BULL. AUSTRAL. MATH. SOC. VOL. 8 (1973). 343-353.

A note on the lattice properties of the linear maps of finite rank

John W. Chaney

It is shown that if E is a barreled locally convex lattice and F is a quasi-complete and order complete locally convex lattice then $E' \otimes F$ equipped with the cone of positive continuous linear maps of finite rank is a lattice if and only if E' or F has finite dimensional order intervals.

It is known that the space $L^{b}(E, F)$ of order bounded linear maps from a barreled locally convex lattice E into a quasi-complete and order complete locally convex lattice F is a lattice when it is equipped with the cone of positive linear maps. Since the space of continuous linear maps of finite rank from E into F, the space represented by $E' \otimes F$, is a subspace of $L^{b}(E, F)$ then it seems natural to determine when $E' \otimes F$ equipped with the cone of positive continuous linear maps of finite rank is a lattice. Our main result will show that $E' \otimes F$ is a lattice if and only if E' or F has finite dimensional order intervals. Note that if a Banach lattice has finite dimensional order intervals then it is finite dimensional. Although it is perhaps expected that $E' \otimes F$ is seldom a lattice, it seems to require some effort to show this even in concrete situations such as $l_2 \otimes l_2$. Our main result provides a complete solution to the general problem.

The *biprojective cone* in $E \otimes F$ is defined by

Received 12 December 1972. The author thanks Professor A.L. Peressini for his interest and suggestions.

$$K_{b} = \left\{ u = \sum x_{i} \otimes y_{i} \in E \otimes F : \sum \langle x_{i}, x' \rangle \langle y_{i}, y' \rangle \ge 0 \text{ for all} \\ x' \ge 0 \text{ in } E' \text{ and } y' \ge 0 \text{ in } F' \right\}.$$

The biprojective cone in $E' \otimes F$ coincides with the cone of positive continuous linear maps of finite rank from E into F. Also, the image of K_b under the canonical map from $C(X) \otimes C(Y)$ into $C(X \times Y)$ is the set of positive functions which lie in the range of this map.

Another tensor product ordering is given by the projective cone K_p which is defined by

$$K_p = \left\{ u \in E \otimes F : u = \left\{ x_i \otimes y_i, x_i \ge 0 \text{ in } E, y_i \ge 0 \text{ in } F \right\}.$$

 $E \bigotimes_p F$ will denote $E \otimes F$ equipped with K_p , while $E \bigotimes_p F$ will denote $E \otimes F$ equipped with K_p . We will show that if E and F are quasi-complete and order complete locally convex lattices then any one of the three conditions:

- (1) $E \bigotimes_{p} F$ is a lattice,
- (2) $E \otimes_b F$ is a lattice,
- (3) $K_b = K_p$,

is equivalent to the condition that E or F have finite dimensional order intervals.

We refer the reader to [1] for background material and notation concerning vector lattices. The following construction will appear frequently in this work. If G is a vector lattice and x is a positive element of G then define G_x to be the linear hull of [-x, x]. If G is a quasi-complete and order complete locally convex lattice then G_x is lattice isomorphic to a C(X) where X is an extremally disconnected compact Hausdorff space (see pages 16, 114, and 109 in [1]). Observe that if E is barreled then E' is quasi-complete for every Y topology by (6.1) of Chapter IV in [2]. Also note that a Banach lattice with finite dimensional order intervals is finite dimensional.

344

PROPOSITION 1. Let X and Y be infinite compact metric spaces. Then:

- (1) $C(X) \bigotimes_{p} C(Y)$ is not a lattice;
- (2) $C(X) \otimes_{h} C(Y)$ is not a lattice;
- (3) if f in C(X) and g in C(Y) have the property that (range f) \cap (range g) is an infinite set then $u = f^2 \otimes 1 - 2f \otimes g + 1 \otimes g^2$ is in $K_h \setminus K_p$.

Proof. (1) Choose a sequence (x_n) in X of distinct points with limit point x_0 such that $x_n \neq x_0$ for all n. Similarly choose (y_n) and y_0 in y. Let 1 be the identically 1 function in C(Y), and define three other positive functions f and h in C(X) and g in C(Y) such that

$$f(x_n) = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n = 1, \\ 2^{n-1}/(2^{n-1}+1) & \text{if } n > 1, \end{cases}$$
$$g(y_n) = \begin{cases} 0 & \text{if } n = 0, \\ 2^{1-n} & \text{if } n > 0, \\ 2^{1-n} & \text{if } n > 0, \end{cases}$$
$$h(x_n) = 1 - f(x_n).$$

Let ρ : $C(X) \otimes C(Y) \neq C(Y; C(X))$ be the canonical map. Let $H = \rho(f \otimes g) \vee \rho(h \otimes 1)$, then for m = 1, 2, ...,

$$H(y_m)(x_n) = \begin{cases} 1 & \text{if } n = 1 \\ 1/(2^{n-1}+1) & \text{if } 1 < n \le m \\ 2^{n-m}/(2^{n-1}+1) & \text{if } n > m \end{cases}.$$

It will now be shown that $\{H(y_m) : m = 1, 2, ...\}$ is linearly independent in C(X). If $H(y_m) = \alpha_1 H(y_1) + ... + \alpha_{m-1} H(y_{m-1})$ in C(X) then evaluating this equation at x_1, x_2 , and x_i $(i \le m)$ yields

$$1 = \alpha_{1} + \dots + \alpha_{m-1},$$

$$1/3 = (2\alpha_{1} + \alpha_{2} + \dots + \alpha_{m-1})/3,$$

$$1/(2^{i-1}+1) = (2^{i-1}\alpha_{1} + 2^{i-2}\alpha_{2} + \dots + \alpha_{i} + \alpha_{i+1} + \dots + \alpha_{m-1})/(2^{i-1}+1).$$

These equations clearly imply that $\alpha_i = 0$ for $1 \le i \le m-1$, which is impossible. Therefore, the range of H is infinite dimensional in C(X).

Since C(Y; C(X)) and $C(X \times Y)$ are canonically norm and lattice isomorphic then we may consider the range of ρ to be contained in $C(X \times Y)$ and consider H as an element of $C(X \times Y)$. We have just seen that H is not in the range of ρ .

Suppose u is an element of $C(X) \bigotimes_{p} C(Y)$ such that $u \ge f \bigotimes g$ and

 $u \ge h \otimes 1$. Write $u - f \otimes g = \sum_{j=1}^{n} p_j \otimes q_j$ and $u - h \otimes 1 = \sum_{k=1}^{m} s_k \otimes t_k$ where p_j and s_k are positive elements of C(X) and q_j and t_k are positive elements of C(Y). Since $H \le \rho(u)$ and $H \ne \rho(u)$ then there exist indices e and r and $(x, y) \in X \times Y$ such that $p_e(x)q_e(y)$ and $s_r(x)t_r(y)$ are not zero. Find two non-zero positive functions p in C(X) and q in C(Y) such that p_e and s_r are greater than p in C(X) and q_e and t_r are greater than q in C(Y). Since $u - p \otimes q \ge f \otimes g$ and $u - p \otimes q \ge h \otimes 1$ then $C(X) \otimes_p C(Y)$ is not a lattice.

(2) Let ρ , f, g, h, l, H be defined as in part (1). Suppose that $u \ge f \otimes g$ and $u \ge h \otimes l$ in $C(X) \otimes_b C(Y)$. Since $\rho(u) \ne H$ and $\rho(u) \ge H$ in $C(X \times Y)$ then choose non-zero positive functions p in C(X) and q in C(Y) such that $\rho(u)(x, y) - H(x, y) \ge p(x)q(y)$ on $X \times Y$. Since $u - p \otimes q \ge f \otimes g$ and $u - p \otimes q \ge h \otimes l$ in $C(X) \otimes_b C(Y)$ then $C(X) \otimes_b C(Y)$ is not a lattice.

(3) Suppose (range f) \cap (range g) is infinite. Choose sequences (x_n) in X and (y_n) in Y of distinct points having distinct limit

points x_0 and y_0 such that $f(x_n) = g(y_n)$ and $\{f(x_n) : n = 0, 1, \ldots\}$ is a sequence of distinct real numbers. Let $u = f^2 \otimes 1 - 2f \otimes g + 1 \otimes g^2$ in $C(X) \otimes C(Y)$. Since $\rho(u) = (f-g)^2$ in $C(X \times Y)$ then u is in K_b . However, suppose $\rho(u)(x, y) = \sum_{j=1}^k f_j(x)g_j(y)$ where f_j and g_j are positive non-zero in C(X) and C(Y), respectively. We can choose an index r such that $f_r(x_0) > 0$ since $\{g(y_n)\}$ is a sequence of distinct real numbers. Consequently, there exists an integer n_r such that if $n \ge n_r$ then $f_r(x_n) > 0$. Since $0 = (f(x_n) - g(y_n))^2 = \sum_{j=1}^k f_j(x_n)g_j(y_n)$ then $f_j(x_n)g_j(y_n) = 0$ for each j because f_j and g_j are nonnegative. But $f_r(x_0) > 0$ for $n \ge n_r$ so that $g_r(y_n) = 0$ for $n \ge n_r$. Let $p = \max\{n_r : f_r(x_0) > 0\}$. If $n \ge p$ then $(f(x_0) - g(y_n))^2 = \sum_{j=1}^k f_j(x_0)g_j(y_n) = 0$. This contradicts the fact that $\{g(y_n)\}$ is a sequence of distinct real numbers. Therefore u is not in K_p .

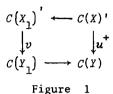
PROPOSITION 2. If X and Y are infinite extremally disconnected compact Hausdorff spaces then:

(1) $C(X) \bigotimes_{b} C(Y)$ is not a lattice; (2) $C(X) \bigotimes_{p} C(Y)$ is not a lattice; (3) $K_{p} \neq K_{b}$.

Proof. Let $\binom{C_i}{i}$ be an infinite countable collection of distinct clopen subsets of X, where $C_i \neq X$. Let G be the closed linear hull of the characteristic functions χ_{C_i} equipped with the norm of C(X). Let X_1 be the quotient of X obtained by identifying x and y when f(x) = f(y) for all f in G. If A is the quotient map from X into X_1 and x and y are elements of X such that $Ax \neq Ay$ then there exists a function $f \in G$ such that $f(x) \neq f(y)$. Therefore, there exists a function $\phi \in LH\left(\chi_{C_i}\right)$ such that $\phi(x) \neq \phi(y)$, and so there exists a clopen set C in the algebra of sets generated by (C_i) such that $x \in C$ and $y \notin C$. Thus, A(C) and A(-C) are disjoint neighborhoods of A(x)and A(y), respectively. Hence, the quotient topology on X_1 is Hausdorff. G is canonically norm and lattice isomorphic to $C(X_1)$ by the Stone-Weierstrass Theorem. Since G is separable then X_1 is an infinite compact metrizable space. Similarly, define an infinite compact metrizable space Y_1 as a quotient space of Y.

(1) By Proposition 1, there exists an element u in $C(X_1) \otimes_b C(Y_1)$ which has no positive part. Identify u with its image in $C(X) \otimes C(Y)$ and suppose that the positive part of u, denoted by u^+ , exists in $C(X) \otimes_b C(Y)$. By the argument given in the last part of the proof of part (2) in Proposition 1 the map I from $C(X) \otimes_b C(Y)$ into $C(X \times Y)$

preserves the supremum of a finite set. Therefore, $I(u^+)$ is the positive part of I(u) in $C(X \times Y)$. Since $X_1 \times Y_1$ is a quotient of $X \times Y$ then the canonical map J from $C(X_1 \times Y_1)$ into $C(X \times Y)$ is a norm and lattice isomorphism. Let K be the canonical map from $C(X_1) \otimes C(Y_1)$ into $C(X_1 \times Y_1)$. Let v denote the positive part of K(u) where we consider uas an element of $C(X_1) \otimes C(Y_1)$. Since $J(v) = u^+$ then, when we consider v and u^+ as compact linear maps from $C(X_1)'$ into $C(Y_1)$ and from C(X)' into C(Y), respectively, the diagram of Figure 1 commutes. The unidentified maps in Figure 1 are canonical maps. Since the canonical map from $C(X_1)$ into C(X) is a norm isomorphism then the adjoint maps C(X)'onto $C(X_1)'$. Therefore, since the range of u^+ is finite dimensional then the range of v is finite dimensional. Hence, v is in the biprojective cone and must be the positive part of u in $C(X_1) \otimes_b C(Y_1)$, a contradiction.



(2) By Proposition 1, there exists u in $C(X_1) \otimes_b C(Y_1)$ for which no positive part exists. Identify u with its image in $C(X) \otimes C(Y)$ and suppose u^+ exists in $C(X) \otimes_p C(Y)$. By the argument given in the last half of part 1 in the proof of Proposition 1, u^+ is also the positive part of u in $C(X \times Y)$. Let v be the positive part of u in $C(X_1 \times Y_1)$. By the argument just given in part 1 above, v is an element of the biprojective cone and also the positive part of u in $C(X_1) \otimes_b C(Y_1)$, a contradiction.

(3) Let f and g be functions in $C(X_1)$ and $C(Y_1)$ such that (range f) \cap (range g) is infinite and let $u = f^2 \otimes 1 - 2f \otimes g + 1 \otimes g^2$. By Proposition 1, u is in the biprojective cone and not in the projective cone in $C(X_1) \otimes C(Y_1)$. Suppose $K_b = K_p$ in $C(X) \otimes C(Y)$, then $u = \sum_{i=1}^{n} f_i \otimes g_i$ where the f_i 's are positive elements in C(X) and the g_i 's are positive elements in C(Y). Since X is extremally disconnected then the linear hull of the characteristic functions of clopen sets is dense in C(X). Therefore, we can find an infinitely countable number of clopen subsets (B_i) of X such that $(C_j) \subseteq (B_i)$ and the closed linear hull H of the characteristic functions of the B_i contains the functions $f_1, \ldots, f_n \in H$ is canonically norm and lattice isomorphic to $C(X_2)$ where the infinite compact metric space X_2 is a quotient of Xand X_1 is a quotient of X_2 . Likewise, construct an infinite compact metric space Y_2 such that $C(Y_2)$ contains g_1, \ldots, g_n , Y_2 is a quotient of Y, and Y_1 is a quotient of Y_2 . Since X_1 is a quotient of X_2 then the canonical map I from $C(X_1)$ into $C(X_2)$ preserves the range of an element. Likewise, the canonical map K from $C(Y_1)$ into $C(Y_2)$ preserves range. In particular, (range If) \cap (range Kg) is an infinite set, and so by Proposition 1, $v = (If)^2 \otimes 1 - 2If \otimes Kg + 1 \otimes (Kg)^2$ is not in the projective cone in $C(X_2) \otimes C(Y_2)$. However, $v = \sum_{i=1}^n f_i \otimes g_i$ in $C(X_2) \otimes C(Y_2)$, a contradiction.

THEOREM 3. If E and F are quasi-complete and order complete locally convex lattices then the following conditions are equivalent:

- (1) $E \otimes_{h} F$ is a lattice;
- (2) $E \bigotimes_{n} F$ is a lattice;
- (3) $K_h = K_n$;
- (4) E or F has finite dimensional order intervals.

Proof. Let $K_{\overline{E}}$, denote the positive cone in E'. The symbol $\leq p$ will be used to denote the order relation determined by K_p in $E\otimes F$.

a. If x and u are positive in E and y and v are positive in F and $0 \leq u \otimes v \leq x \otimes y$ then either $u \leq x$ or $v \leq y$.

Suppose there is an x' in $K_{E'}$ such that $\langle x', x-u \rangle < 0$, then for any y' in $K_{F'}$,

$$0 \leq \langle x' \otimes y', x \otimes y - u \otimes v \rangle$$

= $\frac{1}{2} \langle \langle x', x - u \rangle \langle y', y + v \rangle + \langle x', x + u \rangle \langle y', y - v \rangle \rangle$.

Since $\langle y', y-v \rangle \ge -\frac{\langle x', x-u \rangle}{\langle x', x+u \rangle} \langle y', y+v \rangle \ge 0$ then $y \ge v$.

b. $K_p \cap (E \otimes_p F)_{x \otimes y} \subseteq K_p^{x y}$, where $K_p^{x y}$ is the projective cone from $E_x \otimes_p F_y$.

If $0 \leq_p \sum_{i=1}^n u_i \otimes v_i \leq_p x \otimes y$, where $u_i \geq 0$ and $v_i \geq 0$, then $0 \leq_p u_i \otimes v_i \leq_p x \otimes y$. By **a**, suppose $0 < u_i \leq x$ and choose x' in K_E' , such that $\langle x, u_i \rangle > 0$. For y' in K_F we have

c.
$$E_x \bigotimes_p F_y = (E \bigotimes_p F)_{x \otimes y}$$
, and $K_p^{x \otimes y} = K_p \cap (E_x \otimes F_y)$.

Clearly $K_p^{xy} \subseteq K_p \cap (E \otimes_p F)_{x \otimes y}$. By b, $K_p^{xy} = K_p \cap (E \otimes_p F)_{x \otimes y}$. If u is in $(E \otimes_p F)_{x \otimes y}$ then $-\alpha(x \otimes y) \leq_p u \leq_p \alpha(x \otimes y)$ for some $\alpha > 0$. Therefore $u + \alpha(x \otimes y)$ is in $K_p \cap (E \otimes_p F)_{x \otimes y} = K_p^{xy}$. Since u is in $E_x \otimes F_y$ then $(E \otimes_p F)_{x \otimes y} \subseteq E_x \otimes_p F_y$. Since $E_x \otimes F_y \subseteq (E \otimes_p F)_{x \otimes y}$ then they are equal.

d. $K_b^{xy} = (E_x \otimes F_y) \cap K_b$, where K_b^{xy} is the biprojective cone in $E_x \otimes_b F_y$.

If u is in $K_b \cap (E_x \otimes F_y)$ then u is in $K_b \cap (E_x \otimes F)$; since u is a positive linear map from F' into E and $u(F') \subseteq E_x$ then u is a positive linear map from F' into E_x . By transposition, we may consider u as a positive map from $(E_x)'$ into F. Since $u((E_x)') \subseteq F_y$ then u is a positive map from $(E_x)'$ into F_y . Therefore, u is in K_b^{xy} and $K_b \cap (E_x \otimes F_y) \subseteq K_b^{xy}$. Since K_b^{xy} is contained in K_b then $K_b^{xy} = K_b \cap (E_x \otimes F_y)$. e. $K_b = \bigcup \{K_b^{xy} : x \ge 0, y \ge 0\}$. This follows directly from d.

(1) implies (4). Suppose [-x, x] and [-y, y] are infinite dimensional order intervals in E and F. By Proposition 2, choose u in $E_x \otimes_b F_y$ such that u^+ does not exist. If $E \otimes_b F$ is a lattice then u^+ exists in $E \otimes_b F$. Find $x_1 \geq x$ and $y_1 \geq y$ such that u^+ is in $E_{x_1} \otimes_b F_{y_1}$. By d, u^+ is the positive part of u in $E_{x_1} \otimes_b F_{y_1}$. Also, by straightforward computation u^+ is the positive part of u when they are considered as compact maps from $(E_{x_1})'$ into F_{y_1} . Since $u((E_{x_1})') \subset F_y$ then for $x' \geq 0$ in $(E_{x_1})'$, u([0, x']) is bounded and finite dimensional in F_y , hence order bounded. Therefore, supu([0, x']), which exists in F_{y_1} , must also be an element of $E_{x_1} \otimes F_{y_1}$, is the positive part of u in $E_{x_1} \otimes_b F_y$. Now consider u and u^+ as compact linear maps from $(F_y)'$ into E_{x_1} . By repeating the above procedure it can be shown that u^+ can be considered as an element of $E_x \otimes F_y$ and that u^+ is the positive part of u in $E_x \otimes_b F_y$.

(2) implies (4). Let [-x, x] and [-y, y] be infinite dimensional order intervals in E and F. If $E \bigotimes_p F$ is a lattice then so is $(E \bigotimes_p F)_{x \bigotimes y}$. Since $(E \bigotimes_p F)_{x \bigotimes y} = E_x \bigotimes_p F_y$ then we have a contradiction of Proposition 2.

(3) implies (4). Let. [-x, x] and [-y, y] be infinite dimensional order intervals in E and F. If $K_b = K_p$ then by c and d, $K_b^{xy} = (E_x \otimes F_y) \cap K_b = (E_x \otimes F_y) \cap K_p = K_p^{xy}$, a contradiction of Proposition 2.

(4) implies (1), (2), (3). Suppose each order interval in E is finite dimensional. Since $E_x \bigotimes_p F_y$ is lattice isomorphic to a finite

352

product $\prod_{i=1}^{n} (F_y)$, $E_x \bigotimes_p F_y$ is a solid subset of $E \bigotimes_p F$ (by c), and $E \bigotimes_p F = \bigcup \{E_x \bigotimes_p F_y : x \ge 0, y \ge 0\}$ then $E \bigotimes_p F$ is a lattice. Since $E_x \bigotimes_p F_y$ is also lattice isomorphic to the same finite product $\prod_{i=1}^{n} (F_y)$, then $K_b^{xy} = K_p^{xy}$ and, by e, $K_b = \bigcup K_b^{xy} = \bigcup K_p^{xy} = K_p$. Since $E \bigotimes_p F$ is a lattice and $K_b = K_p$ then $E \bigotimes_b F$ is a lattice.

References

- [1] Anthony L. Peressini, Ordered topological vector spaces (Harper and Row, New York, Evanston, and London, 1967).
- [2] Helmut H. Schaefer, Topological vector spaces (The Macmillan Company, New York; Collier-Macmillan, London, 1966).

Department of Mathematics, University of Illinois at Urbana-Champaign, Illinois, USA.