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Abstract

Mathematical and computational techniques are described for constructing and enumerating gener-
alized Bhaskar Rao designs (GBRD's). In particular, these methods are applied to GBRD(k +
l,k,l(k - 1); G)'s for / > 1. Properties of the enumerated designs, such as automorphism groups,
resolutions and contracted designs, are tabulated. Also described are applications to group divisible
designs, multi-dimensional Howell cubes, generalized Room squares, equidistant permutation arrays,
and doubly resolvable two-fold triple systems.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 05, 05 B 15, 05 B 25, 68 E 10.

1. Introduction

A balanced incomplete block design, BIBD(t>,b,r,k,X) is an arrangement of v
elements into b blocks such that (i) each element appears in exactly r blocks; (ii)
each block contains exactly k (< v) elements, (iii) each pair of distinct elements
appear together in exactly X blocks. Well known necessary conditions for a
BIBD(v, b, r, k, X) to exist are vr = bk and X(v - 1) = r(k - 1). Because of this
dependence we shall use the abbreviated notation BIBD(v, k,X) to denote a
BIBD(v, b, r, k, X). If in the definition of a BIBD we do not require uniform
block size (property (ii)), we obtain a so-called (r, X)-design.

Two BIBD(v, k, X)'s D1 and D2 with element sets V1 and V2 respectively, are
said to be isomorphic if there is a bijection 0: Vx -» V2 such that { JC1; . . . , xk} is a
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6 Peter B. Gibbons and Rudolf Mathon [ 21

b lock of Dl if a n d only if {8(x1),...,^(JC^)} is a block of D2. A n automorphism
of a BIBD is an isomorphism of the BIBD with itself. T h e set of all automor-
ph i sms , u n d e r the usual composi t ion of mappings , forms the automorphism group
of the BIBD.

A generalized Bhaskar Rao design is defined as follows. Let W be a v X b
matrix with elements from G U {0}, where G = {hx = e, h2,..., hg} is a finite
group of order g. Then W can be expressed as a sum W = hxAx + • • • + hgAg,
where Ax,...,Ag are J> X b (0,l)-matrices such that the Hadamard product
AfAj = 0 for any i =£ j . Denote by W+ the transpose of hllAx + • • • +h~1Ag and
let N = Ax + • • • +Ag. Then W is a generalized Bhaskar Rao design denoted by
GBRD(v, b,r,k,X;G) if

(i) WJV+= rel + X/g(hx + ••• +hg)(J - I),
(ii) NNT = (r - X)I + XJ.
The second condition merely prescribes that N be the incidence matrix of a

BIBD(v, b, r, k, X). Because of the parameter dependencies for BIBD mentioned
above we shall use the shorter notation GBRD(v, k, X; G) for a generalized
Bhaskar Rao design.

A GBRD(v, k, X; G) with v = b is a symmetric GBRD or generalized weighing
matrix. If W has no 0 entries then the, GBRD is also known as a generalized
Hadamard matrix.

A group-divisible design, GDD(v X g,k,X) is an incidence structure (X, B)
consisting of a set X, \X\ = vg, partitioned into v disjoint g-subsets (groups),
X = Xx U • • • UXv, and a collection B of fc-subsets of X (blocks) such that

(i) each point x e X is incident with r blocks,
(ii) \L O *,! < 1 for every block L e B and / = 1 , . . . , v,
(iii) if x e Xt, y e A ,̂ i # _/, there are exactly X blocks incident with x and y.
If | £ | = bg, then &t = ™, and Xg(v - 1) = /•(& - 1). A GDD(v X g, A:, X)

with g = 1 is a BIBD(v, k, X). GDD isomorphism is defined in the same way as
BIBD isomorphism.

From a GBRD(v, k, X; G), \G\ = g, we can form a GDD(v X g, A;, X/g) as
follows. For any h e G let PA denote the corresponding g X g permutation
matrix, Phi + ••• +Ph =J.lf W is the v X b matrix of a GBRD let JV be the
vg X Z>g (0, l)-matrix obtained from W by replacing any group element h by Ph

and any 0 entry by a g X g all-zero matrix. Then N is the incidence matrix of a
GDD(v X g, *, X/g).

Two GBRD(v, k,X;G)'sW and W are isomorphic if there exist two G-permu-
tation matrices P and £)> and an automorphism a of the group G such that
W = Pa(W)Q. The isomorphism itself will be denoted by the triple (P, a, Q). It
is probably instructive at this point to see how such an isomorphism preserves the
GBRD property that for any two rows w{, w- (i ¥=j) of W, w'i*(wjY1 =
X/g(hx,..., hg). Clearly, the rearrangement of rows and columns of W preserves
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[ 31 Construction methods for Bhaskar Rao and related designs 7

the property, so let us concentrate on the effect of applying the automorphism a
to each entry of W, and then pre-multiplying each row i by xt e G, and
post-multiplying each column h by yh e G. For / ¥= j we have

w't *{WJ) = E xi°(wth)yh * (*,°(W>A)yn)

A - l

6

/i = l

= XjO\ 2 ^ w,-Aw-A I;
U-i /

The operations carried out in the above proof will be applied extensively in the
isomorph rejection procedures to be discussed in Section 3.

An isomorphism of W with itself is called an automorphism of W. The set of
automorphisms of a GBRD form a group T under the operations of matrix
multiplication and mapping composition, i.e., if (i\,<*i,<2j) and (P2>O2>Qi) a r e

two automorphisms, then so is (Pi,P2>ola2,QiQ2)- Note that T contains a
subgroup isomorphic to G, since for any d e G , (Dh, ah, Dh i) e T, where oh(w)
is the inner automorphism h~xwh of G, and Dh is an /i-diagonal matrix.

We note that every automorphism of a GBRD is an automorphism of the
underlying GDD, but that the converse is not true in general.

A design (X, B) (which can be a BIBD, a GDD, or an (r, X)-design) is said to
be resolvable if there exists a partition R of the set of blocks B into subsets
RV...,RU, called parallel classes, such that each /?, is a partition of X Two
resolutions R = {Rlt...,Ru}, R' = {R[,..., R'u} of a design (X, 5) are orthog-
onal if |/?,:n R'j\ < 1 for all /', j = 1,...,«. A design with two orthogonal
resolutions is called doubly resolvable.

Bhaskar Rao designs have been studied by a number of authors. For example,
Bhaskar Rao [1], Street and Rodger [25], and Seberry [22] have examined such
designs in connection with the construction of partially balanced block designs.
Generalized Hadamard designs have been studied by Butson [2, 3], and by
Shirkhande [24] in connection with combinatorial designs, by Delsarte and
Goethals [5] in connection with codes, and by Drake [7] in connection with
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8 Peter B. Gibbons and Rudolf Mathon [4]

X-geometries. Generalized weighing matrices were first introduced by Yates [29]
in connection with determining the accuracy of measurements. Since then they
have been studied extensively [8, 9,13, 26, 27].

In this paper we shall study GBRD's based on /-multiples (/ > 1) of the unique
BIBD with blocksize k, v = k + 1 and A = k — 1 (i.e. the complement of the
complete BIBD(v, 1,0)). A necessary condition for the existence of a GBRD(k +
1, k, Ik - /; G) is that g = \G\ divides l(k - 1).

2. Existence

Two infinite families of GBRD(k + 1, k, Ik — /; G)'s are known to exist. One
arises from cyclotomic classes in finite fields, while the second can be constructed
from projective planes containing a Baer subplane. In this section we describe the
direct constructions which produce these families. We conclude the section with
two methods for constructing new GBRD 's from old ones. These latter construc-
tions are described in the form of Theorems 1 and 2.

Construction 1
This construction produces generalized weighing matrices and corresponds to

the case / = 1 [9,14,16, 23].
Let q = mt + 1 be a prime-power and let a be a primitive root in the finite

field GF(q) with elements av..., aq. Consider the partition of GF{q) into m + 1
so-called cyclotomic classes Co, C1 ( . . . , Cm defined as follows:

Let A be the q X q symmetric matrix with a zero diagonal and off-diagonal
entries wtJ = hs if and only if a, — aj e Cs for some s, 1 < s < m, 1 < /, j < q.
Then the matrix W = [° eJ], eT = ( 1 , . . . , 1) is a GBRD(q + 1, q, q - 1; G), where
G = {hly...,hm} is a cyclic group of order w,/i, = B*'1, i = 1 , . . . , m, Bm = B°
= 1.

We make a few observations.
1. If m — 2 and G = {1,-1} under multiplication, then the matrix W of a

GBRD(k + 1, k, k — 1; G) is called a conference matrix. Several other construc-
tions are known for conference matrices yielding other families of GBRD's (see
[12,15]).

2. If q = r2 is a square and m = r + 1, then this construction can be extended
to any group G of order m, since v4 corresponds to an affine plane of order r.

3. A family of GBRD(k + 1, k, k - 1; G)'s with k not a prime-power can be
constructed from so-called pseudo-cyclic association schemes [14,16]. Here k =
2m"1(2m - 1) and G is a cyclic group of order g = 2"1"1, m > 3. So, for example,
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if m = 3 we obtain a GBRD(29,28,27; (?) (see [16]):

A-
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- { i , « , s } ,
.e A

where A,..., F are the symmetric circulant matrices

2 ? = = ( ( O 6 J ' l { o l l { o l < o ) f - ( l u ( o w l l w ( o u )

and u is a cube-root of unity, w = w2.

Construction 2
A family of GBRD(k + 1, k, Ik — 1; G)'s with I = k can be constructed from

certain projective planes [22, 28].
Let II be a projective plane of order q2 and let II ' c II be a Baer subplane of

order q, where q is a prime power. Given a point P in II', there are exactly q + 1
lines Lv..., Lq+1 in II incident with P which intersect II ' in q + 1 points. Let
Xj be the set of q2 - q points of L, not in II', i = 1, . . . , q + 1. Since II ' is a
Baer subplane every line of II is incident with q + 1 or 1 point of II'. For every
point Qj: =t P of II ' let Bj be the set of q2 — q lines of II incident with the single
point Qj of IT, j = 1,2,..., q2 + q. Then (X, B) is a GDD((q + 1) X (#2 -
<jr), q, 1), where .Y = Xl U • • • UAr

(/+1, B = BjU • • • UBqi+q. If II is a transla-
tion plane then the partitions of X and B induce a GBRD{q + \,q, q2 — q; G)
where G is a nonabelian group of order q2 — q. This group is isomorphic to the
semi-direct product of the multiplicative and additive groups of GF(q) generated
by the transformations of the form ax + b, a,b e GF(q), fl#O.

Again, let us make a few comments.
1. Any GDD given by Construction 2 is highly resolvable. In fact, in such a

GDD there exists a set of q2 — q mutually orthogonal resolutions. To see this let
S be the set of points in II not incident with any of the lines Lv..., Lq+1, and
let K be the set of lines in II incident with P and no other point of II'. Clearly,
|5 | = q4 — q3, \K\ = q2 — q, and every line in AT is incident with exactly q2

points of S, say Sv...,Sq2. Since II is a projective plane, the blocks B[ c B
incident with St (restricted to X) form a parallel class, and B[ U • • • UBq2 = B,
\B't n Bj'\ = 0, j #7, form a resolution of the GDD. Moreover, two distinct lines
of K induce two resolutions which are mutually orthogonal. Conversely, given a
GDD((q + 1) X (q2 - q),q, 1) together with q2 - q mutually orthogonal resolu-
tions we can reconstruct II and II'.
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10 Peter B. Gibbons and Rudolf Mathon [61

Numbers and properties of generated Bhaskar Rao designs

Parameters

6,5,4

6,5,4

6,5,8

6,5,8

6,5,8
Z2 x

6,5,8

6,5,8

6,5,8

6,5,8

z4
Z 2

Z8

» 4

z4

z*

Q

z:

6,5,8^2*+

Design

B
—

—
—
C

D2

El

E2

*

* i

* 2

«>3

• 4

Qt

Q2

a3
Q4

480

96

192
192

48
48

24

48
32
24
32

96
24
48
96

Rep. blocks

I6

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

D

d
d

11 classes Resolutions Contractions

A

*.*l.Sl,2.3

*2,*3,Ql,Q2

*3,$4,a2,a4
* 3 , f i 2

*3,«2

a,
a,,a2,a3

a2
n2,a4

+ Not a complete enumeration—designs are contractions of other designs.
*+The total number of these designs is 19

Parts of this table require some explanation. Firstly, the repeated block
structure of a GBRD is indicated using the notation af',..., a?'. This means that
bt blocks are repeated at times, 1 < / < /. In the column labelled D, a d indicates
the design is decomposable. The actual decompositions are displayed in the
appendices. Also in the table the numbers of distinct (rather than non-isomorphic)
parallel classes and resolutions of the underlying GDD's are displayed. The
normal subgroups used to produce the listed contractions are detailed in the
table on the opposite page.

Before moving on to discuss various interesting structures which arise from
these generated designs, let us first briefly explain how some of their properties
were determined. Recall that our generation procedure does not incorporate a
complete isomorph rejection procedure. To partition the output designs into their
isomorphism classes we therefore applied the BIBD isomorphism procedure
described in [10,11] to the underlying GDD's. A strong invariant for this purpose
was provided by a clique analysis of the designs, omitting intersections among
blocks belonging to the same block orbit.
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[7] Construction methods for Bhaskar Rao and related designs 11

Derivation of Contracted Designs

Group

Z4

z6

S3

z2 x z4

z\

Q
Z 2

Parent Design

Any

Any
Any

Any

C

Di
D2

F

•1
*2

$ 3

«>4

Normal Subgroup(s)t

{1,/U}

{l,«},{l,/8}

{!,«}, {!,«}
{l,«},{l,a}

{1.*}

{l,a},{l,/8},{l,y}
{I,a},{l,j8}

{!,«}, {1,0}

Contracted Design(s)

As above
As above
As above

As above

*2,*3

*3,«>4

$ 3

B1,B2,fl3

n2
a4,n2

+ Only those that produce non-isomorphic designs.

The automorphism groups of the GBRD 's were similarly obtained by applying
the BIBD automorphism group generator program of [10, 11] to the underlying
GDD's. Care, of course, needs to be taken to ensure that we only consider
automorphisms which preserve block orbits. However, in only one case, the
GBRD(4,3,6; Z6) G5, was the group of the GBRD different from that of the
underlying GDD. In this case the group orders are 144 and 1296 respectively.

Note that a GBRD(v, k, \; Gx) and a GBRD(v, k, X; G2) over different groups
Gx and G2 of the same order g may produce isomorphic GDD(v X g, k, X)'s.
Two examples of this are the GDD's arising from G9 and G10 over Z6. These are
isomorphic to the GDD's arising from H5 and H3, respectively, over S3.

In determining the numbers of parallel classes and resolutions of a GDD, a
clique-finding program was again of some help. Suppose we have a GDD(v, k,\)
D with b blocks, where v/k = u and b/u = w. Form the block intersection graph
GB in which the vertices represent the blocks of D, and in which vertices i and j
are adjacent if and only if blocks i and j are disjoint. Then a M-clique in GB

corresponds to a parallel class in D.
Having obtained all w-cliques in GB we now form the parallel class intersection

GP in which the vertices represent the set of parallel classes, with two vertices
adjacent if and only if the associated parallel classes are disjoint. A w-clique in GP

corresponds to a resolution of D.
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12 Peter B. Gibbons and Rudolf Mathon [8l

2. Applying Construction 2 to the translation plane of order 9, or to its dual,
yields a GBRD(4,3,6; S3). It is listed in the Appendix as design Hv The blocks of
the corresponding GDD(4 X 6,3,1) are resolvable in t = 6 mutually orthogonal
ways. This yields a 6-dimensional generalized Howell cube of side r = 9, order
v = 24, and uniform block size k = 3, achieving a conjectured upper bound of
t — r — k on the dimension f of such a cube. We note that every pair of elements
is contained in at most one block of the cube (see Rosa [21]).

We now describe two methods for constructing new GBRD's from old ones.
The first method can be used to construct a large number of GBRD's with I = k.

THEOREM 1. Suppose there exists a GBRD(k + 1, k, k — 1; G) and a
GBRD(k, k, k; H) for some k > 1. Then there exists a GBRD(k + 1, k, k2 - k;
G X H), where G X H is the direct product of G and H.

PROOF. Form a matrix W by taking k identical copies of W, a GBRD(k +
l,k,k- 1; G), and denote by W( the k columns of W containing a 0 in the /th
position. Subscript the k X k non-zero submatrix of W( by the entries of V, a
GBRD(k, k, k; H), for i = 1,2,..., k + 1. From the properties of W and V it
follows that the resulting matrix with entries gh, g e G, h e H forms a GBRD(k
+ 1, k, k2 - k; G X H) if the product ghg'h is interpreted as (gg')hh. We note
that the designs V used to subscript W{ do not have to be identical or even
isomorphic.

If k = q is a prime power then a generalized Hadamard matrix corresponding
to a GBRD(q, q,q;H) can be constructed from an affine plane of order q, and a
GBRD(q +1 ,q ,q — l ;G)is given by Construction 1. For q = 3 this yields the
GBRD(4,3,6; Z6) G5 listed in the appendices.

We conclude this section with another method for constructing new GBRD's
from old ones.

THEOREM 2. Let Wbe a GBRD(v, k, X; G) and suppose that G contains a normal
subgroup T. Then there exists a GBRD(v, k, X; H), where H = G/T is the factor
group of G with respect to T.

PROOF. Use the homomorphism from G to H with kernel T to obtain W from
W. It is easily verified that W' is a GBRD.

The new GBRD W will be called a contraction of W with respect to T. We
note that choosing different normal subgroups of the same order in W may lead
to non-isomorphic contractions W (see, for example, the GBRD(6,5,8; Z2 X Z4),
C in the appendices).
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[9 ] Construction methods for Bhaskar Rao and related designs 13

3 . Enumeration

In this section we shall describe a computational method for enumerating
non-isomorphic GBRD 's with fixed parameters v, k, X and G. This method was
implemented in the programming language Algol W on an IBM 3033 computer,
and was used to enumerate the family of GBRD(k + 1, A:, l(k - 1); G)'s listed in
the appendices.

Recall from Section 1 that any GBRD(v, k, X; G) is based on the incidence
matrix N of a BIBD(v,k,X). A necessary condition for two GBRD's to be
isomorphic is that their underlying BIBD's be isomorphic. A first step, then, in
our procedure for enumerating GBRD's is to enumerate the underlying BIBD's
using techniques such as those described by Gibbons, Mathon and Corneil [10,
11]. Then our GBRD enumeration algorithm accepts N, in addition to the
parameters v, k, X and G, and enumerates all GBRD's with this parameter set.

In the case of a GBRD(k + 1, k, l(k - 1); G) the underlying BIBD(k +
1, k, l(k — 1)) is unique up to isomorphism. The copy of N used by our algorithm
must be permuted so that identical columns (corresponding to repeated blocks)
are grouped together to form N-cells. This cell structure is used to implement
isomorph rejection procedures which we shall describe shortly.

The construction algorithm is a 2-level backtrack procedure based on the idea
of an orderly algorithm as introduced by Read [19]. We begin by defining an
ordering hx < h2 < • • • < hg on the elements of G, and then proceed to con-
struct W row by row, replacing the " 1 " entries of N by elements from the group
G s u b j e c t t o t h e c o n s t r a i n t T.*-IWU(WJI)~

1 = X/g(h1 + ••• + h g ) ( f o r i ¥* j ) .
Individual rows are considered in strictly increasing lexicographical order, with
the result that any completed matrices will also be output in increasing order.

This simple algorithm, as it stands, would be impractical for most problems
unless some form of isomorph rejection procedures were implemented. For this
purpose let us define the canonical representative of a class C of GBRD's based
on N as the minimum design in C. We would like our algorithm to generate only
designs which are canonical representatives of their isomorphism classes.

To accomplish this we rely on the fact that the output GBRD's are produced in
increasing lexicographical order. To each generated design D we apply a minimi-
zation operation m which transforms D to an isomorphic (and hopefully smaller)
design m(D). If m(D) < D, then D can be rejected since it is isomorphic to a
design considered earlier in the search. This rejection check can also be applied to
partially completed designs. In fact such early checks are crucial in developing an
effective enumeration algorithm.

If m(D) turns out to be the canonical representative of Z>'s isomorphism class,
then we have a complete isomorph rejection procedure, i.e. our algorithm will
produce only canonical representatives from the set of isomorphism classes. For
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14 Peter B. Gibbons and Rudolf Mathon [10]

various practical reasons we stopped a little short of implementing such a
complete rejection procedure, while still maintaining an effective rejection rate.

Suppose that the matrix N has iV-cells c,, i = 1,. . . , / , where nmh = nmj for
h, j e c, and m = 1,. . . , v, and suppose that we have constructed W, the first /
rows (0 < t < v) of W. We define the set Ft+l = { f{. i; = 1,.. . , m } of W-cells as
follows: /, j e fh if and only if i, j e cp for some 1 < p < /, and wm, = wmj for
1 < m < /. That is, W-cells correspond to consecutive (partially completed)
repeated blocks in the GBRD under construction. Note that the IP-cell partition-
ing is a refinement of the JV-cell partitioning.

We observe now that in constructing row t + 1, for any /,;' e fh (i < j) we can
stipulate »v,+1 , <

 wt+i,j- For ^ wt+i,t > wt+ij w e could swap columns /' and j in
W'+1 to obtain an isomorphic partial configuration strictly less than the current
one. In other words, when constructing row t + 1, group elements in columns
belonging to the same W-cell are placed in non-decreasing order.

Our second observation concerns a non-zero element w,- • for which either
nih = 0 for 1 < h < j , or nhj, = 0 for 1 < h < i. Such a row (respectively,
column) header can be set equal to e, since if we set it to x (# e) we can pre-
(post-) multiply the row (column) of W by x~l to produce an isomorphic matrix
W < W.

The third check carried out is more involved. Let H be the automorphism
group of N and let Ht be the subgroup of H which permutes the first t rows
among themselves. Actually, in H we shall omit consideration of reorderings of
columns within cells. The implications of this simplification will become apparent
later.

Also let A be the automorphism group of the given group G, and define a
minimization operation m as follows. Suppose W represents the first t rows of
W. Then m(W) is formed from W as follows:

(i) Scan W row by row, from left to right. For each row (column) header
Wjj = x, reduce w/y to e by pre- (post-) multiplying row / (column j) by
J C " 1 .

(ii) Sort the columns of each iV-cell in the resulting matrix into non-decreasing
order.

Now suppose our algorithm has constructed W. Then this partial configura-
tion may be rejected, forcing a backtrack, if there exists a e A, <p e H, such that
m((p(o(W'))) < W. In terms of our algorithm, this means checking every o e A
and every <p e H, to see whether m(<p(a(W'))) < W.

This turns out to be an effective isomorph rejection procedure. However, it is
not complete, for the following reasons. Suppose, just before the minimization
step described above, we have a matrix {W')' in which there is a row header w[j
(1 < i < t) which belongs to a If-cell / e F'. To obtain true minimal form we
must in turn reduce each entry in / to e, sort entries within the same W-cell, and
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[11] Construction methods for Bhaskar Rao and related designs 15

select the reduction that produces the smallest row /. In the case that all row
headers belong to cells of size 1, our rejection procedure is complete. However,
because of its complexity we decided against implementing the full check for row
header cells of size > 1.

Results from the application of this algorithm are described in the following
section, and also in the appendices

We conclude this section by mentioning briefly an extension of this eumerative
technique to the construction of BIBD's which contain a subgroup of the
automorphism group of a specified type.

Suppose we are interested in enumerating all BIBD(v, b, r, k, A)'s containing a
subgroup G of order g of the automorphism group. Let us represent the group G
additively, and assume that g | v and g \ b. Then in the designs we are looking for,
the v elements partition into v/g (= n, say) orbits of size g under the action of
G. In fact each such design can be represented by s (= b/g) base blocks and can
be generated by applying the elements of G to these base blocks. Our task will be
to construct this set of base blocks.

We begin by considering the n X s intersection matrix N, where each element
ntJ is defined as the number of elements from orbit i contained in base block j ,
1 < i; < n, 1 < j; < s. N must satisfy the following constraints.

(i) Ej"=1n,7 = k, 1 < j ; < s, i.e. each block must contain k elements.
(ii) Ey_!W/j: = r, 1 < / < n, i.e. each element occurs in r blocks.
(iii) E/=1«?/ - «,/ = A(g — 1), 1 < / < n, i.e. each pair of elements from the

same orbit (or pure pair) must occur together in exactly A blocks.
(iv) £/_!«,/«,/ = Ag, 1 < z <y < «, i.e. each pair of elements from different

orbits (or mixed pair) must occur together in exactly A blocks.
A necessary condition for two of the BIBD(v, b, r, k, A)'s under consideration

to be isomorphic is that the underlying N matrices be isomorphic. We therefore
commence our enumeration by generating all non-isomorphic such N matrices
with the given constraints. This can be done by adapting the backtrack and
isomorph rejection techniques described earlier in this section. The larger the
group G is, the smaller the matrix N will be in relation to the incidence matrix of
the BIBD. In many cases, with a non-trivial group G, we can carry out perfect
isomorph rejection techniques at this stage. However, in the extreme case where
g = 1 (i.e. where we assume only the existence of the identity automorphism), the
matrix N simply coresponds to the incidence matrix of a BIBD(v, b, r,k,X) so
that our enumeration algorithm will produce all BIBD's with these parameters.

In the second stage of the enumeration we input each N matrix into a
generalization of the algorithm described at the beginning of this section. The
main difference here is that the entries in N are not restricted simply to having
the values 0 or 1. Instead each entry ntj satisfies the constraint 0 < ntj < k. Our
task is to 'fill' each entry n^ with n^ elements from group /, subject to the
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constraint that all pure and mixed differences are covered exactly A times. As
with our previous algorithm, isomorph rejection can be achieved by applying
elements from the automorphism group of N, in combination with permutations
from the group G, to each generated matrix W. We are careful to order the group
elements filling each entry ntj both during construction and after applying
isomorphisms.

The orbit structure mentioned above can be generalized in many ways. For
example, take the BIBD(45, 99, 11, 5, 1) and assume the existence of a
(necessarily cylic) group G of order 11. Then under the action of G the 45
elements partition into a fixed element and 4 orbits of size 11. Our intersection
matrix in this case represents the structure of 8 base blocks of size 5 and 1 base
block of size 4 (omitting the fixed element).

Using the described algorithm we first generated a total of 13 non-isomorphic
intersection matrices with this structure. However, none of these matrices could
be used to produce a complete design with the prescribed group structure. The
conclusion, then, is that there exists no BIBD(45, 99, 11, 5, 1) with an automor-
phism of order 11.

This method has been applied successfully to the search for BIBD(45, 99,11, 5,
l)'s with other prescribed group structures, as well as to other designs.

4. Analysis

Various sets of GBRD(k + 1, k, Ik — 1; G)'s with I > 1 were obtained using the
methods described in Section 3. The exact numbers and properties of these
designs are displayed in the following table. The designs themselves are listed in
the appendices.

Numbers and properties of generated Bhaskar Rao designs

Parameters

4,3,2; Z2

4,3,4; Z2

4,3,6; Z2

4,3,6; Z3

Design

A

Si
» 2

Bi

Q
c2
c3
Q
Q

D2
D3

DA

D5

D6

\G\

48
48
24
32

48
12
16
8

48

72
18
72

144
24
12

Rep. blocks

1*
2"
2'16

I8

34

3 W
2414

2218

I12

2414

2ll10

I12

I12

I12

I12

D

d
d
d

d
d
d
d
d

11 classes

15
6
0

48
12
6

Resolutions

3
0
0

204
0
0

Contractions
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Parameters

4,3,4; Z4

4,3,4; Z 2

4,3 6 ;Z 6

4,3,6; S3

5,4,3; Z3

5,4,6,Z3

5,4,6; Z2

5,4,6; S3

5,4,6; Z6

6,5,4; Z2

Numbers and properties of generated Bhaskar Rao designs

Design

E

F

c,
c2
G3

G4

G5

G6

G7

G8

G,
G i o

Cii
G12

Gl3

G14

G15

Ci*

C,7
G 1 8
G19

G20

G21

G22

Hi
H2

Hi
HA

Us
H6

Hi

Us

A

Bi

B2

B3

B*
B,
B6

B-,
« 8
B9

C

D

—

A

\G\

32

96

36
144
24
36

144
48
24
48
96
72
12
12
48
12
24
48
6
6

24
6

12
24

2592
324
72
36
96
12
18

6

360

360
120
72
48
24
36
36
12
24

10

30

240

Rep. blocks

I8

I8

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I12

I5

25

I10

2 i l 8

2V
I10

I10

I10

I10

2 J 1 8

I10

I10

I6

D

d
d
d
d
d
d
d
d

11 classes

0
0
0
0
0

96
132
216
240
420

36
48
12
12
36
12
30
30
6

54
30
30

864
756
420
216
240
144
54
48

Resolutions

0
0
0
0
0

270
354

0
9
0
0
0
0
0
0
0
0
0
0

?(>1)
0
0
0

Contractions

B3

« 3

C5,D3

. Q.z>3

C D ,
C2,D}

Ci.Dj
C5,D4

C4,O4
C3,£>4

C3,D4

C2,D<
C5,D5

C5,DS

CS,D5

Q,DS

Q,DS

C3,D5

C5,D,
Q,D6

Q.A>
CAs
Q,D6

c3o6

c,
Q
c2
c2
Q
c4
Q
Q

c
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We now investigate various structures derived from some of the generated
designs.

A generalized Room square GRS(r, X; v) is an r X r array on a finite p-set Fof
elements such that: (i) every cell of the array contains a subset (possibly empty) of
V; (ii) every element of V is contained in precisely one cell of each row and
column; and (iii) every pair of distinct elements of V is contained in exactly X
cells of the array. A GRS is said to be uniform if all subsets have the same
cardinality. A GRS is equivalent to a doubly resolvable (r, X)-design. To see this,
suppose we have two orthogonal resolutions R = {Rv ..., Ru), R' =
{R[,..., R'u} of the same (r, X)-design D. Then we can form a GRS(u, X; v) S in
which block B of D is placed in cell (/, j) of S if it belongs to parallel classes /?,
a n d R'j. A n e q u i d i s t a n t p e r m u t a t i o n array E P A ( r , X ; v ) i s & v X r a r r a y d e f i n e d o n
an /--set of elements such that: (i) every row of the array is a permutation of the
elements of V; and (ii) every pair of distinct rows of the array have precisely X
common column entries. An EPA(r, X; v) is equivalent to a GRS(r, X; v). To see
this, let V = {1,2, ...,»>} be the element set of both a GRS S and the correspond-
ing EPA A. Then the (i, j)th entry of A is k e V if and only if the element i
appears in the (k, j)th cell of S (see [19]).

From a GDD(p X g, k, X) we can construct an (r, X)-design D on the same
element set X \X\ = vg by adjoining X copies of the groups to the blocks of the
GDD. We note that D has r = X + Xg(v - l)/(k - 1), and two block sizes k
and g. If D happens to be doubly resolvable then it can be used to construct a
GRS{r,X;vg).

The following two examples illustrate such a derivation process using ap-
propriate GBRD 's.

Firstly, consider the GBRD(4,3,6; Z3) D4 from the appendices. A computer
analysis reveals that the corresponding GDD(4 X 3,3,2) is resolvable. Since the
groups and blocks both have size 3 the (11, 2)-design derivable from the GDD is
in fact a BIBD(12,44,11,3,2), also called a twofold triple system ([4]). This
system is doubly resolvable; one resolution is inherited from the original GDD
with two additional parallel classes formed by the groups, while the other
resolution is derived from the block orbits of the GDD under Z3. The obtained
system solves the existence problem for doubly resolvable twofold triple systems
with v = 12, the smallest previously unknown order [4]. The system is important
since it forms a basis for recursive constructions of twofold triple systems. We
present it here as a uniform GRS(ll, 2; 12):
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1

2

3

4

5

6

7

8

9

10

11

1

ABC

FGJ

EIL

DHK

2

ABC

FHL

EGK

DIJ

3

DEF

BIK

AHJ

CGL

4

DEF

AIL

CHK

BGJ

5

GHI

BEK

ADJ

CFL

6

GHI

BFJ

A EL

CDK

7

JKL

CDH

BFG

A El

8

JKL

AFH

CEG

BDI

9

ADG

BHL

CEJ

FIX

10

CIJ

BEH

DGL

AFK

11

CFI

AGK

BDL

EHJ

Secondly, consider the GBRD(4,3,6; Z6) G10 from the appendices. Adding the
groups to the blocks of the corresponding GDD(4 X 6,3,1) yields a (10, l)-design
with two block sizes, 3 and 6. This design turns out to be doubly resolvable and
can be presented as a GRS(W, 1; 24):

1

2

3

4

5

6

7

8

9

10

1

A MS

EHR

GOX

DJW

IPU

FNV

CRT

BLQ

2

EKX

BNT

FIM

HPS

JQV

AOW

DLU

CGR

3

FLS

COU

AJN

IQT

KRW

BPX

EGV

DHM

4

JRU

AGT

DPV

BKO

LMX

CQS

FHW

EIN

5

KMV

BHU

EQW

CLP

GNS

DRT

AIX

FJO

6

DGQ

LNW

CIV

FRX

HOT

EMU

BJS

AKP

7

LOV

GPW

HQX

IRS

JMT

KNU

ABCDEF

8

FPT

AQU

BRV

CMW

DNX

EOS

GHIJKL

9

BIW

CJX

DKS

ELT

FGU

AHV

MNOPQR

10

CHN

DIO

EJP

FKQ

ALR

BGM

STUVWX
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From the above GRS we can form an EPA(10,l;24) to which three more
permutations can be added yielding an EPAQ.0,1; 27):

1
5
6
3
9
0
8
2
5
0
1
5
7
8
3
8
7
2
9
1
3
7
0
5
9
2
1

2
6
1
6
4
9
0
8
3
4
0
2
6
7
8
4
8
7
3
9
2
2
7
0
6
9
3

3
1
2
4
1
5
9
0
8
8
5
0
3
1
7
3
5
8
7
4
9
4
3
7
0
1
9

4
2
3
8
5
2
6
9
0
7
8
6
0
4
2
9
4
6
8
7
5
9
5
4
7
0
2

5
3
4
0
8
6
3
1
9
3
7
8
1
0
5
6
9
5
1
8
7
3
9
6
5
7
0

6
4
5
9
0
8
1
4
2
6
4
7
8
2
0
7
1
9
6
2
8
0
4
9
1
6
7

7
8
7
7
7
7
7
7
7
1
2
3
4
5
6
2
3
4
5
6
1
5
6
1
2
3
4

8
0
0
1
2
3
4
5
6
5
6
1
2
3
4
0
0
0
0
0
0
6
1
2
3
4
5

9
9
8
2
3
4
5
6
1
2
3
4
5
6
1
1
2
3
4
5
6
8
8
8
8
8
8

0
7
9
5
6
1
2
3
4
9
9
9
9
9
9
5
6
1
2
3
4
1
2
3
4
5
6

This greatly improves the previously known maximum value of v, viz v = 16, for
which an EPA(10,1; v) exists [19].
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Appendices

21

Al. Group multiplication tables

z2
+

+
1
W

(0

Z3

(0

1
05

(0

1

1

Y

P
a

a
1

Y

P

P
a
1

Y

Y
/»
a
1

1
a

P
y

a

1

Y
Y
1
a

y

P
a
1

1

£

8

Y

P
a

a

1
£

8
Y
P

P
a

1

£

8
Y

Y
P
a

1

£

8

8

Y
P
a

1

£

£

8

Y
P
a

1

1
a

P
y
8
£

P
1
a

8
£

Y

a

P
1
£

Y
8

Y
8
e

1

a

P

8
£

Y
P
1

a

£

Y
8
a

P
1

1
Y
P
a
8
X
K

e

a
1
Y
P
£

8
X
K

P
a
1
Y
K

£

8
X

z
Y
P
a
1
X
K

£

8

2XZ4

8
X
K

£

1
Y
/}

a

£

8
X
K
a
1

Y
P

K

E

8
X
P
a
1
Y

X
K

£

8
Y
P
a
1

1
a

P
y
8
£

K

X

a
1
Yaa.

E

8
X
K

P
y
l
a
K

X
8
e

Z

Y
/*
a
1
X
K

£

8

3
2

8
£

K

X
1
a

P
y

E

8
X
K

a
1

Y
P

K

X
8
£

P
Y
1
a

X
K

£

8
Y
P
a
1

1
a

P
y
8
E

K

X

£

1
X
P
a
8
X
K

Q
K

Y
1
£

P
X
8
a

X
K

a
1

Y
P
£

8

8
£

K

X
1
a

Y

a
8
Y
K

£

1
Xaa.

P
X
8
a
K

Y
1
E

Y
P
£

8
X
K

a
1
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A2. Enumerated GBRD(k + 1, k, !(k - 1); G)'s

1. GBRD(4,3,2; Z2)

yl

1
1
1
1

1

+
+
+
0

1

+
-
0
+

1
-

0
+
+

1

0
+
-
+

2. G5/?Z)(4,3,4;Z2)'s

1

+
+
+
0

1

+
-
0
+

1

—

0
+
+

1

0
+
-
+

1

+
+
+
0

1

+
-
0
+

1

-

0
+
+

1

0
+
-
+

1 2 2 2 1 2 2 2

1

+
+
+
0

1

+
-
0
+

1

-
0
+
+

1

0
+
-
+

1

+
+
-
0

1

+
-
0
-

1

+
0
+
+

1

0
-
-
+

1 2 2 2 1 3 3 3

1
1
1
1

+
+
+
0

+
_
0
+

_

0
+

+

0
+
-

+

+
+
+

0

+
—

0
+

- 0

0 +
+ -

+ +

+ +

+ -

+ 0

0 +

- 0

0 +
+ -

+ +

+
+
+
0

+
-
0
+

-
0
+
+

0
+
-
+

+
+
+
0

+
0
0
+

-
0
+
+

0
+
-
+

+
+
+
0

-
+
0
+

+
0
-
+

0
-
+
+

3. GB/?D(4,3 ,6 ;Z 2 ) ' s

C, 1 1 1 1 1 1 1 1 1 1 1 1 C2 1 2 2

1

1

1

2

C 3 1 1 1 1 1 1 1 1 2 2 2 2 C 4 1 1 2 2 1 3 4 4 3 1 4 4

1
1
1
1

C s 1 1 1 1 1 1 1 1 1 1 1 1

+
+
+
0

+
-
0
+

-
0
+
+

0
+
-
+

+
+
+
0

+
-
0
+

-
0
+
+

0
+
-
+

+
+
-
0

+
-
0
-

+
0
+
+

0
-
-
+

1
1
2
2

+
+
+
0

+

-

0
+

-

0
+
+

0
+
-
+

+
+
+
0

-
+

0
+

+

0
-
+

0
_
+

+

+

+
-
0

- - 0
+ 0 +
0 - +
- + +

1
1
1
1

+
+
+

0

+
-

0
+

-

0
+

+

0
+
-

+

+

+
-
0

+
-

0
-

+

0
+

+

0
-
-

+

+
-
+

0

-
-

0
+

-

0
+

-

0
+
+

+
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4. (3

D1 1 2 2 1 2 2 1 2 2 1 2 2 D2 1 1 2 3 4 4 3 4 4 3 4 4

1
1
u

0

01

1
1
0

(0

1
1
0

1
1
0
01

1
01

0
1

1
01

0
1

01

0
1
1

1
0
1
co

1
0
1
CO

0
co
1
1

0
1
a
1

0
1
co
1

1
1
1
0

1
1
1
0

1
01

CO

0

1
CO

0
co

0!

1
0
1

1
CO

0
1

co

0
1
CO

1
0
CO

1

01

0
1
1

0
1
01

a

0
01

1
1

0
1
CO

1

Z>3 1 1 1 1 1 1 1 1 1 1 1 1 A , 1 2 2 1 2 2 1 2 2 1 2 2

1
1
01

0

1
CO

1
0

CO

1
1
0

1
1
0
01

1
CO

0
1

01

1
0
1

CO

0
1
1

1
0
1
CO

1
0
CO

1

0
CO

1
1

0
1
1
CO

0
1
01

1

1
1
CO

0

1
01

1
0

CO

1
1
0

1
1
0
01

1
CO

0
1

(0

1
0
1

CO

0
1
1

1
0
1
CO

1
0
CO

1

0
w
1
1

0
1
1
CO

0
1
CO

1

2 2 1 2 2 1 2 2 1 2 2 ZX

<0

1
1
0

1
1
CO

0

1
CO

1
0

1
(0

0
1

1
1
0
CO

(0

1
0
1

1
0
01

1

1
0
1
CO

CO

0
1
1

0
1
1
CO

0
1
<o
1

0
CO

1
1

1

1
CO

1
0

2

CO

1
1
0

3

1
CO

1
0

1

1
1
0
CO

2

1
CO

0
1

3

1
1
0
CO

1

CO

0
1
1

2

1
0
CO

1

3

CO

0
1
1

1

0
1
CO

1

2

0
1
1
CO

3

0
1
CO

1

1

£ 1 2 1 2 1 2 1 2 F 1 1 1

1
1
1
0

1
a

P
0

1

P
0
1

1
y
0
Y

1
0
y

P

l
0
a

a

0
1

P
y

0
l
y
a

1 1 1 1 1

1
1
1
0

1
a

P
0

1

P
0
y

l
y
0
1

1
0
y

P

l
0
a
a

0
1
a

P

0
1

P
1

7. GBRD(4,3,6; Z6)'s

G1 1 2 2 1 2 2 1 2 2 3 3 3 G2 1 1 1 1 1 1 1 1 1 1 1 1

1
2
2
2

1
1
1
0

1
a

P
0

1

P
a
0

1
Y
0
1

1
S
0

p

1
e
0
a

1
0
y
y

l
0

s
e

1
0
E

s

0
1

p
1

0
1
y
e

0
1
S
a

1
1
1
1

1
1
1
0

1
a

P
0

1

P
a
0

1
Y
0
1

1

s
0

p
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10. GBRD(5,4,6;Z3)'s
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13. GBRD(6,5,4;Z2)
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A 3 . Contracted GBRD(k + l,k,I(k- l ) ; G ) ' s
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+ + - - + 0
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+ - + 0 + -
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- + + - + 0
+ + - - 0 +
+ + + 0 - -
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+ 0 + + + +
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