A note on the lattice properties of the linear maps of finite rank

John W. Chaney

Abstract

It is shown that if E is a barreled locally convex lattice and F is a quasi-complete and order complete locally convex lattice then $E^{\prime} \otimes F$ equipped with the cone of positive continuous linear maps of finite rank is a lattice if and only if E^{\prime} or F has finite dimensional order intervals.

It is known that the space $L^{b}(E, F)$ of order bounded linear maps from a barreled locally convex lattice E into a quasi-complete and order complete locally convex lattice F is a lattice when it is equipped with the cone of positive linear maps. Since the space of continuous linear maps of finite rank from E into F, the space represented by $E^{\prime} \otimes F$, is a subspace of $L^{b}(E, F)$ then it seems natural to determine when $E^{\prime} \otimes F$ equipped with the cone of positive continuous linear maps of finite rank is a lattice. Our main result will show that $E^{\prime} \otimes F$ is a lattice if and only if E^{\prime} or F has finite dimensional order intervals. Note that if a Banach lattice has finite dimensional order intervals then it is finite dimensional. Although it is perhaps expected that $E^{\prime} \otimes F$ is seldom a lattice, it seems to require some effort to show this even in concrete situations such as $Z_{2} \otimes Z_{2}$. Our main result provides a complete solution to the general problem.

The biprojective cone in $E \otimes F$ is defined by

[^0]$K_{b}=\left\{u=\sum x_{i} \otimes y_{i} \in E \otimes F: \sum\left(x_{i}, x^{\prime}\right\rangle\left\langle y_{i}, y^{\prime}\right\rangle \geq 0\right.$ for all
$$
\left.x^{\prime} \geq 0 \text { in } E^{\prime} \text { and } y^{\prime} \geq 0 \text { in } F^{\prime}\right\}
$$

The biprojective cone in $E^{\prime} \otimes F$ coincides with the cone of positive continuous linear maps of finite rank from E into F. Also, the image of K_{b} under the canonical map from $C(X) \otimes C(Y)$ into $C(X \times Y)$ is the set of positive functions which lie in the range of this map.

Another tensor product ordering is given by the projective cone K_{p} which is defined by

$$
\begin{aligned}
& K_{p}=\left\{u \in E \otimes F: u=\sum x_{i} \otimes y_{i}, x_{i} \geq 0 \text { in } E, y_{i} \geq 0 \text { in } F\right\} \text {. } \\
& E \otimes_{p} F \text { will denote } E \otimes F \text { equipped with } K_{p}, \text { while } E \otimes_{b} F \text { will }
\end{aligned}
$$ denote $E \otimes F$ equipped with K_{b}. We will show that if E and F are quasi-complete and order complete locally convex lattices then any one of the three conditions:

(1) $E \otimes_{p} F$ is a lattice,
(2) $E \otimes_{b} F$ is a lattice,
(3) $K_{b}=K_{p}$,
is equivalent to the condition that E or F have finite dimensional order. intervals.

We refer the reader to [1] for background material and notation concerning vector lattices. The following construction will appear frequently in this work. If G is a vector lattice and x is a positive element of G then define G_{x} to be the linear hull of $[-x, x]$. If G is a quasi-complete and order complete locally convex lattice then G_{x} is lattice isomorphic to a $C(X)$ where X is an extremally disconnected compact Hausdorff space (see pages 16, 114, and 109 in [1]). Observe that if E is barreled then E^{\prime} is quasi-complete for every γ topology by (6.1) of Chapter IV in [2]. Also note that a Banach lattice with finite dimensional order intervals is finite dimensional.

PROPOSITION 1. Let X and Y be infinite compact metric spaces. Then:
(1) $C(X) \otimes_{p} C(Y)$ is not a lattice;
(2) $C(X) \otimes_{b} C(Y)$ is not a lattice;
(3) if f in $C(X)$ and g in $C(Y)$ have the property that (range f) \cap (range g) is an infinite set then $u=f^{2} \otimes 1-2 f \otimes g+1 \otimes g^{2}$ is in $K_{b} \backslash K_{p}$.
Proof. (1) Choose a sequence $\left(x_{n}\right)$ in X of distinct points with limit point x_{0} such that $x_{n} \neq x_{0}$ for all n. Similarly choose $\left(y_{n}\right)$ and y_{0} in y. Let I be the identically I function in $C(Y)$, and define three other positive functions f and h in $C(X)$ and g in $C(Y)$ such that

$$
\begin{aligned}
& f\left(x_{n}\right)= \begin{cases}1 & \text { if } n=0 \\
0 & \text { if } n=1, \\
2^{n-1} /\left(2^{n-1}+1\right) & \text { if } n>1,\end{cases} \\
& g\left(y_{n}\right)= \begin{cases}0 & \text { if } n=0, \\
2^{1-n} & \text { if } n>0,\end{cases} \\
& h\left(x_{n}\right)=1-f\left(x_{n}\right) .
\end{aligned}
$$

Let $\rho: C(X) \otimes C(Y) \rightarrow C(Y ; C(X))$ be the canonical map. Let $H=\rho(f \otimes g) \vee \rho(h \otimes 1)$, then for $m=1,2, \ldots$,

$$
B\left(y_{m}\right)\left(x_{n}\right)= \begin{cases}1 & \text { if } n=1 \\ 1 /\left(2^{n-1}+1\right) & \text { if } 1<n \leq m \\ 2^{n-m} /\left(2^{n-1}+1\right) & \text { if } n>m\end{cases}
$$

It will now be shown that $\left\{H\left(y_{m}\right): m=1,2, \ldots\right\}$ is linearly independent in $C(X)$. If $H\left(y_{m}\right)=\alpha_{1} H\left(y_{1}\right)+\ldots+\alpha_{m-1} H\left(y_{m-1}\right)$ in $C(X)$ then
evaluating this equation at x_{1}, x_{2}, and $x_{i}(i \leq m)$ yields

$$
\begin{aligned}
1 & =\alpha_{1}+\ldots+\alpha_{m-1}, \\
1 / 3 & =\left(2 \alpha_{1}+\alpha_{2}+\ldots+\alpha_{m-1}\right) / 3, \\
1 /\left(2^{i-1}+1\right) & =\left(2^{i-1} \alpha_{1}+2^{i-2} \alpha_{2}+\ldots+\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{m-1}\right) /\left(2^{i-1}, 1\right)
\end{aligned}
$$

These equations clearly imply that $\alpha_{i}=0$ for $1 \leq i \leq m-1$, which is impossible., Therefore, the range of H is infinite dimensional in $C(X)$.

Since $C(Y ; C(X))$ and $C(X \times Y)$ are canonically norm and lattice isomorphic then we may consider the range of ρ to be contained in $C(X \times Y)$ and consider H as an element of $C(X \times Y)$. We have just seen that H is not in the range of ρ.

Suppose u is an element of $C(X) \otimes_{p} C(Y)$ such that $u \geq f \otimes g$ and $u \geq h \otimes 1$. Write $u-f \otimes g=\sum_{j=1}^{n} p_{j} \otimes q_{j}$ and $u-h \otimes 1=\sum_{k=1}^{m} s_{k} \otimes t_{k}$ where p_{j} and ε_{k} are positive elements of $C(X)$ and q_{j} and t_{k} are positive elements of $C(Y)$. Since $H \leq \rho(u)$ and $H \neq \rho(u)$ then there exist indices e and r and $(x, y) \in X \times Y$ such that $p_{e}(x) q_{e}(y)$ and $s_{r}(x) t_{r}(y)$ are not zero. Find two non-zero positive functions p in $C(X)$ and q in $C(Y)$ such that p_{e} and s_{r} are greater than p in $C(X)$ and q_{e} and t_{r} are greater than q in $C(Y)$. Since $u-p \otimes q \geq f \otimes g$ and $u-p \otimes q \geq h \otimes 1$ then $C(X) \otimes_{p} C(Y)$ is not a lattice.
(2) Let $\rho, f, g, h, 1, H$ be defined as in part (1). Suppose that $u \geq f \otimes g$ and $u \geq h \otimes 1$ in $C(X) \otimes_{b} C(Y)$. Since $\rho(u) \neq H$ and $\rho(u) \geq H$ in $C(X \times Y)$ then choose non-zero positive functions p in $C(X)$ and q in $C(Y)$ such that $p(u)(x, y)-H(x, y) \geq p(x) q(y)$ on $X \times Y$. Since $u-p \otimes q \geq f \otimes g$ and $u-p \otimes q \geq h \otimes 1$ in $c(X) \otimes_{b} c(Y)$ then $C(X) \theta_{b} C(Y)$ is not a lattice.
(3) Suppose (range f) \cap (range g) is infinite. Choose sequences $\left(x_{n}\right)$ in X and $\left(y_{n}\right)$ in Y of distinct points having distinct limit
points x_{0} and y_{0} such that $f\left(x_{n}\right)=g\left(y_{n}\right)$ and $\left\{f\left(x_{n}\right): n=0,1, \ldots\right\}$ is a sequence of distinct real numbers. Let $u=f^{2} \otimes 1-2 f \otimes g+1 \otimes g^{2}$ in $C(X) \otimes C(y)$. Since $\rho(u)=(f-g)^{2}$ in $C(X \times Y)$ then u is in K_{b}. However, suppose $\rho(u)(x, y)=\sum_{j=1}^{k} f_{j}(x) g_{j}(y)$ where f_{j} and g_{j} are positive non-zero in $C(X)$ and $C(Y)$, respectively. We can choose an index r such that $f_{r}\left(x_{0}\right)>0$ since $\left\{g\left(y_{n}\right)\right\}$ is a sequence of distinct real numbers. Consequently, there exists an integer $n_{p^{\prime}}$ such that if $n \geq n_{r}$ then $f_{p}\left(x_{n}\right)>0$. Since $0=\left(f\left(x_{n}\right)-g\left(y_{n}\right)\right)^{2}=\sum_{j=1}^{k} f_{j}\left(x_{n}\right) g_{j}\left(y_{n}\right)$ then $f_{j}\left(x_{n}\right) g_{j}\left(y_{n}\right)=0$ for each j because f_{j} and g_{j} are nonnegative. But $f_{p}\left(x_{n}\right)>0$ for $n \geq n_{r}$ so that $g_{p}\left(y_{n}\right)=0$ for $n \geq n_{r}$. Let $p=\max \left\{n_{2}: f_{p}\left(x_{0}\right\}>0\right\}$. If $n \geq p$ then $\left(f\left(x_{0}\right)-g\left(y_{n}\right)\right)^{2}=\sum_{j=1}^{k} f_{j}\left(x_{0}\right) g_{j}\left(y_{n}\right)=0$. This contradicts the fact that $\left\{g\left(y_{n}\right)\right\}$ is a sequence of distinct real numbers. Therefore u is not in K_{p}.

PROPOSITION 2. If X and Y are infinite extremally disconnected compact Hausdorff spaces then:
(1) $C(X) \otimes_{b} C(Y)$ is not a Zattice;
(2) $c(X) \otimes_{p} c(Y)$ is not a lattice;
(3) $K_{p} \neq K_{b}$.

Proof. Let $\left(C_{i}\right)$ be an infinite countable collection of distinct clopen subsets of X, where $C_{i} \neq X$. Let G be the closed linear hull of the characteristic functions $X_{C_{i}}$ equipped with the norm of $C(X)$. Let X_{1} be the quotient of X obtained by identifying x and y when $f(x)=f(y)$ for all f in G. If A is the quotient map from X into
X_{1} and x and y are elements of X such that $A x \neq A y$ then there exists a function $f \in G$ such that $f(x) \neq f(y)$. Therefore, there exists a function $\phi \in L H\left(X_{C_{i}}\right)$ such that $\phi(x) \neq \phi(y)$, and so there exists a clopen set C in the algebra of sets generated by $\left(C_{i}\right)$ such that $x \in C$ and $y \notin C$. Thus, $A(C)$ and $A(-C)$ are disjoint neighborhoods of $A(x)$ and $A(y)$, respectively. Hence, the quotient topology on X_{1} is Hausdorff. G is canonically norm and lattice isomorphic to $C\left(X_{1}\right)$ by the Stone-Weierstrass Theorem. Since G is separable then X_{1} is an infinite compact metrizable space. Similarly, define an infinite compact metrizable space Y_{1} as a quotient space of Y.
(1) By Proposition 1, there exists an element u in $C\left(X_{1}\right) \otimes_{b} c\left(y_{1}\right)$ which has no positive part. Identify u with its image in $C(X) \otimes C(Y)$ and suppose that the positive part of u, denoted by u^{+}, exists in $C(X) \otimes_{b} C(Y)$. By the argument given in the last part of the proof of part (2) in Proposition 1 the map I from $C(X) \otimes_{b} C(Y)$ into $C(X \times Y)$ preserves the supremum of a finite set. Therefore, $I\left(u^{+}\right)$is the positive part of $I(u)$ in $C(X \times Y)$. Since $X_{1} \times Y_{1}$ is a quotient of $X \times Y$ then the canonical map J from $C\left(X_{1} \times Y_{1}\right)$ into $C(X \times Y)$ is a norm and lattice isomorphism. Let K be the canonical map from $C\left(X_{1}\right) \otimes C\left(Y_{1}\right)$ into $C\left(X_{1} \times Y_{1}\right)$. Let v denote the positive part of $K(u)$ where we consider u as an element of $C\left(X_{1}\right) \otimes C\left(y_{1}\right)$. Since $J(v)=u^{+}$then, when we consider v and u^{+}as compact linear maps from $C\left(X_{1}\right)^{\prime}$ into $C\left(Y_{1}\right)$ and from $C(X)^{\prime}$ into $C(Y)$, respectively, the diagram of Figure 1 commutes. The unidentified maps in Figure 1 are canonical maps. Since the canonical map from $C\left(X_{1}\right)$ into $C(X)$ is a norm isomorphism then the adjoint maps $C(X)^{\prime}$ onto $C\left(X_{1}\right)^{\prime}$. Therefore, since the range of u^{+}is finite dimensional then the range of v is finite dimensional. Hence, v is in the
biprojective cone and must be the positive part of u in $C\left(X_{1}\right) \otimes_{b} C\left(Y_{1}\right)$, a contradiction.

Figure 1
(2) By Proposition 1, there exists u in $C\left(X_{1}\right) \otimes_{b} C\left(y_{1}\right)$ for which no positive part exists. Identify u with its image in $C(X) \otimes C(Y)$ and suppose u^{+}exists in $C(X) \otimes_{p} C(Y)$. By the argument given in the last half of part 1 in the proof of Proposition $1, u^{+}$is also the positive part of u in $C(X \times Y)$. Let v be the positive part of u in $C\left(X_{1} \times Y_{1}\right)$. By the argument just given in part 1 above, v is an element of the biprojective cone and also the positive part of u in $C\left(X_{1}\right) \otimes_{b} C\left(y_{1}\right)$, a contradiction.
(3) Let f and g be functions in $C\left(X_{1}\right)$ and $C\left(Y_{1}\right)$ such that (range f) \cap (range g) is infinite and let $u=f^{2} \otimes 1-2 f \otimes g+1 \otimes g^{2}$. By Proposition 1, u is in the biprojective cone and not in the projective cone in $C\left(X_{1}\right) \otimes C\left(Y_{1}\right)$. Suppose $K_{b}=K_{p}$ in $C(X) \otimes C(Y)$, then $u=\sum_{i=1}^{n} f_{i} \otimes g_{i}$ where the f_{i} 's are positive elements in $C(X)$ and the g_{i} 's are positive elements in $C(Y)$. Since X is extremally
disconnected then the linear hull of the characteristic functions of clopen sets is dense in $C(X)$. Therefore, we can find an infinitely countable number of clopen subsets $\left(B_{i}\right)$ of X such that $\left(C_{j}\right) \subseteq\left(B_{i}\right)$ and the closed linear hull H of the characteristic functions of the B_{i} contains the functions $f_{1}, \ldots, f_{n} . H$ is canonically norm and lattice isomorphic to $C\left(X_{2}\right)$ where the infinite compact metric space X_{2} is a quotient of X and X_{1} is a quotient of X_{2}. Likewise, construct on infinite compact metric space Y_{2} such that $C\left(Y_{2}\right)$ contains $g_{1}, \ldots, g_{n}, Y_{2}$ is a
quotient of Y, and Y_{1} is a quotient of Y_{2}. Since X_{1}, is a quotient of X_{2} then the canonical map I from $C\left(X_{1}\right)$ into $C\left(X_{2}\right)$ preserves the range of an element. Likewise, the canonical map K from $C\left(Y_{1}\right)$ into $C\left(Y_{2}\right)$ preserves range. In particular,
(range $I f$) \cap (range $K g$) is an infinite set, and so by Proposition 1 , $v=(I f)^{2} \otimes 1-2 I f \otimes K g+1 \otimes(K g)^{2}$ is not in the projective cone in $C\left(X_{2}\right) \otimes C\left(Y_{2}\right)$. However, $v=\sum_{i=1}^{n} f_{i} \otimes g_{i} \quad$ in $C\left(X_{2}\right) \otimes C\left(Y_{2}\right)$, a contradiction.

THEOREM 3. If E and F are quasi-complete and order complete locally convex lattices then the following conditions are equivalent:
(1) $E \otimes_{b} F$ is a lattice;
(2) $E \otimes_{P} F$ is a Zattice;
(3) $K_{b}=K_{p}$;
(4) E or F has finite dimensional order intervals.

Proof. Let $K_{E^{\prime}}$ denote the positive cone in E^{\prime}. The symbol \leq_{p} will be used to denote the order relation determined by K_{p} in $E \otimes F$.
a. If x and u are positive in E and y and v are positive in F and $0 \leq_{p} u \otimes v \leq_{p} x \otimes y$ then either $u \leq x$ or $v \leq y$.

Suppose there is an x^{\prime} in $K_{E^{\prime}}$ such that $\left\langle x^{\prime}, x-u\right\rangle<0$, then for any y^{\prime} in $K_{F^{\prime}}$,

$$
\begin{aligned}
0 & \leq\left\langle x^{\prime} \otimes y^{\prime}, x \otimes y-u \otimes v\right\rangle \\
& =\frac{1}{2}\left(\left\langle x^{\prime}, x-u\right\rangle\left\langle y^{\prime}, y+v\right\rangle+\left\langle x^{\prime}, x+u\right\rangle\left\langle y^{\prime}, y-v\right\rangle\right)
\end{aligned}
$$

Since $\left\langle y^{\prime}, y-v\right\rangle \geq-\frac{\left\langle x^{\prime}, x-u\right\rangle}{\left\langle x^{\prime}, x+u\right\rangle}\left\langle y^{\prime}, y+v\right\rangle \geq 0$ then $y \geq v$.
b. $K_{p} \cap\left(E \otimes_{p} F\right)_{x \otimes y} \subseteq K_{p}^{x y}$, where $K_{p}^{x y}$ is the projective cone from $E_{x} \otimes_{p} F_{y}$.

If $0 \leq \sum_{p} \sum_{i=1}^{n} u_{i} \otimes v_{i} \leq_{p} x \otimes y$, where $u_{i} \geq 0$ and $v_{i} \geq 0$, then $0 \leq_{p} u_{i} \otimes v_{i} \leq_{p} x \otimes y$. By a, suppose $0<u_{i} \leq x$ and choose x^{\prime} in K_{E}, such that $\left(x, u_{i}\right)>0$. For y^{\prime} in K_{F} we have
$\left\langle x^{\prime}, u_{i}\right\rangle\left\langle y^{\prime}, v_{i}\right\rangle \leq\left\langle x^{\prime}, x\right\rangle\left\langle y^{\prime}, y\right\rangle$ and $0 \leq\left\langle y^{\prime}, y-\frac{\left\langle x^{\prime}, u_{j}\right\rangle}{\left\langle x^{\prime}, x\right\rangle} v_{i}\right\rangle$. Thus $v_{i} \in F_{y}$ and so $u_{i} \otimes v_{i} \in K_{p}^{x y}$ and $\sum_{i=1}^{n} u_{i} \otimes v_{i}$ is in $K_{p}^{x y}$, and $K_{p} \cap\left(E \otimes_{p} F\right)_{x>y} \subseteq K_{p}^{x y}$.
c. $E_{x} \otimes_{p} F_{y}=\left(E \otimes_{p} F\right)_{x y}$, and $K_{p}^{x y}=k_{p} \cap\left(E_{x} \otimes F_{y}\right)$.

Clearly $K_{p}^{x y} \subseteq K_{p} \cap\left(E \otimes_{p} F\right)_{x \otimes y}$. By b, $K_{p}^{x y}=K_{p} \cap\left(E \otimes_{p} F\right)^{x \otimes y}$. If u is in $\left(E \otimes_{p} F\right)_{x \otimes y}$ then $-\alpha(x \otimes y) \leq_{p} u \leq_{p} \alpha(x \otimes y)$ for some $\alpha>0$. Therefore $u+\alpha(x \otimes y)$ is in $K_{p} \cap\left(E \otimes_{p} F\right)_{x \otimes y}=K_{p}^{x y}$. Since u is in $E_{x} \otimes F_{y}$ then $\left(E \otimes_{p} F\right)_{x \otimes y} \subseteq E_{x} \otimes_{p} F_{y}$. Since $E_{x} \otimes F_{y} \subseteq\left(E \otimes_{p} F\right)_{x \otimes y}$ then they are equal.
d. $K_{b}^{x y}=\left(E_{x} \otimes F_{y}\right) \cap K_{b}$, where $K_{b}^{x y}$ is the biprojective cone in $E_{x} \otimes_{b} F_{y}$.

If u is in $K_{b} \cap\left(E_{x} \otimes F_{y}\right)$ then u is in $K_{b} \cap\left(E_{x} \otimes F\right)$; since u is a positive linear map from F^{\prime} into E and $u\left(F^{\prime}\right) \subseteq E_{x}$ then u is a positive linear map from F^{\prime} into E_{x}. By transposition, we may consider u as a positive map from $\left(E_{x}\right)^{\prime}$ into F. Since $u\left(\left(E_{x}\right) '\right) \subseteq F_{y}$ then u is a positive map from $\left(E_{x}\right)$ ' into F_{y}. Therefore, u is in $K_{b}^{x y}$ and $K_{b} \cap\left(E_{x} \otimes F_{y}\right) \subseteq K_{b}^{x y}$. Since $K_{b}^{x y}$ is contained in K_{b} then $K_{b}^{x y}=K_{b} \cap\left(E_{x} \otimes F_{y}\right)$.
e. $K_{b}=U\left\{K_{b}^{x y}: x \geq 0, y \geq 0\right\}$.

This follows directly from d.
(1) implies (4). Suppose $[-x, x]$ and $[-y, y]$ are infinite dimensional order intervals in E and F. By Proposition 2, choose u in $E_{x} \Theta_{b} F_{y}$ such that u^{+}does not exist. If $E \Theta_{b} F$ is a lattice then u^{+}exists in $E Q_{b} F$. Find $x_{1} \geq x$ and $y_{1} \geq y$ such that u^{+}is in $E_{x_{1}} \otimes_{b} F_{y_{1}}$. By d, u^{+}is the positive part of u in $E_{x_{1}} \otimes_{b} F_{y_{1}}$. Also, by straightforward computation u^{+}is the positive part of u when they are considered as compact maps from $\left(E_{x_{1}}\right)^{\prime}$ into $F_{y_{1}}$. Since $u\left(\left(E_{x_{1}}\right)^{\prime}\right) \subset F_{y}$ then for $x^{\prime} \geq 0$ in $\left(E_{x_{1}}\right)^{\prime}, u\left(\left[0, x^{\prime}\right]\right)$ is bounded and finite dimensional in F_{y}, hence order bounded. Therefore, $\sup u\left(\left[0, x^{\prime}\right]\right)$, which exists in $F_{y_{1}}$, must also be an element of F_{y}. Therefore, $u^{+}\left(\left(E_{x_{1}}\right)^{\prime}\right) \subset F_{y}$ and u^{+}, when considered as an element of $E_{x_{1}} \otimes F_{y_{1}}$, is the positive part of u in $E_{x_{1}} \otimes_{b} F_{y}$. Now consider u and u^{+}as compact linear maps from $\left(F_{y}\right)^{\prime}$ into $E_{x_{1}}$. By repeating the above procedure it can be shown that u^{+}can be considered as an element of $E_{x} \otimes F_{y}$ and that u^{+}is the positive part of u in $E_{x} \otimes_{b} F_{y}$.
(2) implies (4). Let $[-x, x]$ and $[-y, y]$ be infinite dimensional order intervals in E and F. If $E \otimes_{p} F$ is a lattice then so is $\left(E \otimes_{p} F\right)_{x \otimes y}$. Since $\left(E \otimes_{p} F\right)_{x \otimes y}=E_{x} \otimes_{p} F_{y}$ then we have a contradiction of Proposition 2.
(3) implies (4). Let. $[-x, x]$ and $[-y, y]$ be infinite dimensional order intervals in E and F. If $K_{b}=K_{p}$ then by c and d , $K_{b}^{x y}=\left(E_{x} \otimes F_{y}\right) \cap K_{b}=\left(E_{x} \otimes F_{y}\right) \cap K_{p}=K_{p}^{x y}$, a contradiction of Proposition 2.
(4) implies (1), (2), (3). Suppose each order interval in E is finite dimensional. Since $E_{x} \otimes_{p} F_{y}$ is lattice isomorphic to a finite
product $\prod_{i=1}^{n}\left(F_{y}\right), E_{x} \otimes_{p} F_{y}$ is a solid subset of $E \Theta_{p} F$ (by c), and $E \otimes_{p} F=U\left\{E_{x} \otimes_{p} F_{y}: x \geq 0, y \geq 0\right\}$ then $E \otimes_{p} F$ is a lattice. Since $E_{x} \otimes_{b} F_{y}$ is also lattice isomorphic to the same finite product $\prod_{i=1}^{n}\left(F_{y}\right)$, then $K_{b}^{x y}=K_{p}^{x y}$ and, by e, $K_{b}=U K_{b}^{x y}=U K_{p}^{x y}=K_{p}$. Since $E \otimes_{p} F$ is a lattice and $K_{b}=K_{p}$ then $E \Theta_{b} F$ is a lattice.

References

[1] Anthony L. Peressini, Ordered topological vector spaces (Harper and Row, New York, Evanston, and London, 1967).
[2] Helmut H. Schaefer, Topological vector spaces (The Macmillan Company, New York; Collier-Macmillan, London, 1966).

Department of Mathematics,
University of lllinois at Urbana-Champaign,
Illinois,
USA.

[^0]: Received 12 December 1972. The author thanks Professor A.L. Peressini for his interest and suggestions.

