THE MAXIMUM TERM AND THE RANK OF AN ENTIRE FUNCTION

V. SREENIVASULU

1. For an entire function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, let $M(r, f), \mu(r, f)$, and $\nu(r, f)$ denote the maximum modulus, the maximum term, and the rank for $|z|=r$, respectively. Also, let

$$
\begin{aligned}
M_{2}(r, f) & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{1 / 2}, \\
L(f) & =\limsup _{n \rightarrow \infty}\left|\frac{a_{n}^{2}}{a_{n-1} a_{n+1}}\right|, \quad R_{n}=\left|\frac{a_{n-1}}{a_{n}}\right|,
\end{aligned}
$$

and $\lambda(r)$ the lower proximate order relative to $\log M(r, f)$. For the properties of the lower proximate order, we refer the reader to the paper by Shah (1).
2. We prove the following theorems.

Theorem 1. For an entire function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$,

$$
\lim _{\inf _{r \rightarrow \infty}} \sup \frac{\mu(r, f)}{M(r, f)}=\lim \sup _{r \rightarrow \infty} \frac{\mu\left(r, f^{1}\right)}{M\left(r, f^{1}\right)},
$$

where $\mu\left(r, f^{1}\right)$ and $M\left(r, f^{1}\right)$ correspond to $f^{1}(z)$, the derivative of $f(z)$, provided $(n+1) R_{n}<n R_{n+1}$, when $L(f)>1$.

It is well known that $M_{2}(r, f) \leqq M(r, f)$. We now obtain an inequality in the opposite direction.

Theorem 2. Let $\epsilon>0$. For an entire function $f(z)$ of non-null and finite order ρ,

$$
\left(M_{2}(r, f)\right)^{2}\left(2 r^{\rho+\epsilon}+1\right)+O(W(r, f)) \geqq(W(r, f))^{2} \geqq(M(r, f))^{2},
$$

where $W(r, f)=\sum_{p=0}^{\infty}\left|a_{p}\right| r^{p}$.
Theorem 3. Let $G(z)=G_{1}(z) G_{2}(z)$, where $G_{1}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $G_{2}(z)=$ $\sum_{n=0}^{\infty} b_{n} z^{n}$ are two entire functions, such that $M(r, G)=O\left(M\left(r, G_{1}\right) M\left(r, G_{2}\right)\right)$. If $\left|a_{n-1} / a_{n}\right|$ is a strictly increasing function of n, and $L\left(G_{1}\right)=1$, then

$$
\lim _{\tau \rightarrow \infty} \frac{\mu(r, G)}{M(r, G)}=0
$$

[^0]Theorem 4. (i) If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is an entire function of lower order $\lambda=0$, then

$$
\liminf _{r \rightarrow \infty} \frac{\nu(r, f)}{r^{\lambda(r)}}=0
$$

(ii) If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is an entire function such that

$$
\liminf _{r \rightarrow \infty} \frac{\nu(r, f)}{\log M(r, f)}=\infty
$$

then $\rho=\infty$.
3. Proof of Theorem 1. Case 1. $L(f)=1$. The maximum term $\mu(r, f)=$ $\operatorname{Sup}_{n}\left|a_{n}\right| r^{n}$. Let $n_{1}, n_{2}, \ldots, n_{k}$ be the values assumed by $\nu(r, f)$. Hence, if n_{k} denotes the rank of the maximum term for $|z|=r$, then it is obvious that

$$
g_{m}-m \log r \geqq g_{n_{k}}-n_{k} \log r
$$

where $g_{m}=-\log \left|a_{m}\right|, m \neq n_{k}$. Hence, on letting $m=n_{k}-1$, we have that $R_{n k} \leqq r$. Since the term which has the greatest rank is usually called the maximum term (even when there is more than one term which is equal to it), we obtain $R_{n_{k}+1}>r$ by letting $m=n_{k}+1$. Hence, for $R_{n_{k}} \leqq r<R_{n_{k}+1}$, we have that $\mu(r, f)=\left|a_{n_{k}}\right| r^{n_{k}}$ and $\nu(r, f)=n_{k}$. Clearly,

$$
M_{2}(r, f)=\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}\right)^{1 / 2}
$$

Thus, for $R_{n_{k}} \leqq r<R_{n_{k}+1}$, we have that

$$
\begin{aligned}
\left(\frac{M_{2}(r, f)}{\mu(r, f)}\right)^{2} & >\left(\frac{r}{R_{n k+1}}\right)^{2}+\ldots+\left(\frac{r^{p}}{R_{n k+p}}\right)^{2} \\
& >\left(\frac{r}{R_{n k+1}}\right)^{2}+\ldots+\left(\frac{r^{p}}{\left(R_{n k+1}\right)^{p} L_{1}^{p-1}}\right)^{2} \\
& >\frac{p}{2}
\end{aligned}
$$

since $R_{n+1}<L_{1} R_{n}$ for $n \geqq n_{0}$, where $L_{1}>1$. Since L_{1} can be chosen as close to 1 as possible and p arbitrarily large, we have that

$$
\lim _{r \rightarrow \infty} \frac{M_{2}(r, f)}{\mu(r, f)}=\infty
$$

Hence, a fortiori

$$
\lim _{r \rightarrow \infty} \frac{M(r, f)}{\mu(r, f)}=\infty .
$$

Furthermore, $L\left(f^{1}\right)=1$. Hence, proceeding as above, we have that

$$
\lim _{r \rightarrow \infty} \frac{M\left(r, f^{1}\right)}{\mu\left(r, f^{1}\right)}=\infty
$$

Thus, the result is true when $L(f)=1$.
Case 2. $L(f)>1$. Clearly, for $E_{k}=R_{n_{k}} \leqq r<R_{n_{k}+1}$,

$$
\begin{equation*}
\mu\left(r, f^{1}\right) \geqq \frac{\nu(r, f) \mu(r, f)}{r} . \tag{3.1}
\end{equation*}
$$

Also, for $F_{k}=\left(\left(n_{k}-1\right) / n_{k}\right) R_{n_{k}} \leqq r<\left(n_{k} /\left(n_{k}+1\right)\right) R_{n_{k}+1}$,

$$
\begin{equation*}
\mu\left(r, f^{1}\right) \leqq \frac{\mu(r, f) \nu\left(r, f^{1}\right)}{r} \tag{3.2}
\end{equation*}
$$

Since $L(f)>1, t_{k}$ is contained in $E_{k} F_{k}$, where

$$
t_{k}=R_{n k} \leqq r<\frac{n_{k}}{n_{k}+1} R_{n k+1} .
$$

Hence, for all points r in $t_{k}, \nu\left(r, f^{1}\right)=\nu(r, f)=n_{k}$. Thus, from (3.2) we have that

$$
\begin{equation*}
\mu\left(r, f^{1}\right) \leqq \frac{\mu(r, f) \nu(r, f)}{r} \tag{3.3}
\end{equation*}
$$

Let s_{k} be the segment in which the variation of $\log r$ is less than $K \nu(R / k, f)^{-1 / 12}$ $(r>R)$. Also, let $S=\sum_{k=1}^{\infty} s_{k}$, and C S be the complement of S. For points r in CS (2, p. 105),

$$
\begin{equation*}
r M\left(r, f^{1}\right) \sim M(r, f)_{\nu}(r, f) \tag{3.4}
\end{equation*}
$$

Clearly, the total variation of $\log r$ in t_{n} tends to infinity with n. Let $T=\sum_{k=1}^{\infty} t_{k}$. Thus, for all points r in $T C S$, (3.1), (3.3), and (3.4) hold. Therefore, the result follows from (3.1), (3.3), and (3.4). Hence, this completes the proof.

Proof of Theorem 2. From a well-known inequality of Cauchy we obtain

$$
\begin{equation*}
\left(\sum_{p=0}^{n}\left|a_{p}\right|^{2} r^{2 p}\right)(n+1) \geqq\left(\sum_{p=0}^{n}\left|a_{p}\right| r^{p}\right)^{2} \tag{3.5}
\end{equation*}
$$

Therefore,

$$
\left(\left(M_{2}(r, f)\right)^{2}-\sum_{p=n+1}^{\infty}\left|a_{p}\right|^{2} r^{2 p}\right)(n+1) \geqq\left(W(r, f)-\sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}\right)^{2}
$$

This yields
$(W(r, f))^{2} \leqq\left(M_{2}(r, f)\right)^{2}(n+1)-(n+1)\left(\sum_{p=n+1}^{\infty}\left|a_{p}\right|^{2} r^{2 p}\right)$

$$
+2\left(\sum_{p=0}^{n}\left|a_{p}\right| r^{p} \sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}\right)+\left(\sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}\right)^{2}
$$

Using (3.5) we have that

$$
\begin{align*}
& (W(r, f))^{2} \leqq\left(M_{2}(r, f)\right)^{2}(n+1) \tag{3.6}\\
& \quad+\left(\sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}\right)\left(\left(2 \sum_{p=0}^{n}\left|a_{p}\right| r^{p}\right)-n \sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}\right)
\end{align*}
$$

Obviously, $\left|a_{p}\right| r^{p}<p^{-p /(\rho+\epsilon)} r^{p}$, since

$$
\limsup _{n \rightarrow \infty} \frac{n \log n}{\log 1 /\left|a_{n}\right|}=\rho
$$

Hence,

$$
\sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}<\sum_{p=n+1}^{\infty} p^{-p /(\rho+\epsilon)} r^{p}=\sum_{p=n+1}^{\infty}\left(\frac{r^{\rho+\epsilon}}{p}\right)^{p /(\rho+\epsilon)} \leqq \sum_{p=n+1}^{\infty}\left(\frac{r^{\rho+\epsilon}}{n}\right)^{p /(\rho+\epsilon)}
$$

Let $n=2\left[r^{\rho+\epsilon}\right]$, where $\left[r^{\rho+\epsilon}\right]$ denotes the integral part of $r^{\rho+\epsilon}$. Thus, we have that

$$
\begin{equation*}
\sum_{p=n+1}^{\infty}\left|a_{p}\right| r^{p}<\sum_{p=n+1}^{\infty} 2^{-p /(\rho+\epsilon)}=O(1) . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) we obtain the required result.
Proof of Theorem 3. Let $G(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. Then

$$
c_{n}=b_{0} a_{n}+b_{1} a_{n-1}+\ldots+b_{n} a_{0}
$$

Now,

$$
\begin{aligned}
\left|c_{n}\right| r^{n} & \leqq\left|b_{0}\right|\left|a_{n}\right| r^{n}+\left|b_{1}\right| r\left|a_{n-1}\right| r^{n-1}+\ldots+\left|b_{n}\right| r^{n}\left|a_{0}\right| \\
& =\sum_{s=0}^{n}\left|b_{s}\right| r^{s}\left|a_{n-s}\right| r^{n-s} \\
& \leqq\left(\sum_{s=0}^{n}\left|b_{s}\right|^{2} r^{2 s}\right)^{1 / 2}\left(\sum_{s=0}^{n}\left|a_{s}\right|^{2} r^{2 s}\right)^{1 / 2} \\
& <M_{2}\left(r, G_{1}\right) M_{2}\left(r, G_{2}\right)
\end{aligned}
$$

This is true for all n. Hence,

$$
\begin{equation*}
\mu(r, G)<M_{2}\left(r, G_{1}\right) M_{2}\left(r, G_{2}\right) \tag{3.8}
\end{equation*}
$$

Since $R_{n}=\left|a_{n-1} / a_{n}\right|$ is a strictly increasing function of $n, G_{1}(z)=P(z)+$ $A \phi_{1}(z)$, where A is a constant, $P(z)$ a polynomial, and

$$
\phi_{1}(z)=\sum_{n=1}^{\infty} z^{n} e^{i \theta_{n}} / R_{1} R_{2} \ldots R_{n}
$$

Thus,

$$
\begin{equation*}
M\left(r, G_{1}\right) \sim M\left(r, \phi_{1}\right)|A| \quad \text { and } \quad M_{2}\left(r, G_{1}\right) \sim M_{2}\left(r, \phi_{1}\right)|A| . \tag{3.9}
\end{equation*}
$$

Let $\phi(z)=\sum_{n=1}^{\infty} z^{n} / R_{1} R_{2} \ldots R_{n}$. For this function,
$M(r, \phi)=\sum_{n=1}^{\infty} r^{n} / R_{1} R_{2} \ldots R_{n} \quad$ and $\quad M_{2}(r, \phi)=\left(\sum_{n=1}^{\infty} r^{2 n} /\left(R_{1} R_{2} \ldots R_{n}\right)^{2}\right)^{1 / 2}$.
Hence,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{M_{2}(r, \phi)}{M(r, \phi)}=0 \tag{3.10}
\end{equation*}
$$

since $R_{n} \sim R_{n+1}$. Also, we observe that $\left(M_{2}\left(r, \phi_{1}\right)\right)^{2}=M_{2}\left(r^{2}, h\right)$ and $\left(M\left(r, \phi_{1}\right)\right)^{2} \geqq M\left(r^{2}, h\right)$, if $h(z)=\sum_{n=1}^{\infty} z^{n} /\left(R_{1} R_{2} \ldots R_{n}\right)^{2}$. Hence,

$$
\begin{equation*}
\frac{M_{2}\left(r, \phi_{1}\right)}{M\left(r, \phi_{1}\right)} \leqq\left(\frac{M_{2}\left(r^{2}, h\right)}{M\left(r^{2}, h\right)}\right)^{1 / 2} . \tag{3.11}
\end{equation*}
$$

From (3.9), (3.10), and (3.11), we have that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{M_{2}\left(r, G_{1}\right)}{M\left(r, G_{1}\right)}=0 . \tag{3.12}
\end{equation*}
$$

Therefore, from (3.8), (3.12), and the hypothesis, we have that

$$
\lim _{r \rightarrow \infty} \frac{\mu(r, G)}{M(r, G)}=0 .
$$

This is the required result.
Proof of Theorem 4. (i) Let us suppose that

$$
\liminf _{r \rightarrow \infty} \nu(r, f) / r^{\lambda(r)}=A>0 .
$$

Thus, $\nu(r, f)>(A-\epsilon) r^{\lambda(r)}$ for $r \geqq r_{0}$. This yields $\lim _{r \rightarrow \infty} \log \mu(r, f) / r^{\lambda(r)} \geqq$ A / λ, since

$$
\log \mu(r, f)=\int_{0}^{r} \frac{\nu(x, f)}{x} d x
$$

Now,

$$
\underset{r \rightarrow \infty}{\lim \inf } \log \mu(r, f) / r^{\lambda(r)} \leqq \lim _{r \rightarrow \infty} \inf \log M(r, f) / r^{\lambda(r)}=1 .
$$

Thus, $\lambda>0$. However, from the hypothesis, we have that $\lambda=0$. Hence the result is proved.
(ii) Let us suppose that $\rho<\infty$. We can choose a positive number $\alpha>\rho$ such that $\int_{r_{0}}^{r} \nu(x, f) / x^{\alpha} d x$ is convergent. Also, from the hypothesis, we have that $\nu(r, f)>\sigma(r) \log M(r, f)$ for $r \geqq r_{0}$, where $\sigma(r) \rightarrow \infty$, as $r \rightarrow \infty$. Integrating from r_{0} to r, with respect to r, we obtain, after dividing by r, $M / \sigma(r)>\log M\left(r_{0}, f\right) /(\alpha-1) r_{0}{ }^{\alpha-1}$, where r_{0} is large but suitably fixed. Clearly, $\alpha \geqq 1$; otherwise, $\int_{r_{0}}^{\infty} \nu(x, f) / x^{\alpha} d x$ is divergent. Letting $r \rightarrow \infty$ we obtain a contradiction, and hence the result is proved.

References

1. S. M. Shah, A note on lower proximate orders, J. Indian Math. Soc. (N.S.) 12 (1948), 31-32.
2. G. Valiron, Lectures on the general theory of integral functions, Translated by E. F. Collingwood (Imprimerie et Librairie, Edouere Privat, Toulouse, 1923).

University of Poona,
Poona, India

[^0]: Received February 17, 1967. This work was supported by a Senior Research Fellowship from the University Grants Commission. An abstract of this paper has appeared in the Proceedings of the Indian Science Congress, 1966.

