
7 Variants

Variant types are one of the most useful features of OCaml and also one of the most

unusual. They let you represent data that may take on multiple di�erent forms, where

each form is marked by an explicit tag. As we'll see, when combined with pattern

matching, variants give you a powerful way of representing complex data and of

organizing the case-analysis on that information.

The basic syntax of a variant type declaration is as follows:

type <variant> =
| <Tag> [of <type> [* <type>]...]
| <Tag> [of <type> [* <type>]...]
| ...

Each row essentially represents a case of the variant. Each case has an associated tag

(also called a constructor, since you use it to construct a value) and may optionally

have a sequence of �elds, where each �eld has a speci�ed type.

Let's consider a concrete example of how variants can be useful. Most UNIX-

like operating systems support terminals as a fundamental, text-based user interface.

Almost all of these terminals support a set of eight basic colors.

Those colors can be naturally represented as a variant. Each color is declared as a

simple tag, with pipes used to separate the di�erent cases. Note that variant tags must

be capitalized.

open Base
open Stdio
type basic_color =
| Black | Red | Green | Yellow | Blue | Magenta | Cyan | White

As we show below, the variant tags introduced by the de�nition of basic_color can

be used for constructing values of that type.

Cyan;;
- : basic_color = Cyan

[Blue; Magenta; Red];;
- : basic_color list = [Blue; Magenta; Red]

The following function uses pattern matching to convert each of these to the corre-

sponding integer code that is used for communicating these colors to the terminal.

let basic_color_to_int = function
| Black -> 0 | Red -> 1 | Green -> 2 | Yellow -> 3
| Blue -> 4 | Magenta -> 5 | Cyan -> 6 | White -> 7;;

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

100 Variants

val basic_color_to_int : basic_color -> int = <fun>

List.map ~f:basic_color_to_int [Blue;Red];;
- : int list = [4; 1]

We know that the above function handles every color in basic_color because the

compiler would have warned us if we'd missed one:

let incomplete_color_to_int = function
| Black -> 0 | Red -> 1 | White -> 7;;

Lines 1-2, characters 31-41:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

(Green|Yellow|Blue|Magenta|Cyan)

val incomplete_color_to_int : basic_color -> int = <fun>

In any case, using the correct function, we can generate escape codes to change the

color of a given string displayed in a terminal.

let color_by_number number text =
Printf.sprintf "\027[38;5;%dm%s\027[0m" number text;;

val color_by_number : int -> string -> string = <fun>

let blue = color_by_number (basic_color_to_int Blue) "Blue";;
val blue : string = "\027[38;5;4mBlue\027[0m"

printf "Hello %s World!\n" blue;;
Hello Blue World!

- : unit = ()

On most terminals, that word �Blue� will be rendered in blue.

In this example, the cases of the variant are simple tags with no associated data. This

is substantively the same as the enumerations found in languages like C and Java. But

as we'll see, variants can do considerably more than represent simple enumerations.

As it happens, an enumeration isn't enough to e�ectively describe the full set of

colors that a modern terminal can display. Many terminals, including the venerable

xterm, support 256 di�erent colors, broken up into the following groups:

• The eight basic colors, in regular and bold versions

• A 6 × 6 × 6 RGB color cube

• A 24-level grayscale ramp

We'll also represent this more complicated color space as a variant, but this time,

the di�erent tags will have arguments that describe the data available in each case.

Note that variants can have multiple arguments, which are separated by *s.

type weight = Regular | Bold
type color =
| Basic of basic_color * weight (* basic colors, regular and bold *)
| RGB of int * int * int (* 6x6x6 color cube *)
| Gray of int (* 24 grayscale levels *)

As before, we can use these introduced tags to construct values of our newly de�ned

type.

[RGB (250,70,70); Basic (Green, Regular)];;
- : color list = [RGB (250, 70, 70); Basic (Green, Regular)]

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.0 First-Class Fields 101

And again, we'll use pattern matching to convert a color to a corresponding integer.

In this case, the pattern matching does more than separate out the di�erent cases; it

also allows us to extract the data associated with each tag:

let color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> 0 in
base + basic_color_to_int basic_color

| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray i -> 232 + i;;

val color_to_int : color -> int = <fun>

Now, we can print text using the full set of available colors:

let color_print color s =
printf "%s\n" (color_by_number (color_to_int color) s);;

val color_print : color -> string -> unit = <fun>

color_print (Basic (Red,Bold)) "A bold red!";;
A bold red!

- : unit = ()

color_print (Gray 4) "A muted gray...";;
A muted gray...

- : unit = ()

Variants, Tuples and Parens

Variants with multiple arguments look an awful lot like tuples. Consider the following

example of a value of the type color we de�ned earlier.

RGB (200,0,200);;
- : color = RGB (200, 0, 200)

It really looks like we've created a 3-tuple and wrapped it with the RGB constructor.

But that's not what's really going on, as you can see if we create a tuple �rst and then

place it inside the RGB constructor.

let purple = (200,0,200);;
val purple : int * int * int = (200, 0, 200)

RGB purple;;
Line 1, characters 1-11:

Error: The constructor RGB expects 3 argument(s),

but is applied here to 1 argument(s)

We can also create variants that explicitly contain tuples, like this one.

type tupled = Tupled of (int * int);;
type tupled = Tupled of (int * int)

The syntactic di�erence is unfortunately quite subtle, coming down to the extra set of

parens around the arguments. But having de�ned it this way, we can now take the tuple

in and out freely.

let of_tuple x = Tupled x;;
val of_tuple : int * int -> tupled = <fun>

let to_tuple (Tupled x) = x;;
val to_tuple : tupled -> int * int = <fun>

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

102 Variants

If, on the other hand, we de�ne a variant without the parens, then we get the same

behavior we got with the RGB constructor.

type untupled = Untupled of int * int;;
type untupled = Untupled of int * int

let of_tuple x = Untupled x;;
Line 1, characters 18-28:

Error: The constructor Untupled expects 2 argument(s),

but is applied here to 1 argument(s)

let to_tuple (Untupled x) = x;;
Line 1, characters 14-26:

Error: The constructor Untupled expects 2 argument(s),

but is applied here to 1 argument(s)

Note that, while we can't just grab the tuple as a whole from this type, we can

achieve more or less the same ends by explicitly deconstructing and reconstructing the

data we need.

let of_tuple (x,y) = Untupled (x,y);;
val of_tuple : int * int -> untupled = <fun>

let to_tuple (Untupled (x,y)) = (x,y);;
val to_tuple : untupled -> int * int = <fun>

The di�erences between a multi-argument variant and a variant containing a tuple

are mostly about performance. A multi-argument variant is a single allocated block in

memory, while a variant containing a tuple requires an extra heap-allocated block for

the tuple. You can learn more about OCaml's memory representation in Chapter 24

(Memory Representation of Values).

7.1 Catch-All Cases and Refactoring

OCaml's type system can act as a refactoring tool, warning you of places where your

code needs to be updated to match an interface change. This is particularly valuable in

the context of variants.

Consider what would happen if we were to change the de�nition of color to the

following:

type color =
| Basic of basic_color (* basic colors *)
| Bold of basic_color (* bold basic colors *)
| RGB of int * int * int (* 6x6x6 color cube *)
| Gray of int (* 24 grayscale levels *)

We've essentially broken out the Basic case into two cases, Basic and Bold, and

Basic has changed from having two arguments to one. color_to_int as we wrote it

still expects the old structure of the variant, and if we try to compile that same code

again, the compiler will notice the discrepancy:

let color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> 0 in

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.1 Catch-All Cases and Refactoring 103

base + basic_color_to_int basic_color
| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray i -> 232 + i;;

Line 2, characters 13-33:

Error: This pattern matches values of type 'a * 'b
but a pattern was expected which matches values of type

basic_color

Here, the compiler is complaining that the Basic tag is used with the wrong number

of arguments. If we �x that, however, the compiler will �ag a second problem, which

is that we haven't handled the new Bold tag:

let color_to_int = function
| Basic basic_color -> basic_color_to_int basic_color
| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray i -> 232 + i;;

Lines 1-4, characters 20-24:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Bold _

val color_to_int : color -> int = <fun>

Fixing this now leads us to the correct implementation:

let color_to_int = function
| Basic basic_color -> basic_color_to_int basic_color
| Bold basic_color -> 8 + basic_color_to_int basic_color
| RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| Gray i -> 232 + i;;

val color_to_int : color -> int = <fun>

As we've seen, the type errors identi�ed the things that needed to be �xed to

complete the refactoring of the code. This is fantastically useful, but for it to work

well and reliably, you need to write your code in a way that maximizes the compiler's

chances of helping you �nd the bugs. To this end, a useful rule of thumb is to avoid

catch-all cases in pattern matches.

Here's an example that illustrates how catch-all cases interact with exhaustion

checks. Imagine we wanted a version of color_to_int that works on older terminals

by rendering the �rst 16 colors (the eight basic_colors in regular and bold) in the

normal way, but renders everything else as white. We might have written the function

as follows.

let oldschool_color_to_int = function
| Basic (basic_color,weight) ->
let base = match weight with Bold -> 8 | Regular -> 0 in
base + basic_color_to_int basic_color

| _ -> basic_color_to_int White;;
val oldschool_color_to_int : color -> int = <fun>

If we then applied the same �x we did above, we would have ended up with this.

let oldschool_color_to_int = function
| Basic basic_color -> basic_color_to_int basic_color
| _ -> basic_color_to_int White;;

val oldschool_color_to_int : color -> int = <fun>

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

104 Variants

Because of the catch-all case, we'll no longer be warned about missing the Bold

case. That's why you should beware of catch-all cases: they suppress exhaustiveness

checking.

7.2 Combining Records and Variants

The term algebraic data types is often used to describe a collection of types that

includes variants, records, and tuples. Algebraic data types act as a peculiarly useful

and powerful language for describing data. At the heart of their utility is the fact

that they combine two di�erent kinds of types: product types, like tuples and records,

which combine multiple di�erent types together and are mathematically similar to

Cartesian products; and sum types, like variants, which let you combine multiple

di�erent possibilities into one type, and are mathematically similar to disjoint unions.

Algebraic data types gain much of their power from the ability to construct lay-

ered combinations of sums and products. Let's see what we can achieve with this by

reiterating the Log_entry message type that was described in Chapter 6 (Records).

module Time_ns = Core.Time_ns
module Log_entry = struct
type t =
{ session_id: string;
time: Time_ns.t;
important: bool;
message: string;

}
end

This record type combines multiple pieces of data into a single value. In particular, a

single Log_entry.t has a session_id and a time and an important �ag and a message.

More generally, you can think of record types as conjunctions. Variants, on the other

hand, are disjunctions, letting you represent multiple possibilities. To construct an

example of where this is useful, we'll �rst write out the other message types that came

along-side Log_entry.

module Heartbeat = struct
type t =
{ session_id: string;
time: Time_ns.t;
status_message: string;

}
end
module Logon = struct
type t =
{ session_id: string;
time: Time_ns.t;
user: string;
credentials: string;

}
end

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.2 Combining Records and Variants 105

A variant comes in handy when we want to represent values that could be any of

these three types. The client_message type below lets you do just that.

type client_message = | Logon of Logon.t
| Heartbeat of Heartbeat.t
| Log_entry of Log_entry.t

In particular, a client_message is a Logon or a Heartbeat or a Log_entry. If we

want to write code that processesmessages generically, rather than code specialized to a

�xed message type, we need something like client_message to act as one overarching

type for the di�erent possible messages. We can then match on the client_message to

determine the type of the particular message being handled.

You can increase the precision of your types by using variants to represent dif-

ferences between di�erent cases, and records to represent shared structure. Consider

the following function that takes a list of client_messages and returns all messages

generated by a given user. The code in question is implemented by folding over the list

of messages, where the accumulator is a pair of:

• The set of session identi�ers for the user that have been seen thus far

• The set of messages so far that are associated with the user

Here's the concrete code:

let messages_for_user user messages =
let (user_messages,_) =
List.fold messages ~init:([], Set.empty (module String))
~f:(fun ((messages,user_sessions) as acc) message ->
match message with
| Logon m ->
if String.(m.user = user) then
(message::messages, Set.add user_sessions m.session_id)

else acc
| Heartbeat _ | Log_entry _ ->
let session_id = match message with
| Logon m -> m.session_id
| Heartbeat m -> m.session_id
| Log_entry m -> m.session_id

in
if Set.mem user_sessions session_id then
(message::messages,user_sessions)

else acc
)

in
List.rev user_messages;;

val messages_for_user : string -> client_message list ->

client_message list =

<fun>

We take advantage of the fact that the type of the record m is known in the above

code, so we don't have to qualify the record �elds by the module they come from. e.g.,

we write m.user instead of m.Logon.user.

One annoyance of the above code is that the logic for determining the session ID is

somewhat repetitive, contemplating each of the possible message types (including the

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

106 Variants

Logon case, which isn't actually possible at that point in the code) and extracting the

session ID in each case. This per-message-type handling seems unnecessary, since the

session ID works the same way for all message types.

We can improve the code by refactoring our types to explicitly re�ect the information

that's shared between the di�erent messages. The �rst step is to cut down the de�nitions

of each per-message record to contain just the information unique to that record:

module Log_entry = struct
type t = { important: bool;

message: string;
}

end
module Heartbeat = struct
type t = { status_message: string; }

end
module Logon = struct
type t = { user: string;

credentials: string;
}

end

We can then de�ne a variant type that combines these types:

type details =
| Logon of Logon.t
| Heartbeat of Heartbeat.t
| Log_entry of Log_entry.t

Separately, we need a record that contains the �elds that are common across all

messages:

module Common = struct
type t = { session_id: string;

time: Time_ns.t;
}

end

A full message can then be represented as a pair of a Common.t and a details. Using

this, we can rewrite our preceding example as follows. Note that we add extra type

annotations so that OCaml recognizes the record �elds correctly. Otherwise, we'd need

to qualify them explicitly.

let messages_for_user user (messages : (Common.t * details) list) =
let (user_messages,_) =
List.fold messages ~init:([],Set.empty (module String))
~f:(fun ((messages,user_sessions) as acc) ((common,details)

as message) ->
match details with
| Logon m ->
if String.(=) m.user user then
(message::messages, Set.add user_sessions

common.session_id)
else acc

| Heartbeat _ | Log_entry _ ->
if Set.mem user_sessions common.session_id then
(message::messages, user_sessions)

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.2 Embedded Records 107

else acc
)

in
List.rev user_messages;;

val messages_for_user :

string -> (Common.t * details) list -> (Common.t * details) list =

<fun>

As you can see, the code for extracting the session ID has been replaced with the

simple expression common.session_id.

In addition, this design allows us to grab the speci�c message and dispatch code to

handle just that message type. In particular, while we use the type Common.t * details

to represent an arbitrarymessage, we can use Common.t * Logon.t to represent a logon

message. Thus, if we had functions for handling individual message types, we could

write a dispatch function as follows:

let handle_message server_state ((common:Common.t), details) =
match details with
| Log_entry m -> handle_log_entry server_state (common,m)
| Logon m -> handle_logon server_state (common,m)
| Heartbeat m -> handle_heartbeat server_state (common,m);;

val handle_message : server_state -> Common.t * details -> unit =

<fun>

And it's explicit at the type level that handle_log_entry sees only Log_entry

messages, handle_logon sees only Logon messages, etc.

7.2.1 Embedded Records

If we don't need to be able to pass the record types separately from the variant, then

OCaml allows us to embed the records directly into the variant.

type details =
| Logon of { user: string; credentials: string; }
| Heartbeat of { status_message: string; }
| Log_entry of { important: bool; message: string; }

Even though the type is di�erent, we can write messages_for_user in essentially

the same way we did before.

let messages_for_user user (messages : (Common.t * details) list) =
let (user_messages,_) =
List.fold messages ~init:([],Set.empty (module String))
~f:(fun ((messages,user_sessions) as acc) ((common,details)

as message) ->
match details with
| Logon m ->
if String.(=) m.user user then
(message::messages, Set.add user_sessions

common.session_id)
else acc

| Heartbeat _ | Log_entry _ ->
if Set.mem user_sessions common.session_id then
(message::messages, user_sessions)

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

108 Variants

else acc
)

in
List.rev user_messages;;

val messages_for_user :

string -> (Common.t * details) list -> (Common.t * details) list =

<fun>

Variants with inline records are both more concise and more e�cient than having

variants containing references to free-standing record types, because they don't require

a separate allocated object for the contents of the variant.

The main downside is the obvious one, which is that an inline record can't be treated

as its own free-standing object. And, as you can see below, OCaml will reject code that

tries to do so.

let get_logon_contents = function
| Logon m -> Some m
| _ -> None;;

Line 2, characters 23-24:

Error: This form is not allowed as the type of the inlined record

could escape.

7.3 Variants and Recursive Data Structures

Another common application of variants is to represent tree-like recursive data struc-

tures. We'll show how this can be done by walking through the design of a simple

Boolean expression language. Such a language can be useful anywhere you need to

specify �lters, which are used in everything from packet analyzers to mail clients.

An expression in this language will be de�ned by the variant expr, with one tag for

each kind of expression we want to support:

type 'a expr =
| Base of 'a
| Const of bool
| And of 'a expr list
| Or of 'a expr list
| Not of 'a expr

Note that the de�nition of the type expr is recursive, meaning that an expr may

contain other exprs. Also, expr is parameterized by a polymorphic type 'a which is

used for specifying the type of the value that goes under the Base tag.

The purpose of each tag is pretty straightforward. And, Or, and Not are the basic

operators for building up Boolean expressions, and Const lets you enter the constants

true and false.

The Base tag is what allows you to tie the expr to your application, by letting you

specify an element of some base predicate type, whose truth or falsehood is determined

by your application. If you were writing a �lter language for an email processor, your

base predicates might specify the tests you would run against an email, as in the

following example:

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.3 Variants and Recursive Data Structures 109

type mail_field = To | From | CC | Date | Subject
type mail_predicate = { field: mail_field;

contains: string }

Using the preceding code, we can construct a simple expression with mail_predicate

as its base predicate:

let test field contains = Base { field; contains };;
val test : mail_field -> string -> mail_predicate expr = <fun>

And [Or [test To "doligez"; test CC "doligez"];
test Subject "runtime";

];;
- : mail_predicate expr =

And

[Or

[Base {field = To; contains = "doligez"};

Base {field = CC; contains = "doligez"}];

Base {field = Subject; contains = "runtime"}]

Being able to construct such expressions isn't enough; we also need to be able to

evaluate them. Here's a function for doing just that:

let rec eval expr base_eval =
(* a shortcut, so we don't need to repeatedly pass [base_eval]
explicitly to [eval] *)

let eval' expr = eval expr base_eval in
match expr with
| Base base -> base_eval base
| Const bool -> bool
| And exprs -> List.for_all exprs ~f:eval'
| Or exprs -> List.exists exprs ~f:eval'
| Not expr -> not (eval' expr);;

val eval : 'a expr -> ('a -> bool) -> bool = <fun>

The structure of the code is pretty straightforward�we're just pattern matching

over the structure of the data, doing the appropriate calculation based on which tag we

see. To use this evaluator on a concrete example, we just need to write the base_eval

function, which is capable of evaluating a base predicate.

Another useful operation on expressions is simpli�cation, which is the process of

taking a boolean expression and reducing it to an equivalent one that is smaller. First,

we'll build a few simplifying construction functions that mirror the tags of an expr.

The and_ function below does a few things:

• Reduces the entire expression to the constant false if any of the arms of the And are

themselves false.

• Drops any arms of the And that there the constant true.

• Drops the And if it only has one arm.

• If the And has no arms, then reduces it to Const true.

The code is below.

let and_ l =
if List.exists l ~f:(function Const false -> true | _ -> false)
then Const false

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

110 Variants

else
match List.filter l ~f:(function Const true -> false | _ ->
true) with
| [] -> Const true
| [x] -> x
| l -> And l;;

val and_ : 'a expr list -> 'a expr = <fun>

Or is the dual of And, and as you can see, the code for or_ follows a similar pattern

as that for and_, mostly reversing the role of true and false.

let or_ l =
if List.exists l ~f:(function Const true -> true | _ -> false)
then Const true
else
match List.filter l ~f:(function Const false -> false | _ ->
true) with
| [] -> Const false
| [x] -> x
| l -> Or l;;

val or_ : 'a expr list -> 'a expr = <fun>

Finally, not_ just has special handling for constants, applying the ordinary boolean

negation function to them.

let not_ = function
| Const b -> Const (not b)
| e -> Not e;;

val not_ : 'a expr -> 'a expr = <fun>

We can now write a simpli�cation routine that is based on the preceding functions.

Note that this function is recursive, in that it applies all of these simpli�cations in a

bottom-up way across the entire expression.

let rec simplify = function
| Base _ | Const _ as x -> x
| And l -> and_ (List.map ~f:simplify l)
| Or l -> or_ (List.map ~f:simplify l)
| Not e -> not_ (simplify e);;

val simplify : 'a expr -> 'a expr = <fun>

We can now apply this to a Boolean expression and see how good a job it does at

simplifying it.

simplify (Not (And [Or [Base "it's snowing"; Const true];
Base "it's raining"]));;

- : string expr = Not (Base "it's raining")

Here, it correctly converted the Or branch to Const true and then eliminated the And

entirely, since the And then had only one nontrivial component.

There are some simpli�cations it misses, however. In particular, see what happens

if we add a double negation in.

simplify (Not (And [Or [Base "it's snowing"; Const true];
Not (Not (Base "it's raining"))]));;

- : string expr = Not (Not (Not (Base "it's raining")))

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.4 Polymorphic Variants 111

It fails to remove the double negation, and it's easy to see why. The not_ function

has a catch-all case, so it ignores everything but the one case it explicitly considers,

that of the negation of a constant. Catch-all cases are generally a bad idea, and if we

make the code more explicit, we see that the missing of the double negation is more

obvious:

let not_ = function
| Const b -> Const (not b)
| (Base _ | And _ | Or _ | Not _) as e -> Not e;;

val not_ : 'a expr -> 'a expr = <fun>

We can of course �x this by simply adding an explicit case for double negation:

let not_ = function
| Const b -> Const (not b)
| Not e -> e
| (Base _ | And _ | Or _) as e -> Not e;;

val not_ : 'a expr -> 'a expr = <fun>

The example of a Boolean expression language is more than a toy. There's a module

very much in this spirit in Core called Blang (short for �Boolean language�), and it

gets a lot of practical use in a variety of applications. The simpli�cation algorithm in

particular is useful when you want to use it to specialize the evaluation of expressions

for which the evaluation of some of the base predicates is already known.

More generally, using variants to build recursive data structures is a common tech-

nique, and shows up everywhere from designing little languages to building complex

data structures.

7.4 Polymorphic Variants

In addition to the ordinary variants we've seen so far, OCaml also supports so-called

polymorphic variants. As we'll see, polymorphic variants are more �exible and syn-

tactically more lightweight than ordinary variants, but that extra power comes at a cost.

Syntactically, polymorphic variants are distinguished from ordinary variants by the

leading backtick. And unlike ordinary variants, polymorphic variants can be used

without an explicit type declaration:

let three = `Int 3;;
val three : [> `Int of int] = `Int 3

let four = `Float 4.;;
val four : [> `Float of float] = `Float 4.

let nan = `Not_a_number;;
val nan : [> `Not_a_number] = `Not_a_number
[three; four; nan];;
- : [> `Float of float | `Int of int | `Not_a_number] list =

[`Int 3; `Float 4.; `Not_a_number]

As you can see, polymorphic variant types are inferred automatically, and when we

combine variants with di�erent tags, the compiler infers a new type that knows about

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

112 Variants

all of those tags. Note that in the preceding example, the tag name (e.g., `Int) matches

the type name (int). This is a common convention in OCaml.

The type system will complain if it sees incompatible uses of the same tag:

let five = `Int "five";;
val five : [> `Int of string] = `Int "five"

[three; four; five];;
Line 1, characters 15-19:

Error: This expression has type [> `Int of string]

but an expression was expected of type

[> `Float of float | `Int of int]

Types for tag `Int are incompatible

The > at the beginning of the variant types above is critical because it marks the

types as being open to combination with other variant types. We can read the type [>

`Float of float | `Int of int] as describing a variant whose tags include `Float

of float and `Int of int, but may include more tags as well. In other words, you

can roughly translate > to mean: �these tags or more.�

OCaml will in some cases infer a variant type with <, to indicate �these tags or less,�

as in the following example:

let is_positive = function
| `Int x -> x > 0
| `Float x -> Float.(x > 0.);;

val is_positive : [< `Float of float | `Int of int] -> bool = <fun>

The < is there because is_positive has no way of dealing with values that have tags

other than `Float of float or `Int of int, but can handle types that have either or

both of those two tags.

We can think of these < and > markers as indications of upper and lower bounds on

the tags involved. If the same set of tags are both an upper and a lower bound, we end

up with an exact polymorphic variant type, which has neither marker. For example:

let exact = List.filter ~f:is_positive [three;four];;
val exact : [`Float of float | `Int of int] list = [`Int 3; `Float

4.]

Perhaps surprisingly, we can also create polymorphic variant types that have distinct

upper and lower bounds. Note that Ok and Error in the following example come from

the Result.t type from Base.

let is_positive = function
| `Int x -> Ok (x > 0)
| `Float x -> Ok Float.O.(x > 0.)
| `Not_a_number -> Error "not a number";;

val is_positive :

[< `Float of float | `Int of int | `Not_a_number] -> (bool, string)

result =

<fun>

List.filter [three; four] ~f:(fun x ->
match is_positive x with Error _ -> false | Ok b -> b);;

- : [< `Float of float | `Int of int | `Not_a_number > `Float `Int]

list =

[`Int 3; `Float 4.]

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.4 Example: Terminal Colors Redux 113

Here, the inferred type states that the tags can be no more than `Float, `Int, and

`Not_a_number, and must contain at least `Float and `Int. As you can already start

to see, polymorphic variants can lead to fairly complex inferred types.

Polymorphic Variants and Catch-All Cases

As we saw with the de�nition of is_positive, a match expression can lead to the

inference of an upper bound on a variant type, limiting the possible tags to those that

can be handled by the match. If we add a catch-all case to our match expression, we

end up with a type with a lower bound.

let is_positive_permissive = function
| `Int x -> Ok Int.(x > 0)
| `Float x -> Ok Float.(x > 0.)
| _ -> Error "Unknown number type";;

val is_positive_permissive :

[> `Float of float | `Int of int] -> (bool, string) result = <fun>

is_positive_permissive (`Int 0);;
- : (bool, string) result = Ok false

is_positive_permissive (`Ratio (3,4));;
- : (bool, string) result = Error "Unknown number type"

Catch-all cases are error-prone even with ordinary variants, but they are especially

so with polymorphic variants. That's because you have no way of bounding what tags

your function might have to deal with. Such code is particularly vulnerable to typos.

For instance, if code that uses is_positive_permissive passes in Float misspelled

as Floot, the erroneous code will compile without complaint.

is_positive_permissive (`Floot 3.5);;
- : (bool, string) result = Error "Unknown number type"

With ordinary variants, such a typo would have been caught as an unknown tag. As

a general matter, one should be wary about mixing catch-all cases and polymorphic

variants.

7.4.1 Example: Terminal Colors Redux

To see how to use polymorphic variants in practice, we'll return to terminal colors.

Imagine that we have a new terminal type that adds yet more colors, say, by adding an

alpha channel so you can specify translucent colors. We could model this extended set

of colors as follows, using an ordinary variant:

type extended_color =
| Basic of basic_color * weight (* basic colors, regular and bold
*)

| RGB of int * int * int (* 6x6x6 color space *)
| Gray of int (* 24 grayscale levels *)
| RGBA of int * int * int * int (* 6x6x6x6 color space *)

We want to write a function extended_color_to_int that works like color_to_int

for all of the old kinds of colors, with new logic only for handling colors that include

an alpha channel. One might try to write such a function as follows.

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

114 Variants

let extended_color_to_int = function
| RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| (Basic _ | RGB _ | Gray _) as color -> color_to_int color;;

Line 3, characters 59-64:

Error: This expression has type extended_color

but an expression was expected of type color

The code looks reasonable enough, but it leads to a type error because

extended_color and color are in the compiler's view distinct and unrelated types.

The compiler doesn't, for example, recognize any equality between the Basic tag in

the two types.

What we want to do is to share tags between two di�erent variant types, and poly-

morphic variants let us do this in a natural way. First, let's rewrite basic_color_to_int

and color_to_int using polymorphic variants. The translation here is pretty straight-

forward:

let basic_color_to_int = function
| `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
| `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7;;

val basic_color_to_int :

[< `Black | `Blue | `Cyan | `Green | `Magenta | `Red | `White |

`Yellow] ->

int = <fun>

let color_to_int = function
| `Basic (basic_color,weight) ->
let base = match weight with `Bold -> 8 | `Regular -> 0 in
base + basic_color_to_int basic_color

| `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| `Gray i -> 232 + i;;

val color_to_int :

[< `Basic of

[< `Black
| `Blue
| `Cyan
| `Green
| `Magenta
| `Red
| `White
| `Yellow] *

[< `Bold | `Regular]

| `Gray of int

| `RGB of int * int * int] ->

int = <fun>

Now we can try writing extended_color_to_int. The key issue with this code is

that extended_color_to_int needs to invoke color_to_int with a narrower type, i.e.,

one that includes fewer tags. Written properly, this narrowing can be done via a pattern

match. In particular, in the following code, the type of the variable color includes only

the tags `Basic, `RGB, and `Gray, and not `RGBA:

let extended_color_to_int = function
| `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| (`Basic _ | `RGB _ | `Gray _) as color -> color_to_int color;;

val extended_color_to_int :

[< `Basic of

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.4 Example: Terminal Colors Redux 115

[< `Black
| `Blue
| `Cyan
| `Green
| `Magenta
| `Red
| `White
| `Yellow] *

[< `Bold | `Regular]

| `Gray of int

| `RGB of int * int * int

| `RGBA of int * int * int * int] ->

int = <fun>

The preceding code is more delicately balanced than one might imagine. In partic-

ular, if we use a catch-all case instead of an explicit enumeration of the cases, the type

is no longer narrowed, and so compilation fails:

let extended_color_to_int = function
| `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| color -> color_to_int color;;

Line 3, characters 29-34:

Error: This expression has type [> `RGBA of int * int * int * int]

but an expression was expected of type

[< `Basic of

[< `Black
| `Blue
| `Cyan
| `Green
| `Magenta
| `Red
| `White
| `Yellow] *

[< `Bold | `Regular]

| `Gray of int

| `RGB of int * int * int]

The second variant type does not allow tag(s) `RGBA

Let's consider how we might turn our code into a proper library with an implemen-

tation in an ml �le and an interface in a separate mli, as we saw in Chapter 5 (Files,

Modules, and Programs). Let's start with the mli.

open Base

type basic_color =
[`Black | `Blue | `Cyan | `Green
| `Magenta | `Red | `White | `Yellow]

type color =
[`Basic of basic_color * [`Bold | `Regular]
| `Gray of int
| `RGB of int * int * int]

type extended_color =
[color
| `RGBA of int * int * int * int]

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

116 Variants

val color_to_int : color -> int
val extended_color_to_int : extended_color -> int

Here, extended_color is de�ned as an explicit extension of color. Also, notice

that we de�ned all of these types as exact variants. We can implement this library as

follows.

open Base

type basic_color =
[`Black | `Blue | `Cyan | `Green
| `Magenta | `Red | `White | `Yellow]

type color =
[`Basic of basic_color * [`Bold | `Regular]
| `Gray of int
| `RGB of int * int * int]

type extended_color =
[color
| `RGBA of int * int * int * int]

let basic_color_to_int = function
| `Black -> 0 | `Red -> 1 | `Green -> 2 | `Yellow -> 3
| `Blue -> 4 | `Magenta -> 5 | `Cyan -> 6 | `White -> 7

let color_to_int = function
| `Basic (basic_color,weight) ->
let base = match weight with `Bold -> 8 | `Regular -> 0 in
base + basic_color_to_int basic_color

| `RGB (r,g,b) -> 16 + b + g * 6 + r * 36
| `Gray i -> 232 + i

let extended_color_to_int = function
| `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| `Grey x -> 2000 + x
| (`Basic _ | `RGB _ | `Gray _) as color -> color_to_int color

In the preceding code, we did something funny to the de�nition of

extended_color_to_int that highlights some of the downsides of polymorphic vari-

ants. In particular, we added some special-case handling for the color gray, rather than

using color_to_int. Unfortunately, we misspelled Gray as Grey. This is exactly the

kind of error that the compiler would catch with ordinary variants, but with polymor-

phic variants, this compiles without issue. All that happened was that the compiler

inferred a wider type for extended_color_to_int, which happens to be compatible

with the narrower type that was listed in the mli. As a result, this library builds without

error.

$ dune build @all

If we add an explicit type annotation to the code itself (rather than just in the mli),

then the compiler has enough information to warn us:

let extended_color_to_int : extended_color -> int = function
| `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

7.4 When to Use Polymorphic Variants 117

| `Grey x -> 2000 + x
| (`Basic _ | `RGB _ | `Gray _) as color -> color_to_int color

In particular, the compiler will complain that the `Grey case is unused:

$ dune build @all
File "terminal_color.ml", line 30, characters 4-11:
30 | | `Grey x -> 2000 + x

^^^^^^^
Error: This pattern matches values of type [? `Grey of 'a]

but a pattern was expected which matches values of type
extended_color
The second variant type does not allow tag(s) `Grey

[1]

Once we have type de�nitions at our disposal, we can revisit the question of how

we write the pattern match that narrows the type. In particular, we can explicitly use

the type name as part of the pattern match, by pre�xing it with a #:

let extended_color_to_int : extended_color -> int = function
| `RGBA (r,g,b,a) -> 256 + a + b * 6 + g * 36 + r * 216
| #color as color -> color_to_int color

This is useful when you want to narrow down to a type whose de�nition is long,

and you don't want the verbosity of writing the tags down explicitly in the match.

7.4.2 When to Use Polymorphic Variants

At �rst glance, polymorphic variants look like a strict improvement over ordinary

variants. You can do everything that ordinary variants can do, plus it's more �exible

and more concise. What's not to like?

In reality, regular variants are the more pragmatic choice most of the time. That's

because the �exibility of polymorphic variants comes at a price. Here are some of the

downsides:

Complexity The typing rules for polymorphic variants are a lot more complicated

than they are for regular variants. This means that heavy use of polymorphic

variants can leave you scratching your head trying to �gure out why a given

piece of code did or didn't compile. It can also lead to absurdly long and

hard to decode error messages. Indeed, concision at the value level is often

balanced out by more verbosity at the type level.

Error-�nding Polymorphic variants are type-safe, but the typing discipline that they

impose is, by dint of its �exibility, less likely to catch bugs in your program.

E�ciency This isn't a huge e�ect, but polymorphic variants are somewhat heavier than

regular variants, and OCaml can't generate code for matching on polymorphic

variants that is quite as e�cient as what it generated for regular variants.

All that said, polymorphic variants are still a useful and powerful feature, but it's

worth understanding their limitations and how to use them sensibly and modestly.

Probably the safest and most common use case for polymorphic variants is where

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

118 Variants

ordinary variants would be su�cient but are syntactically too heavyweight. For exam-

ple, you often want to create a variant type for encoding the inputs or outputs to a

function, where it's not worth declaring a separate type for it. Polymorphic variants

are very useful here, and as long as there are type annotations that constrain these to

have explicit, exact types, this tends to work well.

Variants are most problematic exactly where you take full advantage of their power;

in particular, when you take advantage of the ability of polymorphic variant types to

overlap in the tags they support. This ties into OCaml's support for subtyping. As we'll

discuss further when we cover objects in Chapter 13 (Objects), subtyping brings in a

lot of complexity, and most of the time, that's complexity you want to avoid.

https://doi.org/10.1017/9781009129220.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.009

