A RELATION BETWEEN THE 2-PRIMARY PARTS OF THE MAIN CONJECTURE AND THE BIRCH-TATE-CONJECTURE

ΒY

MANFRED KOLSTER

ABSTRACT. It is shown that for totally real number fields the Main Conjecture in Iwasawa-Theory for p = 2 proposed by Federer implies the 2-primary part of the Birch-Tate-Conjecture in analogy with the case p odd.

Let *E* be a totally real number field with ring of integers *o*. If *p* is an odd prime, F_{∞} the cyclotomic \mathbb{Z}_p -extension of $E(\zeta_p)$ and A_{∞}^- the minus-part of the *p*-primary component of the class-group of F_{∞} , the Main Conjecture relates the characteristic polynomial of the Pontryagin dual of A_{∞}^- to *p*-adic *L*-functions. Coates ([1], [2]) has shown that this conjecture implies the *p*-primary part of the Birch-Tate-Conjecture, which relates the order of the tame kernel $K_2(o)$ to the value of the ζ -function of *E* at -1.

In [4] Federer proposed an analogous Main Conjecture for the prime 2. The purpose of this note, which is an addendum to [7], is to show that similarly this conjecture implies the 2-primary part of the Birch-Tate-Conjecture.

Whereas the Main Conjecture for odd primes has been proved at least for abelian number fields by Mazur-Wiles [9], Federer's analog is still open, although some evidence was given in [4]. On the other hand the 2-primary part of the Birch-Tate-Conjecture holds, whenever the 2-Sylow-subgroup of $K_2(o)$ is elementary abelian ([6]), so that the relation between these conjectures may give further evidence to both of them.

Let $F_0 = E(\zeta_4)$ and $e \ge 2$ be maximal with $F_0 = E(\zeta_{2^e})$. If we define $F_n = E(\zeta_{2^{n+e}})$, $n \ge 1$, and $F_\infty = \bigcup_n F_n$, the fields F_n are the *n*-th layers in the cyclotomic \mathbb{Z}_2 -extension F_∞ of F_0 . Each F_n is a *CM*-field with maximal real subfield F_n^+ and $F_\infty^+ = \bigcup_n F_n^+$ is the cyclotomic \mathbb{Z}_2 -extension of *E*. Let $\Gamma = \text{Gal}(F_\infty/F_0) \cong \text{Gal}(F_\infty^+/E) \cong \mathbb{Z}_2$ and choose a topological generator γ_0 of Γ . We define $W = \lim_n \mu_{2^n}$ and $u \in \mathbb{Z}_2^*$ via the action of γ_0 on $W : \gamma_0(\zeta) = \zeta^u$. Note that by definition of e we have $u = 1 + 2^e \cdot \epsilon$ with $\epsilon \in \mathbb{Z}_2^*$.

The ring of integers in F_n (resp. F_n^+) is denoted by o_n (resp. o_n^+) and the group of units by U_n (resp. U_n^+). Let A_n (resp. A_n^+) denote the 2-primary component of the

Received by the editors March 31, 1988.

AMS Subject Classification 11S40.

[©] Canadian Mathematical Society 1988.

class-group of F_n (resp. F_n^+), and A_n^- the kernel of the (surjective) norm map from A_n to A_n^+ . Passing to the limit we let $U_{\infty}^+ = \lim_{\to} U_n^+$, $A_{\infty}^- = \lim_{\to} A_n^-$. $\mathcal{T} = \lim_{\leftarrow} \mu_{2^n}$ denotes the Tate-module.

The compatibility of the conjectures is based on the following result:

THEOREM 1. The order of the 2-primary part of the tame kernel is given by

$$|K_2(o)(2)| = 2^{[E:\mathbf{Q}]} \cdot \left| \left(\mathcal{T} \bigotimes_{\mathbf{Z}_2} A_{\infty}^{-} \right)^1 \right|.$$

PROOF. It was shown in [7], Theorem 3.7, that there is an exact sequence of finite groups

$$0 \to \left(\mu_2 \bigotimes_{\mathbf{Z}} U_{\infty}^{+}\right)^{\Gamma} \to K_2(o)(2) \to \left(\mathcal{T} \bigotimes_{\mathbf{Z}_2} A_{\infty}^{-}\right)^{\Gamma} \to H^1\left(\Gamma, \mu_2 \bigotimes_{\mathbf{Z}} U_{\infty}^{+}\right) \to 0,$$

hence our claim is equivalent to

$$\left| \left(\mu_2 \bigotimes_{\mathbf{Z}} U_{\infty}^+ \right)^{\Gamma} \right| = 2^{[E:\mathbf{Q}]} \cdot \left| H^1 \left(\Gamma, \mu_2 \bigotimes_{\mathbf{Z}} U_{\infty}^+ \right) \right|.$$

Let $\mathcal{E}_{\infty}^{+} = U_{\infty}^{+}/\mu_2$ be the free part of U_{∞}^{+} . The cohomology sequence attached to the exact sequence

$$0 \to \mu_2 \bigotimes_{\mathbf{Z}} \mu_2 \to \mu_2 \bigotimes_{\mathbf{Z}} U_{\infty}^+ \to \mu_2 \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^+ \to 0$$

yields

$$\frac{\left|\left(\mu_{2}\otimes_{\mathbf{Z}}U_{\infty}^{+}\right)^{\mathrm{T}}\right|}{\left|H^{1}\left(\Gamma,\mu_{2}\otimes_{\mathbf{Z}}U_{\infty}^{+}\right)\right|}=\frac{\left|\left(\mu_{2}\otimes_{\mathbf{Z}}\mathcal{E}_{\infty}^{+}\right)^{\mathrm{T}}\right|}{\left|H^{1}\left(\Gamma,\mu_{2}\otimes_{\mathbf{Z}}\mathcal{E}_{\infty}^{+}\right)\right|}.$$

Since \mathcal{E}_∞^+ is free abelian, squaring yields an exact sequence

$$0 \longrightarrow \mathcal{E}_{\infty}^{+} \longrightarrow \mathcal{E}_{\infty}^{+} \longrightarrow \mu_{2} \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+} \longrightarrow 0,$$

hence an exact sequence in cohomology

$$0 \to \mathcal{E}_{\infty}^{+\Gamma} \to \mathcal{E}_{\infty}^{+\Gamma} \to \left(\mu_{2} \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right)^{\Gamma} \to H^{1}(\Gamma, \mathcal{E}_{\infty}^{+})$$
$$\xrightarrow{2} H^{1}(\Gamma, \mathcal{E}_{\infty}^{+}) \to H^{1}\left(\Gamma, \mu_{2} \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right) \to H^{2}(\Gamma, \mathcal{E}_{\infty}^{+}) \xrightarrow{2} H^{2}(\Gamma, \mathcal{E}_{\infty}^{+}) \to 0.$$

The structure of the cohomology groups $H^i(\Gamma, \mathcal{E}^+_{\infty})$, i = 1, 2, has been revealed by Iwasawa ([5], Proposition 2)

$$H^{1}(\Gamma, \mathcal{E}_{\infty}^{+}) \cong B \oplus (\mathbf{Q}_{2}/\mathbf{Z}_{2})^{r}, B$$
 fin. group
 $H^{2}(\Gamma, \mathcal{E}_{\infty}^{+}) \cong (\mathbf{Q}_{2}/\mathbf{Z}_{2})^{r-1}$

1989]

for some $r, 1 \leq r \leq d$, where d is the number of dyadic primes in F_{∞}^+ .

Let $2^s = |_2B| = |B/2B|$. Since multiplication by 2 is onto on the divisible part of $H^1(\Gamma, \mathcal{E}^+_{\infty})$, we obtain

$$\frac{\left|\left(\mu_{2}\bigotimes_{\mathbf{Z}}\mathcal{E}_{\infty}^{+}\right)^{\Gamma}\right|}{\left|\mu_{2}\bigotimes_{\mathbf{Z}}\mathcal{E}_{\infty}^{+\Gamma}\right|} = 2^{s+i}$$

and $|H^1(\Gamma, \mu_2 \bigotimes_{\mathbb{Z}} \mathcal{E}^+_{\infty})| = 2^{s+r-1}$.

Now $\mathcal{E}_{\infty}^{+\Gamma}$ is the free part of the group of units in *E*, hence by the unit theorem $\mu_2 \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+\Gamma}$ has order $2^{[E:\mathbf{Q}]-1}$, which yields the claim.

Let $\Lambda = \mathbb{Z}_2[[T]]$ and let f(T) be the characteristic polynomial of the Pontryagin dual $\check{A}_{\infty}^- = \operatorname{Hom}_{\mathbb{Z}_2}(A_{\infty}^-, \mathbb{Q}_2/\mathbb{Z}_2)$ of A_{∞}^- . Then $f(u^{-1}(1+T)-1)$ is the characteristic polynomial of the dual $\check{A}_{\infty}^-(-1)$ of $\mathcal{T} \bigotimes_{\mathbb{Z}_2} A_{\infty}^-$ (cf. [8], Lemma 4.1). Since A_{∞}^- has no non-trivial finite Λ -submodules (cf. [4]), the order of $(\mathcal{T} \bigotimes_{\mathbb{Z}_2} A_{\infty}^-)^{\Gamma}$, which is the same as the order of $(\check{A}_{\infty}^-(-1))_{\Gamma}$, is as usual determined by evaluating the characteristic polynomial at T = 0. Hence, if we use the notation $a \sim b$ for two 2-adic integers having the same 2-adic valuation, we obtain

Lemma 2. $|(\mathcal{T} \bigotimes_{\mathbb{Z}_2} A_{\infty}^-)^{\Gamma}| \sim f(u^{-1}-1).$

Let χ_0 denote the trivial character of Gal (F_0/E) . There is a unique power series G(T), such that the 2-adic L-function $L_2(\chi_0, s)$ is given by

$$L_2(\chi_0, s) = G(u^s - 1)/u^s - u$$
 (cf. [4], [2]).

Furthermore from [3] it is known that G(T) is contained in $2^{[E:\mathbf{Q}]} \cdot \Lambda$. This motivated the following Main Conjecture for p = 2 (cf. [4]):

Conjecture 3 (Federer): G(T) and $2^{[E:\mathbf{Q}]} \cdot f(T)$ generate the same ideal in A.

Let ζ_E denote the ζ -function of E and let $w_2(E)$ be the maximal natural number n, such that $\text{Gal}(E(\zeta_n)/E)$ has exponent 2. The 2-primary part of the Birch-Tate-Conjecture states:

Conjecture 4 (Birch-Tate):

$$|K_2(o)| \sim w_2(E) \cdot \zeta_E(-1).$$

The relation between these conjectures is given by

THEOREM 5. Conjecture 3 implies Conjecture 4.

PROOF. By definition of the number *e* we obtain $w_2(E) \sim 2^{e+1} \sim u^{-1} - u$. Since $L_2(\chi_0, -1) \sim \zeta_e(-1)$, we get $w_2(E) \cdot \zeta_E(-1) \sim G(u^{-1} - 1)^{(3)} 2^{[E;\mathbf{Q}]} \cdot f(u^{-1} - 1)^{(2)} 2^{[E;\mathbf{Q}]} \cdot [(\mathcal{T} \bigotimes_{\mathbf{Z}_2} A_{\infty}^{-})^{\Gamma}]^{(\underline{1})} |K_2(\sigma)|$.

REFERENCES

1. J. Coates, On K_2 and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99–116.

2. — *p-adic L-functions and Iwasawa's theory*, in A. Fröhlich (ed.): Algebraic Number Fields, Academic Press, London (1977), 227–286.

3. P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Inv. math. 59 (1980), 227–286.

4. L. J. Federer, *Regulators, Iwasawa Modules, and the Main Conjecture for* p = 2, in N. Koblitz (ed.): Number Theory related to Fermat's Last Theorem, Birkhäuser, Basel (1982), 289–296.

5. K. Iwasawa, On cohomology groups of units for Z_p -extensions, Am. J. of Math. 105 (1983), 189–200.

6. M. Kolster, The structure of the 2-Sylow-subgroup of $K_2(\sigma)$, I, Comm. Math. Helv. 61 (1986), 376–388.

7. — The structure of the 2-Sylow-subgroup of $K_2(o)$, II, K-theory, 1 (1987), 467–479.

8. S. Lichtenbaum, On the values of zeta and L-functions, I, Ann. of Math. 96 (1972), 388-360.

9. B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Inv. Math. 76 (1984), 179-330.

Westf. Wilhelms-Universität Math. Institut Einsteinstr. 62 D-4400 Münster West-Germany

1989]