A RELATION BETWEEN THE 2-PRIMARY PARTS OF THE MAIN CONJECTURE AND THE BIRCH-TATE-CONJECTURE

BY
MANFRED KOLSTER

Abstract

It is shown that for totally real number fields the Main Conjecture in Iwasawa-Theory for $p=2$ proposed by Federer implies the 2-primary part of the Birch-Tate-Conjecture in analogy with the case p odd.

Let E be a totally real number field with ring of integers o. If p is an odd prime, F_{∞} the cyclotomic \mathbf{Z}_{p}-extension of $E\left(\zeta_{p}\right)$ and A_{∞}^{-}the minus-part of the p-primary component of the class-group of F_{∞}, the Main Conjecture relates the characteristic polynomial of the Pontryagin dual of A_{∞}^{-}to p-adic L-functions. Coates ([1], [2]) has shown that this conjecture implies the p-primary part of the Birch-Tate-Conjecture, which relates the order of the tame kernel $K_{2}(o)$ to the value of the ζ-function of E at -1 .

In [4] Federer proposed an analogous Main Conjecture for the prime 2. The purpose of this note, which is an addendum to [7], is to show that similarly this conjecture implies the 2-primary part of the Birch-Tate-Conjecture.

Whereas the Main Conjecture for odd primes has been proved at least for abelian number fields by Mazur-Wiles [9], Federer's analog is still open, although some evidence was given in [4]. On the other hand the 2-primary part of the Birch-TateConjecture holds, whenever the 2-Sylow-subgroup of $K_{2}(o)$ is elementary abelian ([6]), so that the relation between these conjectures may give further evidence to both of them.

Let $F_{0}=E\left(\zeta_{4}\right)$ and $e \geqq 2$ be maximal with $F_{0}=E\left(\zeta_{2^{e}}\right)$. If we define $F_{n}=E\left(\zeta_{2^{n+e}}\right)$, $n \geqq 1$, and $F_{\infty}=\bigcup_{n} F_{n}$, the fields F_{n} are the n-th layers in the cyclotomic \mathbf{Z}_{2}-extension F_{∞} of F_{0}. Each F_{n} is a $C M$-field with maximal real subfield F_{n}^{+}and $F_{\infty}^{+}=\bigcup_{n} F_{n}^{+}$ is the cyclotomic \mathbf{Z}_{2}-extension of E. Let $\Gamma=\operatorname{Gal}\left(F_{\infty} / F_{0}\right) \cong \operatorname{Gal}\left(F_{\infty}^{+} / E\right) \cong \mathbf{Z}_{2}$ and choose a topological generator γ_{0} of Γ. We define $W=\lim \mu_{2^{n}}$ and $u \in \mathbf{Z}_{2}^{*}$ via the action of γ_{0} on $W: \gamma_{0}(\zeta)=\zeta^{u}$. Note that by definition of \vec{e} we have $u=1+2^{e} \cdot \epsilon$ with $\epsilon \in \mathbf{Z}_{2}^{*}$.

The ring of integers in F_{n} (resp. F_{n}^{+}) is denoted by o_{n} (resp. o_{n}^{+}) and the group of units by U_{n} (resp. U_{n}^{+}). Let A_{n} (resp. A_{n}^{+}) denote the 2-primary component of the

[^0]class-group of F_{n} (resp. F_{n}^{+}), and A_{n}^{-}the kernel of the (surjective) norm map from A_{n} to A_{n}^{+}. Passing to the limit we let $U_{\infty}^{+}=\lim _{\rightarrow} U_{n}^{+}, A_{\infty}^{-}=\lim _{\rightarrow} A_{n}^{-} \cdot \mathcal{T}=\lim _{\leftarrow} \mu_{2^{n}}$ denotes the Tate-module.

The compatibility of the conjectures is based on the following result:
Theorem 1. The order of the 2-primary part of the tame kernel is given by

$$
\left|K_{2}(o)(2)\right|=2^{[E: Q]} \cdot\left|\left(\mathcal{T} \underset{\mathbf{Z}_{2}}{\otimes} A_{\infty}^{-}\right)^{\Gamma}\right|
$$

Proof. It was shown in [7], Theorem 3.7, that there is an exact sequence of finite groups

$$
0 \rightarrow\left(\mu_{2} \underset{\mathbf{Z}}{\otimes} U_{\infty}^{+}\right)^{\Gamma} \rightarrow K_{2}(o)(2) \rightarrow\left(\mathcal{T} \bigotimes_{\mathbf{Z}_{2}} A_{\infty}^{-}\right)^{\Gamma} \rightarrow H^{1}\left(\Gamma, \mu_{2} \underset{\mathbf{Z}}{\otimes} U_{\infty}^{+}\right) \rightarrow 0
$$

hence our claim is equivalent to

$$
\left|\left(\mu_{2} \underset{\mathbf{Z}}{\otimes} U_{\infty}^{+}\right)^{\Gamma}\right|=2^{[E: \mathbf{Q}]} \cdot\left|H^{1}\left(\Gamma, \mu_{2} \underset{\mathbf{Z}}{\bigotimes} U_{\infty}^{+}\right)\right| .
$$

Let $\mathcal{E}_{\infty}^{+}=U_{\infty}^{+} / \mu_{2}$ be the free part of U_{∞}^{+}. The cohomology sequence attached to the exact sequence

$$
0 \rightarrow \mu_{2} \underset{\mathbf{Z}}{\bigotimes} \mu_{2} \rightarrow \mu_{2} \underset{\mathbf{Z}}{\bigotimes} U_{\infty}^{+} \rightarrow \mu_{2} \underset{\mathbf{Z}}{\otimes} \mathcal{E}_{\infty}^{+} \rightarrow 0
$$

yields

$$
\frac{\left|\left(\mu_{2} \otimes_{\mathbf{Z}} U_{\infty}^{+}\right)^{\Gamma}\right|}{\left|H^{1}\left(\Gamma, \mu_{2} \otimes_{\mathbf{Z}} U_{\infty}^{+}\right)\right|}=\frac{\left|\left(\mu_{2} \otimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right)^{\Gamma}\right|}{\left|H^{1}\left(\Gamma, \mu_{2} \otimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right)\right|}
$$

Since \mathcal{E}_{∞}^{+}is free abelian, squaring yields an exact sequence

$$
0 \rightarrow \mathcal{E}_{\infty}^{+} \rightarrow \mathcal{E}_{\infty}^{+} \rightarrow \mu_{2} \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+} \rightarrow 0
$$

hence an exact sequence in cohomology

$$
\begin{aligned}
0 & \rightarrow \mathcal{E}_{\infty}^{+\Gamma} \rightarrow \mathcal{E}_{\infty}^{+\Gamma} \rightarrow\left(\mu_{2} \underset{\mathbf{Z}}{ } \mathcal{E}_{\infty}^{+}\right)^{\Gamma} \rightarrow H^{1}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \\
& \xrightarrow{2} H^{1}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \rightarrow H^{1}\left(\Gamma, \mu_{2} \bigotimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right) \rightarrow H^{2}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \xrightarrow{2} H^{2}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \rightarrow 0 .
\end{aligned}
$$

The structure of the cohomology groups $H^{i}\left(\Gamma, \mathscr{E}_{\infty}^{+}\right), i=1,2$, has been revealed by Iwasawa ([5], Proposition 2)

$$
\begin{aligned}
& H^{1}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \cong B \oplus\left(\mathbf{Q}_{2} / \mathbf{Z}_{2}\right)^{r}, B \text { fin. group } \\
& H^{2}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right) \cong\left(\mathbf{Q}_{2} / \mathbf{Z}_{2}\right)^{r-1}
\end{aligned}
$$

for some $r, 1 \leqq r \leqq d$, where d is the number of dyadic primes in F_{∞}^{+}.
Let $2^{s}={ }_{2} B|=|B / 2 B|$. Since multiplication by 2 is onto on the divisible part of $H^{1}\left(\Gamma, \mathcal{E}_{\infty}^{+}\right)$, we obtain

$$
\frac{\left|\left(\mu_{2} \otimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+}\right)^{\Gamma}\right|}{\left|\mu_{2} \otimes_{\mathbf{Z}} \mathcal{E}_{\infty}^{+\Gamma}\right|}=2^{s+r}
$$

and $\left|H^{1}\left(\Gamma, \mu_{2} \otimes_{\mathrm{Z}} \mathcal{E}_{\infty}^{+}\right)\right|=2^{s+r-1}$.
Now $\mathcal{E}_{\infty}^{+\Gamma}$ is the free part of the group of units in E, hence by the unit theorem $\mu_{2} \otimes_{\mathrm{Z}} \mathcal{E}_{\infty}^{+\Gamma}$ has order $2^{|E: \mathbf{Q}|-1}$, which yields the claim.

Let $\Lambda=\mathbf{Z}_{2}[[T]]$ and let $f(T)$ be the characteristic polynomial of the Pontryagin dual $\check{A}_{\infty}^{-}=\operatorname{Hom}_{\mathbf{Z}_{2}}\left(A_{\infty}^{-}, \mathbf{Q}_{2} / \mathbf{Z}_{2}\right)$ of A_{∞}^{-}. Then $f\left(u^{-1}(1+T)-1\right)$ is the characteristic polynomial of the dual $\check{A}_{\infty}^{-}(-1)$ of $\mathcal{T} \otimes_{\mathrm{Z}_{2}} A_{\infty}^{-}$(cf. [8], Lemma 4.1). Since A_{∞}^{-}has no non-trivial finite Λ-submodules (cf. [4]), the order of $\left(\mathcal{T} \otimes_{\mathbf{Z}_{2}} A_{\infty}^{-}\right)^{\Gamma}$, which is the same as the order of $\left(\check{A}_{\infty}^{-}(-1)\right)_{\Gamma}$, is as usual determined by evaluating the characteristic polynomial at $T=0$. Hence, if we use the notation $a \sim b$ for two 2 -adic integers having the same 2 -adic valuation, we obtain

Lemma 2. $\left|\left(\mathcal{T} \otimes_{\mathbf{Z}_{2}} A_{\infty}^{-}\right)^{\Gamma}\right| \sim f\left(u^{-1}-1\right)$.
Let χ_{0} denote the trivial character of $\operatorname{Gal}\left(F_{0} / E\right)$. There is a unique power series $G(T)$, such that the 2 -adic L-function $L_{2}\left(\chi_{0}, s\right)$ is given by

$$
L_{2}\left(\chi_{0}, s\right)=G\left(u^{s}-1\right) / u^{s}-u \quad \text { (cf. [4], [2]). }
$$

Furthermore from [3] it is known that $G(T)$ is contained in $2^{[E: Q]} \cdot \Lambda$. This motivated the following Main Conjecture for $p=2$ (cf. [4]):

Conjecture 3 (Federer): $G(T)$ and $2^{[E: Q]} \cdot f(T)$ generate the same ideal in Λ.
Let ζ_{E} denote the ζ-function of E and let $w_{2}(E)$ be the maximal natural number n, such that $\operatorname{Gal}\left(E\left(\zeta_{n}\right) / E\right)$ has exponent 2 . The 2-primary part of the Birch-TateConjecture states:

Conjecture 4 (Birch-Tate):

$$
\left|K_{2}(o)\right| \sim w_{2}(E) \cdot \zeta_{E}(-1) .
$$

The relation between these conjectures is given by
Theorem 5. Conjecture 3 implies Conjecture 4.
Proof. By definition of the number e we obtain $w_{2}(E) \sim 2^{e+1} \sim u^{-1}-u$. Since $L_{2}\left(\chi_{0},-1\right) \sim \zeta_{e}(-1)$, we get $w_{2}(E) \cdot \zeta_{E}(-1) \sim G\left(u^{-1}-1\right) \stackrel{(3)}{2} 2^{|E: \mathbf{Q}|} \cdot f\left(u^{-1}-1\right)^{(2)} 2^{|E: \mathbf{Q}|}$. $\left|\left(\mathcal{T} \otimes_{\mathbf{Z}_{2}} A_{\infty}^{-}\right)^{\Gamma}\right|{ }^{(\mathbf{1})}\left|K_{2}(o)\right|$.

References

1. J. Coates, On K_{2} and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99-116.
2. ——p-adic L-functions and Iwasawa's theory, in A. Fröhlich (ed.): Algebraic Number Fields, Academic Press, London (1977), 227-286.
3. P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Inv. math. 59 (1980), 227-286.
4. L. J. Federer, Regulators, Iwasawa Modules, and the Main Conjecture for $p=2$, in N. Koblitz (ed.): Number Theory related to Fermat's Last Theorem, Birkhäuser, Basel (1982), 289-296.
5. K. Iwasawa, On cohomology groups of units for \mathbf{Z}_{p}-extensions, Am. J. of Math. 105 (1983), 189-200.
6. M. Kolster, The structure of the 2-Sylow-subgroup of $K_{2}(o)$, I, Comm. Math. Helv. 61 (1986), 376-388.
7.

The structure of the 2-Sylow-subgroup of $K_{2}(o)$, II, K-theory, $\mathbf{1}$ (1987), 467-479.
8. S. Lichtenbaum, On the values of zeta and L-functions, I, Ann. of Math. 96 (1972), 388-360.
9. B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Inv. Math. 76 (1984), 179-330.

Westf. Wilhelms-Universität
Math. Institut
Einsteinstr. 62 D-4400 Münster
West-Germany

[^0]: Received by the editors March 31, 1988.
 AMS Subject Classification 11S40.
 © Canadian Mathematical Society 1988.

