THE MAXIMUM TERM AND THE RANK OF AN ENTIRE FUNCTION

V. SREENIVASULU

1. For an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, let M(r, f), $\mu(r, f)$, and $\nu(r, f)$ denote the maximum modulus, the maximum term, and the rank for |z| = r, respectively. Also, let

$$M_2(\mathbf{r}, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(\mathbf{r}e^{i\theta})|^2 d\theta\right)^{1/2},$$
$$L(f) = \limsup_{n \to \infty} \left|\frac{a_n^2}{a_{n-1}a_{n+1}}\right|, \quad R_n = \left|\frac{a_{n-1}}{a_n}\right|,$$

and $\lambda(r)$ the lower proximate order relative to log M(r, f). For the properties of the lower proximate order, we refer the reader to the paper by Shah (1).

2. We prove the following theorems.

THEOREM 1. For an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$,

$$\lim \inf_{\substack{r \to \infty \\ r \to \infty}} \frac{\mu(r, f)}{M(r, f)} = \lim \inf_{\substack{r \to \infty \\ r \to \infty}} \frac{\mu(r, f^{1})}{M(r, f^{1})},$$

where $\mu(r, f^1)$ and $M(r, f^1)$ correspond to $f^1(z)$, the derivative of f(z), provided $(n + 1)R_n < nR_{n+1}$, when L(f) > 1.

It is well known that $M_2(r, f) \leq M(r, f)$. We now obtain an inequality in the opposite direction.

THEOREM 2. Let $\epsilon > 0$. For an entire function f(z) of non-null and finite order ρ ,

$$(M_2(r,f))^2(2r^{\rho+\epsilon}+1) + O(W(r,f)) \ge (W(r,f))^2 \ge (M(r,f))^2,$$

where $W(r, f) = \sum_{p=0}^{\infty} |a_p| r^p$.

THEOREM 3. Let $G(z) = G_1(z)G_2(z)$, where $G_1(z) = \sum_{n=0}^{\infty} a_n z^n$ and $G_2(z) = \sum_{n=0}^{\infty} b_n z^n$ are two entire functions, such that $M(r, G) = O(M(r, G_1)M(r, G_2))$. If $|a_{n-1}/a_n|$ is a strictly increasing function of n, and $L(G_1) = 1$, then

$$\lim_{r\to\infty}\frac{\mu(r,G)}{M(r,G)}=0$$

Received February 17, 1967. This work was supported by a Senior Research Fellowship from the University Grants Commission. An abstract of this paper has appeared in the Proceedings of the Indian Science Congress, 1966.

V. SREENIVASULU

THEOREM 4. (i) If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an entire function of lower order $\lambda = 0$, then

$$\liminf_{r\to\infty}\frac{\nu(r,f)}{r^{\lambda(r)}}=0.$$

(ii) If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 is an entire function such that

$$\liminf_{r \to \infty} \frac{\nu(r, f)}{\log M(r, f)} = \infty$$

then $\rho = \infty$.

3. Proof of Theorem 1. Case 1. L(f) = 1. The maximum term $\mu(r, f) =$ Sup_n $|a_n|r^n$. Let n_1, n_2, \ldots, n_k be the values assumed by $\nu(r, f)$. Hence, if n_k denotes the rank of the maximum term for |z| = r, then it is obvious that

 $g_m - m \log r \ge g_{n_k} - n_k \log r,$

where $g_m = -\log |a_m|$, $m \neq n_k$. Hence, on letting $m = n_k - 1$, we have that $R_{n_k} \leq r$. Since the term which has the greatest rank is usually called the maximum term (even when there is more than one term which is equal to it), we obtain $R_{n_k+1} > r$ by letting $m = n_k + 1$. Hence, for $R_{n_k} \leq r < R_{n_k+1}$, we have that $\mu(r, f) = |a_{n_k}| r^{n_k}$ and $\nu(r, f) = n_k$. Clearly,

$$M_2(r,f) = \left(\sum_{n=0}^{\infty} |a_n|^2 r^{2n}\right)^{1/2}.$$

Thus, for $R_{n_k} \leq r < R_{n_k+1}$, we have that

$$\left(\frac{M_2(r,f)}{\mu(r,f)}\right)^2 > \left(\frac{r}{R_{nk+1}}\right)^2 + \ldots + \left(\frac{r^p}{R_{nk+p}}\right)^2$$
$$> \left(\frac{r}{R_{nk+1}}\right)^2 + \ldots + \left(\frac{r^p}{(R_{nk+1})^p L_1^{p-1}}\right)^2$$
$$> \frac{p}{2},$$

since $R_{n+1} < L_1R_n$ for $n \ge n_0$, where $L_1 > 1$. Since L_1 can be chosen as close to 1 as possible and p arbitrarily large, we have that

$$\lim_{r\to\infty}\frac{M_2(r,f)}{\mu(r,f)}=\infty.$$

Hence, a fortiori

$$\lim_{r\to\infty}\frac{M(r,f)}{\mu(r,f)} = \infty$$

Furthermore, $L(f^1) = 1$. Hence, proceeding as above, we have that

$$\lim_{r\to\infty}\frac{M(r,f^1)}{\mu(r,f^1)}=\infty.$$

258

Thus, the result is true when L(f) = 1.

Case 2. L(f) > 1. Clearly, for $E_k = R_{n_k} \leq r < R_{n_k+1}$,

(3.1)
$$\mu(r, f^1) \ge \frac{\nu(r, f)\mu(r, f)}{r}$$

Also, for $F_k = ((n_k - 1)/n_k)R_{n_k} \leq r < (n_k/(n_k + 1))R_{n_k+1}$,

(3.2)
$$\mu(r, f^{1}) \leq \frac{\mu(r, f)\nu(r, f^{1})}{r}.$$

Since L(f) > 1, t_k is contained in $E_k F_k$, where

$$t_k = R_{n_k} \leq r < \frac{n_k}{n_k + 1} R_{n_k + 1}.$$

Hence, for all points r in t_k , $\nu(r, f^1) = \nu(r, f) = n_k$. Thus, from (3.2) we have that

(3.3)
$$\mu(r, f^{1}) \leq \frac{\mu(r, f)\nu(r, f)}{r} \,.$$

Let s_k be the segment in which the variation of $\log r$ is less than $K\nu(R/k, f)^{-1/12}$ (r > R). Also, let $S = \sum_{k=1}^{\infty} s_k$, and CS be the complement of S. For points r in CS (**2**, p. 105),

(3.4)
$$rM(r,f^1) \sim M(r,f)\nu(r,f).$$

Clearly, the total variation of log r in t_n tends to infinity with n. Let $T = \sum_{k=1}^{\infty} t_k$. Thus, for all points r in *TCS*, (3.1), (3.3), and (3.4) hold. Therefore, the result follows from (3.1), (3.3), and (3.4). Hence, this completes the proof.

Proof of Theorem 2. From a well-known inequality of Cauchy we obtain

(3.5)
$$\left(\sum_{p=0}^{n} |a_p|^2 r^{2p}\right)(n+1) \ge \left(\sum_{p=0}^{n} |a_p| r^p\right)^2.$$
 Therefore

$$\left(\left(M_2(r,f) \right)^2 - \sum_{p=n+1}^{\infty} |a_p|^2 r^{2p} \right) (n+1) \ge \left(W(r,f) - \sum_{p=n+1}^{\infty} |a_p| r^p \right)^2.$$

This yields

$$(W(r,f))^{2} \leq (M_{2}(r,f))^{2}(n+1) - (n+1)\left(\sum_{p=n+1}^{\infty} |a_{p}|^{2}r^{2p}\right) + 2\left(\sum_{p=0}^{n} |a_{p}|r^{p}\sum_{p=n+1}^{\infty} |a_{p}|r^{p}\right) + \left(\sum_{p=n+1}^{\infty} |a_{p}|r^{p}\right)^{2}.$$
Using (2.5) we have that

Using (3.5) we have that

(3.6)
$$(W(r,f))^{2} \leq (M_{2}(r,f))^{2}(n+1) + \left(\sum_{p=n+1}^{\infty} |a_{p}|r^{p}\right) \left(\left(2\sum_{p=0}^{n} |a_{p}|r^{p}\right) - n\sum_{p=n+1}^{\infty} |a_{p}|r^{p}\right).$$

Obviously, $|a_p|r^p < p^{-p/(\rho+\epsilon)}r^p$, since

$$\limsup_{n\to\infty}\frac{n\log n}{\log 1/|a_n|}=\rho.$$

Hence,

$$\sum_{p=n+1}^{\infty} |a_p| r^p < \sum_{p=n+1}^{\infty} p^{-p/(\rho+\epsilon)} r^p = \sum_{p=n+1}^{\infty} \left(\frac{r^{\rho+\epsilon}}{p} \right)^{p/(\rho+\epsilon)} \le \sum_{p=n+1}^{\infty} \left(\frac{r^{\rho+\epsilon}}{n} \right)^{p/(\rho+\epsilon)}$$

Let $n = 2[r^{\rho+\epsilon}]$, where $[r^{\rho+\epsilon}]$ denotes the integral part of $r^{\rho+\epsilon}$. Thus, we have that

(3.7)
$$\sum_{p=n+1}^{\infty} |a_p| r^p < \sum_{p=n+1}^{\infty} 2^{-p/(\rho+\epsilon)} = O(1).$$

From (3.6) and (3.7) we obtain the required result.

Proof of Theorem 3. Let $G(z) = \sum_{n=0}^{\infty} c_n z^n$. Then

$$c_n = b_0 a_n + b_1 a_{n-1} + \ldots + b_n a_0.$$

Now,

$$\begin{aligned} |c_n|r^n &\leq |b_0| |a_n|r^n + |b_1|r|a_{n-1}|r^{n-1} + \ldots + |b_n|r^n|a_0| \\ &= \sum_{s=0}^n |b_s|r^s|a_{n-s}|r^{n-s} \\ &\leq \left(\sum_{s=0}^n |b_s|^2 r^{2s}\right)^{1/2} \left(\sum_{s=0}^n |a_s|^2 r^{2s}\right)^{1/2} \\ &< M_2(r, G_1)M_2(r, G_2). \end{aligned}$$

This is true for all n. Hence,

(3.8)
$$\mu(r,G) < M_2(r,G_1)M_2(r,G_2).$$

Since $R_n = |a_{n-1}/a_n|$ is a strictly increasing function of $n, G_1(z) = P(z) + A\phi_1(z)$, where A is a constant, P(z) a polynomial, and

$$\phi_1(z) = \sum_{n=1}^{\infty} z^n e^{i\theta_n} / R_1 R_2 \dots R_n.$$

Thus,

$$(3.9) \qquad M(r, G_1) \sim M(r, \phi_1)|A| \quad \text{and} \quad M_2(r, G_1) \sim M_2(r, \phi_1)|A|.$$

Let $\phi(z) = \sum_{n=1}^{\infty} z^n / R_1 R_2 \dots R_n$. For this function,

 $M(r, \phi) = \sum_{n=1}^{\infty} r^n / R_1 R_2 \dots R_n \quad \text{and} \quad M_2(r, \phi) = \left(\sum_{n=1}^{\infty} r^{2n} / (R_1 R_2 \dots R_n)^2\right)^{1/2}.$ Hence,

(3.10)
$$\lim_{r\to\infty}\frac{M_2(r,\phi)}{M(r,\phi)}=0,$$

260

since $R_n \sim R_{n+1}$. Also, we observe that $(M_2(r, \phi_1))^2 = M_2(r^2, h)$ and $(M(r, \phi_1))^2 \ge M(r^2, h)$, if $h(z) = \sum_{n=1}^{\infty} z^n / (R_1 R_2 \dots R_n)^2$. Hence,

(3.11)
$$\frac{M_2(r, \phi_1)}{M(r, \phi_1)} \leq \left(\frac{M_2(r^2, h)}{M(r^2, h)}\right)^{1/2}.$$

From (3.9), (3.10), and (3.11), we have that

(3.12)
$$\lim_{r \to \infty} \frac{M_2(r, G_1)}{M(r, G_1)} = 0$$

Therefore, from (3.8), (3.12), and the hypothesis, we have that

$$\lim_{r\to\infty}\frac{\mu(r,G)}{M(r,G)}=0.$$

This is the required result.

Proof of Theorem 4. (i) Let us suppose that

$$\liminf_{\tau \to \infty} \nu(r, f) / r^{\lambda(\tau)} = A > 0.$$

Thus, $\nu(r, f) > (A - \epsilon)r^{\lambda(r)}$ for $r \ge r_0$. This yields $\lim_{r\to\infty} \log \mu(r, f)/r^{\lambda(r)} \ge A/\lambda$, since

$$\log \mu(r,f) = \int_0^r \frac{\nu(x,f)}{x} dx.$$

Now,

$$\liminf_{r \to \infty} \log \mu(r, f) / r^{\lambda(r)} \leq \liminf_{r \to \infty} \log M(r, f) / r^{\lambda(r)} = 1.$$

Thus, $\lambda > 0$. However, from the hypothesis, we have that $\lambda = 0$. Hence the result is proved.

(ii) Let us suppose that $\rho < \infty$. We can choose a positive number $\alpha > \rho$ such that $\int_{r_0}^r \nu(x, f)/x^{\alpha} dx$ is convergent. Also, from the hypothesis, we have that $\nu(r, f) > \sigma(r) \log M(r, f)$ for $r \ge r_0$, where $\sigma(r) \to \infty$, as $r \to \infty$. Integrating from r_0 to r, with respect to r, we obtain, after dividing by r, $M/\sigma(r) > \log M(r_0, f)/(\alpha - 1)r_0^{\alpha-1}$, where r_0 is large but suitably fixed. Clearly, $\alpha \ge 1$; otherwise, $\int_{r_0}^{\infty} \nu(x, f)/x^{\alpha} dx$ is divergent. Letting $r \to \infty$ we obtain a contradiction, and hence the result is proved.

References

- 1. S. M. Shah, A note on lower proximate orders, J. Indian Math. Soc. (N.S.) 12 (1948), 31-32.
- G. Valiron, Lectures on the general theory of integral functions, Translated by E. F. Collingwood (Imprimerie et Librairie, Edouere Privat, Toulouse, 1923).

University of Poona, Poona, India