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A note on the lattice properties

of the linear maps of finite rank

John W. Chaney

It is shown that if E is a barreled locally convex lattice and

F is a quasi-complete and order complete locally convex lattice

then E' ® F equipped with the cone of positive continuous

linear maps of finite rank is a lattice if and only if J' or

F has finite dimensional order intervals.

It is known that the space L (E, F) of order bounded linear maps

from a barreled locally convex lattice E into a quasi-complete and order

complete locally convex lattice F is a lattice when it is equipped with

the cone of positive linear maps. Since the space of continuous linear

maps of finite rank from E into F , the space represented by E' ® F ,

is a subspace of L {E, F) then it seems natural to determine when E' ® F

equipped with the cone of positive continuous linear maps of finite rank is

a lattice. Our main result will show that E' ® F is a lattice if and

only if E' or F has finite dimensional order intervals. Note that if a

Banach lattice has finite dimensional order intervals then it is finite

dimensional. Although it is perhaps expected that E' ® F is seldom a

lattice, it seems to require some effort to show this even in concrete

situations such as l~ ® Z? . Our main result provides a complete solution

to the general problem.

The biprojeotive eone in E ® F is defined by

Received 12 December 1972. The author thanks Professor A.L. Peressini
for his interest and suggestions.

343

https://doi.org/10.1017/S0004972700042635 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042635


344

Kh = lu = I x . ® y .
is 1 I* i»

€ E

John W

I < x . ,

. Chaney

*>nyv

x' > 0

t

in

) , 0

E'

for

and

a l l

v '

The biprojective cone in E' ® F coincides with the cone of positive

continuous l inear maps of f ini te rank from E into F . Also, the image

of K, under the canonical map from C(X) ® C(Y) into C(X*Y) i s the set

of posit ive functions which l i e in the range of th i s map.

Another tensor product ordering is given by the protective cone K

which is defined by

K = lu € E ® F : u = I x. ® y ., x. > 0 in E, y. > 0 in F\ .
P ^ It tt U Is J

E ® F w i l l denote E ® F equipped with K , while E 0, F wi l l

denote E ® F equipped with K, . We wi l l show that i f E and F are

quasi-complete and order complete locally convex l a t t i ces then any one of

the three conditions:

(1) E ® F i s a l a t t i c e ,

(2) E ®£ F i s a l a t t i c e ,

(3) Kb=Kp ,

i s equivalent to the condition that E or F have f in i te dimensional

order, in te rva l s .

We refer the reader to [/] for background material and notation

concerning vector l a t t i c e s . The following construction wi l l appear

frequently in t h i s work. If G is a vector l a t t i c e and x is a positive

element of G then define G to be the l inear hul l of [-x, x] . If G

i s a quasi-complete and order complete locally convex l a t t i c e then G i s

l a t t i c e isomorphic to a C(X) where AT is an extremally disconnected

compact Hausdorff space (see pages l 6 , Ilk, and 109 in [?]) . Observe that

i f E is barreled then E' i s quasi-complete for every Y topology by

(6.1) of Chapter IV in [2]. Also note that a Banach l a t t i c e with f in i te

dimensional order intervals i s f ini te dimensional.
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Lattice properties of linear maps 345

PROPOSITION 1. Let X and 7 be infinite aompaat metric spaces.

Then:

(1) C(X) ® C(Y) is not a lattice;

(2) C(X) ^ C(Y) is not a lattice;

(3) if f in C(X) and g in CU) have the property that

(range /) n (range g) is an infinite set then

is in

Proof. (l) Choose a sequence (x J in X of distinct points with

limit point cc. such that x / x for all n . Similarly choose [y )

and yn in y . Let 1 be the identically 1 function in C{2) , and

define three other positive functions / and h in C(X) and g in

C(y) such that

1

°
la*-1/
0

2l-n

i f

i f

i f

i f

"^l] if

n = 0 ,

n > 0 ,

n

n

n

= 0 ,

= 1 ,

> 1 ,

ft (a ) = i _ flx ) .K w J K n'

Let p : C(X) ® C(y) * c ( l ; C(X)) he the canonical map. Let

H = p(f ® g) v p(h ® l ) , then for m = 1, 2, ,

1 i f n = 1 ,*

H[yJ ix
n) = • l/te"'1*!) i f 1 < n < m ,

2 n - m / (2 n - 1
+ l ) i f n>m .

I t wi l l now t>e shown that {fl(i/ ) : m = 1, 2, . . . } i s l inearly independent

in C{X) . If fl(t/m) = Oj t f^ ) + . . . •*•%_!*(»„,_!) i n c (*) t h e n

evaluating th is equation at x , xo , and x- ( i S m) yields
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1 = a i + ••• + V i '

1/3= (20^ + a2 + . . .

\ + 2 * - % + . . . , + a.

These equations clearly imply that a . = 0 for 1 £ i £ m-1 , which is

impossible., Therefore, the range of H i s in f in i te dimensional in C(X) .

Since C[Y; C(X)) and C(;W) are canonically norm and l a t t i c e

isomorphic then we may consider the range of p to be contained in C(XxY)

and consider H as an element of C(X*Y) . We have jus t seen that H i s

not in the range of p .

Suppose u i s an element of C(X) ® C{Y) such that u > / ® g and

n m
u > h ® 1 . Write u - f ® g = I p. ® <?. and M - ft ® 1 = 7 s, ® t,

,7=1 J ^ fe=l " *

where p . and e, are positive elements of C(X) and q- and tj, are
3 "£ 3 **

pos i t ive elements of C(y) . Since ff £ p(w) and ff ^ p(w) then there

exis t indices e and r and (x, !/) t X * 2 such that p (a:)<7 (y) and

8 (a:)* (j/) are not zerp. Find two non-zero positive functions p in

C{X) and q in C(y) such that p and a are greater than p in

C{X) and <7 and t are greater than q in C(Y) . Since

u-p®q>f®g and w - p ® < ? > f t ® l then C(X) ® C(ZJ is not a

l a t t i c e .

(2) Let p, / , g, h, 1, H be defined as in part ( l ) . Suppose that

u > f ® g and u 2 ft ® 1 in CU) ®, C(v) . Since p(u) # fl and

p(w) > S in C(ATxy) then choose non-zero positive functions p in C(X)

and <? in C(Y) such that P(M)(X, J/) - H(x, y) > p(x)^(!/) on X x 7 .

Since M - p ® ^ > ^ ® ^ and M - p ® < 7 > f t ® l in C(AT) ®, C(J') then

C(^) ®£ C(y) is not a l a t t i c e .

(3) Suppose (range / ) n (range g) i s in f in i t e . Choose sequences

[x ) in X and [y ) in 7 of d is t inct points having dist inct l imit
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points xQ and yQ such that f[xj = g[yn) and {/(xj : n = 0, 1, . . .}
o p

i s a sequence of d i s t i n c t r e a l numbers. Let w = j ® l - 2 / ® f f + l ® #

in C{X) ® C(X) . Since p(u) = if-g)2 i n C(Xxy) then u i s in £fc .

k
However, suppose p(w)(x, j/) = [ fAx)g Ay) where /. and g. are

,7=1 J 3 3 3

positive non-zero in C(X) and C(X) > respectively. We can choose an

index r such that / (x.) > 0 since {g[y )} is a sequence of distinct

real numbers. Consequently, there exists an integer n such that if

k
n>wy then fr\xj >0 . Since 0= (/{xj-gfc/J)d = \ fjix^g^yj

(7—1

then f. [x )g-[y ) = 0 for each j because / . and g. a re non-
3 VI 0 YI 3 3

negative. But f \x ) > 0 for n > n so that a (w 1 = 0 for n > n .

Let p = max{« : / [x.) > 0} . If n > p then

2 *
If fan) ' 9&J) = I fAx

n)gAyn) = 0 • This contradicts the fact that

{ffG/^} i s a sequence of distinct real numbers. Therefore u is not in

V
PROPOSITION 2. 1 / X and 2 awe infinite extremally disconnected

aompaat Hausdorff spaces then:

(1) C(X) ̂  C(Y) is not a lattice;

(2) C(X) ® C(Y) is not a lattice;

(3) Kp**b.

Proof. Let (c.) be an infinite countable collection of distinct

clopen subsets of X , where C. # X . Let G be the closed linear hull

of the characteristic functions \n equipped with the norm of C(X) .
Ci

Let X. be the quotient of X obtained by identifying x and y when

/(x) = f(y) tor all / in G . It A is the quotient map from X into
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X. and x and y are elements of X such that Ax t Ay then there

exists a function / € G such that f(x) # f(y) . Therefore, there exists

a function <j> € iff x^ such that <f>(x) / <(>(#) , and so there exists a

clopen set C in the algebra of sets generated by (c) such that x € C

and y \ C . Thus, A(C) and d(-C) are disjoint neighborhoods of A(x)

and 4(i/) , respectively. Hence, the quotient topology on X is

Hausdorff. G is canonically norm and lattice isomorphic to c[x.) by the

Stone-Weierstrass Theorem. Since G is separable then X is an infinite

compact metrizable space. Similarly, define an infinite compact metrizable

space X as a quotient space of X .

(l) By Proposition 1, there exists an element u in c[x ) ®, C[X )

which has no positive part. Identify u with its image in C{X) ® C(X)

and suppose that the positive part of u , denoted by u , exists in

C(X) <§k C(y) . By the argument given in the last part of the proof of part

(2) in Proposition 1 the map I from C(X) ®^ C{Y) into C(X*Y)

preserves the supremum of a finite set. Therefore, l{u ] is the positive

part of J ( M ) in C(X*Y) . Since X1 x X is a quotient of X x y then

the canonical map J from C(.X xY ) into C(X*X) is a norm and lattice

isomorphism. Let K be the canonical map from C[x.) ® c[Y,) into

C[x.*X,) . Let u denote the positive part of K(u) where we consider u

as an element of C(x.) ® C ^ ) . Since J{v) = u then, when we consider

v and u as compact linear maps from c[x.) into C ^ ) and from

C(X) ' into C(i) , respectively, the diagram of Figure 1 commutes. The

unidentified maps in Figure 1 are canonical maps. Since the canonical map

from C[x. ) into C(X) is a norm isomorphism then the adjoint maps C(X) '

onto c[x j . Therefore, since the range of u is finite dimensional

then the range of v is finite dimensional. Hence, V is in the
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biprojective cone and must be the positive part of u in C\XA ®,

a contradiction.

c{x^\' 4— c{x)'

C&J Ctf)

Figure 1

(2) By Proposition 1, there exists u in c[x) ®, C(Y ) for which

no positive part exists. Identify u with its image in C{X) ® C(X) and

suppose u exists in C(.X) ® C(Y) . -By-the argument given in the last

half of part 1 in the proof of Proposition 1, u is also the positive

part of u in C(XxY) . Let v be the positive part of u in

C(.X xy.) . By the argument just given in part 1 above, u is an element

of the biprojective cone and also the positive part of u in

C[X ) <& C(y ) , a contradiction.

(3) Let / and g be functions in C[x ) and C[Y ) such that

o 2

(range f) n (range g) is infinite and let M = j ® l - 2 / ® 3 + l ® g r .

By Proposition 1, u is in the biprojective cone and not in the projective

cone in C[x^) ® C ^ ) . Suppose ^ = K in C(X) ® C(Y) , then

n
u = I /• ® ?• where the /-'s are positive elements in C(̂ T) and the

^.'s are positive elements in C(X) . Since X is extremally

disconnected then the linear hull of the characteristic functions of clopen

sets is dense in C(X) . Therefore, we can find an infinitely countable

number of clopen subsets [B.) of X such that (C.) c [B .) and the

closed linear hull H of the characteristic functions of the B. contains

the functions f , ..., f . H is canonically norm and lattice isomorphic

to C[xp) where the infinite compact metric space X is a quotient of X

and X is a quotient of X~ . Likewise, construct an infinite compact

metric space X~ such that C[Y ) contains g , ..., gn , ^ 2 is a
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quotient of Y , and Y i s a quotient of Y^ . Since X, x i s a

quotient of X^ then the canonical map I from c[x) into C[X2)

preserves the range of an element. Likewise, the canonical map K from

C[YJ) into c(y2) preserves range. In par t icular ,

(range If) n (range Kg) i s an inf ini te se t , and so by Proposition 1,

V = (If)2 ® 1 - 21 f ® Kg + 1 ® [Kg)2 i s not in the projective cone in
n

C{X)®C[Y) . However, v= \ f-®g. in C[x ) ® C[Y) , a

contradiction.

THEOREM 3. If E and F are quasi-complete and order complete

locally convex lattices then the following conditions are equivalent:

(1) E ®, F is a lattice;

(2) E ® F is a lattice;

(3) Kb'KpS

(It) E or F has finite dimensional order intervals.

Proof. Let K- , denote the positive cone in E' . The symbol £

w i l l be used to denote the order relat ion determined by K in E ® F .

a. If a; and u are positive in E and y and v are positive in

F and. OS M ® U 5 x ® y then either M £ x or u £ # .

Suppose there i s an x' in #„, such that <x ' , x-M > < 0 , then for

any y' in Kp, ,

= \«<x', x-u>(y', j/+u>+<a;', x+u><y', y-v» .

S i n c e < y ' , y - i > > > - ^ I g ^ < g ' , a + v > £ 0 t h e n y > V .

b. X n [E ® *"] C A ^ , where K3® is the projective cone from
p p «»/ P P

® F .
P «/
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n
If OS £ u. ® v. S a; ® y , where u. > 0 and u. 2 0 , then

P i=l * l P i *•

OS w. ® v. S x ® !/ . By a, suppose 0 < u. S x and choose x' in #„,
JS 1r lr U + U El

such that < x, u. > > 0 . For y' in Kv we have

<x', M • ><y', v . > S < x', xXy', y > and 0 £ (y ', y - -,—;—\ v . ) . Thust v \ " \x ,x i vi

n
V. £ F and so u. ® V. € K** and £ M . ® w. is in A ^ , and
* y i % p _̂n t t P

C< S x ® p Fy = (£®- ̂ -*' ' and

Clearly f E y N / ) ^ . By b, ̂  = *p n (E ®p f ) ^ . If

w is in (ff ® F ) ^ then -a(x ® y) S w S a(x ® y) for some a > 0 .

Therefore u + a(x ® i/) is in K n (s ® f ) ^ ^ = K^ • Since M is in

then [E ®p F ) ^ C EX ®p Fy . Since Ex ® Fy c (ff ®p F ) ^ then

they are equal.

d. #f^ = (F, ® F ) n K, , where 1C^ is the biprojective cone in

Ex%Fy

If u is in Kb n [E ® F ) then u is in Xfc n [E ® f) ; since u

is a positive linear map from F1 into S and w(F') c F, then M is a
x

positive linear map from F1 into F. . By transposition, we may consider
*c

u as a positive map from [E ) ' into F . Since u[[E ) ') c F then w

is a positive map from [E )' into F . Therefore, u is in iC^ and
*• x' y b

K,, n [E @ F ) c K^ . Since l££ is contained in X, then

n

e . Kb= U J ^ : x > 0 ,
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Tljis follows direct ly from d.

(1) implies (U). Suppose [-x, x] and [-y, y] are inf in i te

dimensional order intervals in E and F . By Proposition 2, choose u

in E ®, F such that u does not exis t . If E f t P is a l a t t i c e then

M exists in E ©, F . Find x. 2 a; and y > y such that w is in

# ®, f By d, u is the positive part of u in E ®, F

xi ^b yi r r x i ^ yi
Also, by straightforward computation u i s the positive part of u when

they are considered as compact maps from [E ) ' into F . Since
ui(E

x )') c F t h e n f o r * ' - 0 i n (^x ) ' » w(t°» * ' ] ) i s bounded and

f i n i t e dimensional in f , hence order bounded. Therefore,
y

supu([O, x']) , which exists in F , must also be an element of F .

Therefore, u ( [E )') C F and u , when considered as an element of

E ® F , i s the posit ive part of u in 2? ®, F . Now consider u

and u as compact l inear maps from [F J ' into E . By repeating the
y xi
+

above procedure it can be shown that u can be considered as an element

of E ® F and that u is the positive part of u in E ®, P .

(2) implies (U). Let [-x, a;] and [-y, y] be infinite dimensional

order intervals in E and F . If £ ® F is a lattice then so is

(ff ® F)~<&, • Since (i? ® F)~a, ~ E ® ? t h e n w e h a v e a contradiction

of Proposition 2.

(3) implies (h). Let. [-x, x] and [-y, j/] be infinite dimensional

order intervals in 2? and F . If K, = K then by c and d.,

f = [E g f ) n l = fe g y l n X = A ^ , a c o n t r a d i c t i o n of
D
 K x y D V X y ' p P

Proposition 2.

(U) implies (l), (2), (3). Suppose each order interval in E is

finite dimensional. Since E ® F is lattice isomorphic to a finite
x p y
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n
product "| f [F ) , E ® F is a solid subset of E ® F (by c), andF ) , E ® F

E ® F = U{E ® F : x > 0, y > O] then E ® F is a lattice. Since

p x p y p
n

E ®, F is also lattice isomorphic to the same finite product \\ [F ) ,
* D y i &y

then 1^=1^ and, by e, £fe = UX^ = UK** = K . Since E® F is a

l a t t i c e and K, = K then ff ®, F i s a l a t t i c e .
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