x ∈ A. Take such a point x and fix an angle β ∈ [0, 2π].
Since αi ↓ 0 as i → ∞, there exists ε > 0 so that

lim sup
n→∞

min
k∈Z

∣∣∣∣β −
n∑

i=1

(−1)ai(x)αi + kπ

∣∣∣∣ > 4ε.

Let �β be the line with an angle β. We will show that

lim sup
r↓0

H1(A ∩ B(x, r) \ X(x, �β , ε))
r

> 0. (5.8)

This means that �β is not an approximate tangent of A at x and thus A is purely 1-
unrectifiable (see, for example, [10, Corollary 15.20]). Take n ∈ N large enough so that

min
k∈Z

∣∣∣∣β −
n∑

i=1

(−1)ai(x)αi + kπ

∣∣∣∣ > 2ε.

Since all the 2n2 level-n construction balls inside the ball f1,a1(x) ◦ · · · ◦ fn−1,an−1(x)(A0)
hit the line from x with direction

n∑
i=1

(−1)ai(x)αi,
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there exists K depending only on ε (it suffices to take K > 10/ε) so that

#{m : Bm ∩ X(x, Rn−1, �β , ε) 	= ∅} � K,

where Bm = f1,a1(x) ◦ · · · ◦ fn−1,an−1(x) ◦ fn,m(A0). This yields an adequate surplus of
balls outside the cone X(x, �β , ε), giving

H1(A ∩ B(x, Rn−1) \ X(x, �β , ε))
Rn−1

� 2n2 − K

2n2 H1(A),

and therefore (5.8) holds.
It remains to verify that (5.7) holds. Let x ∈ A and 0 < α � 1. First, observe from the

construction that with any n ∈ N and y ∈ A \ (f1,a1(x) ◦ · · · ◦ fn−1,an−1(x)(A0)) we have

dist(y, x) � (1 − cos(αn))Rn−1 � Rn−1

4n
=

2n2Rn

4n
=

nRn

2
.

Let 0 < r < 1 and choose the n ∈ N for which nRn � 2r < (n − 1)Rn−1. Let � be the
line perpendicular to the direction

n−1∑
i=1

(−1)ai(x)αi.

Now there exist numbers M, n0 ∈ N depending only on α (letting M > 10/α and n0 so
that αn0−1 < α/10 will suffice) so that if n � n0, then

#{m : Bm ∩ X(x, r, �, α) 	= ∅} � M,

where the Bm denote the construction balls of level n. Thus,

H1(A ∩ X(x, r, �, α))
2r

� MRnH1(A)
nRn

=
M

n
H1(A) → 0,

as r ↓ 0. �

A measure µ on R
n is called purely m-unrectifiable if µ(A) = 0 for all m-rectifiable

sets A ⊂ R
n. The following example shows that a result analogous to (5.6) does not hold

for arbitrary purely m-unrectifiable measures on R
m.

Example 5.5. There exist � ∈ G(2, 1) and a measure µ on R
2 so that µ is purely

1-unrectifiable and, for every 0 < α < 1,

lim
r↓0

µ(X(x, r, �, α))
µ(B(x, r))

= 0 (5.9)

for µ-almost all x ∈ R
2.
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F2 F2

Figure 3. The distribution of the measure with map F2 in Example 5.5.

Construction. We construct the measure µ using families of maps

{f i
k,h : k ∈ {0, . . . , i − 1} and h ∈ {0, . . . , 2i2 − 1}}∞

i=1

with

f i
k,h((x, y)) =

(
(−1)ki + x

2i3
,
2ki2 + h + y

2i3

)

for every i ∈ {2, 3, . . . }, k ∈ {0, . . . , i − 1} and h ∈ {0, . . . , 2i2 − 1}.
With {f i

k,h}k,h, define Fi mapping a measure ν on R
2 to a measure Fi(ν), so that for

every Borel set A ⊂ R
2 we get

Fi(ν)(A) =
i−1∑
k=0

2i2−1∑
h=0

Ci(2i)−|h−i2+1/2|ν((f i
k,h)−1(A)), (5.10)

where the constant Ci is chosen so that

i−1∑
k=0

2i2−1∑
h=0

Ci(2i)−|h−i2+1/2| = 1.

Applying the map Fi divides the measure into i vertical strips. These strips correspond
to the index k in the mappings f i

k,h. Inside the strips, the measure is divided into 2i2

blocks using the index h. The measure is concentrated near the centres of the strips by
giving different weights to the maps f i

k,h with different values of h. See Figure 3 to get
the idea of the distribution of mass under map Fi.

Let N1 = 0 and for i ∈ {2, 3, . . . } let Ni be the smallest integer so that
(

1 − Ci

8(2i)i2−3/2

)Ni

<
1
2
. (5.11)

Integers Ni determine how many times we have to use map Fi when constructing the
measure µ in order to make the resulting measure unrectifiable. With these numbers
define (Ij)∞

j=1 with
Ip+

∑t−1
i=1 Ni

= t
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for every t ∈ {2, 3, . . . } and p ∈ {1, . . . , Nt}. Also let Mj =
∏j

i=1(2I3
i ). Finally, define µ

to be the weak limit of
FI1 ◦ FI2 ◦ · · · ◦ FIm

(µ0)

as m → ∞. Here µ0 is any compactly supported Borel probability measure on R
2.

(Take, for example, H1 restricted to {0} × [0, 1].) With i ∈ N, k ∈ {1, . . . , Mi−1Ii} and
h ∈ {1, . . . , 2I2

i } define strips

Si,k = spt(µ) ∩
(

R ×
[
2(k − 1)I2

i

Mi
,
2kI2

i

Mi

])

and blocks

Bi,k,h = spt(µ) ∩
(

R ×
[
2(k − 1)I2

i + h − 1
Mi

,
2kI2

i + h

Mi

])
.

To prove the unrectifiability, let us first look at vertical curves. Let γ be a C1-curve in
R

2 so that ∣∣∣∣∂γ

∂y

∣∣∣∣ � |γ′|
3

.

Take i ∈ N. Now, for any k ∈ {1, . . . , Ii+1 − 1} and t ∈ {0, . . . , Mi − 1}, either

γ ∩ Bi+1,2I3
i+1t+k,2I2

i+1
= ∅ or γ ∩ Bi+1,2I3

i+1t+k+1,1 = ∅.

This means that when we look at two consecutive strips Si+1,2I3
i+1t+k and Si+1,2I3

i+1t+k+1
we see that the curve γ cannot meet both the uppermost block of the lower strip and the
lowest block of the upper strip. This is because vertically these blocks are next to each
other, but horizontally the distance is roughly at least Ii+1 times the width of the block.
Hence, the curve γ misses more than one-quarter of all the end blocks of the strips of the
level Ii+1 construction step. Therefore, by iterating and using inequality (5.11), we get

µ(γ) �
M∏
i=1

(
1 −

Ii+1CIi+1(2Ii+1)−I2
i+1+1/2

4

)

�
IM −1∏
m=2

(
1 − Cm

8(2m)m2−3/2

)Nm

< 2−IM+2 → 0

as M → ∞.
Next we look at horizontal curves. Let γ be a C1-curve in R

2 so that
∣∣∣∣∂γ

∂x

∣∣∣∣ � |γ′|
3

.

Take i ∈ N and t ∈ {0, . . . , Mi − 1}. Now there are at most two k ∈ {1, . . . , Ii+1} so that

γ ∩ Si+1,tIi+2+k 	= ∅.

https://doi.org/10.1017/S0013091508001156 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508001156
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By repeating this observation,

µ(γ) �
M∏
i=2

2
Ii

→ 0

as M → ∞. Take any C1-curve γ in R
2. Because it can be covered with a countable

collection of vertical and horizontal C1-curves defined as above, we have µ(γ) = 0. Thus,
the measure µ is purely 1-unrectifiable.

Let � ∈ G(2, 1) be the horizontal line. We show that cones around � have small measure
in the sense of equality (5.9). To do this fix 0 < α < 1 and take the smallest i0 ∈ {3, 4, . . . }
so that

1
Ii0

<

√
1 − α

4
. (5.12)

Now take i ∈ {i0 + 1, i0 + 2, . . . }, a point x ∈ spt(µ) and a radius r ∈ [M−1
i , M−1

i−1]. Let
k1 ∈ N so that x ∈ Si,k1 . Assume that there are at most two k′ ∈ N so that

X(x, r, �, α) ∩ Si+1,k′ 	= ∅.

Then

µ(X(x, r, �, α)) � 2µ(B(x, r))
Ii+1

. (5.13)

Assume then that there are at least three such k′. If this is the case, then the cone
X(x, r, �, α) must hit another large vertical strip Si,k2 with k2 ∈ {k1 −1, k1 +1}. Inequal-
ity (5.12) yields the existence of a block Bi,k1,u ⊂ B(x, r), whose vertical distance to the
centre of the strip Si,k1 is strictly less than the vertical distance from the centre of the
strip Si,k2 to any of the blocks Bi,k2,u′ that intersect the cone X(x, r, �, α). From equa-
tion (5.10) we see that the measure is concentrated in the centre of the vertical strips
and we get

µ(Bi,k1,u) � (2Ii)u

2
∑u−1

p=1 (2Ii)p
µ(X(x, r, �, α))

yielding

µ(X(x, r, �, α)) � 2µ(B(x, r))
Ii

.

This together with (5.13) proves (5.9) as i tends to ∞. �
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