Reduced norm map of division algebras over complete discrete valuation fields of certain type

TAKAO YAMAZAKI
Department of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Megro-ku, Tokyo, 153, Japan, e-mail: yama@ms317ss5.ms.u-tokyo.ac.jp

Received 7 April 1997; accepted in final form 10 April 1997

Abstract

We study a ramification theory for a division algebra D of the following type: The center of D is a complete discrete valuation field K with the imperfect residue field F of certain type, and the residue algebra of D is commutative and purely inseparable over F. Using Swan conductors of the corresponding element of $\operatorname{Br}(K)$, we define Herbrand's ψ-function of D / K, and it describes the action of the reduced norm map on the filtration of D^{*}. We also gives a relation among the Swan conductors and the 'ramification number' of D, which is defined by the commutator group of D^{*}.

Mathematics Subject Classification 1991: 11S15.
Key words: division algebra, reduced norm, Brauer group, wild ramification, Swan conductor.

1. Introduction

In this paper we develop a ramification theory of division algebras over a complete discrete valuation field K, which is analogous to the classical ramification theory of finite extensions of K. The classical ramification theory deals with a finite Galois extension L of K, under the assumption that the residue field F of K is perfect (see [5] Chapter 4, 5). There exists a good definition of 'Herbrand's function ψ ', which is decided by the state of wild ramification in L / K. The classical ramification theory gives a description of the action of the norm map on the filtration of the unit groups of L and K, by using this Herbrand's function.

Now we consider a finite dimensional central division algebra D over K, instead of L / K. If F is perfect, there is no 'wild ramification' in all D / K, so the ramification theory becomes too simple in this case. Hence we now consider the case that the characteristic of F is $p>0$ and $\left[F: F^{p}\right]=p$. We assume that the residue algebra of D is commutative and purely inseparable over F. This is the most important case; if F is separably closed, any D / K satisfies this property.

Our first main theorem is that there is a good definition of 'Herbrand's function ψ^{\prime} (which is decided by the state of wild ramification in D / K) and the following holds (see Theorem 4.1).

THEOREM A. For any $i=0,1, \ldots$, we have

$$
\begin{aligned}
& \operatorname{Nrd}\left(U_{D}^{\psi(i)}\right) \subset U_{K}^{i} \\
& \operatorname{Nrd}\left(U_{D}^{\psi(i)+1}\right) \subset U_{K}^{i+1}
\end{aligned}
$$

Here $U_{K}^{i}\left(\operatorname{resp} . U_{D}^{i}\right)$ is the ith unit group of $K(\operatorname{resp} . D)$.
Let w be the element of the Brauer group of K corresponding to D. The Swan conductor of w is an analogue to Swan conductors of characters of Galois group of K and it measures how the ramification in D / K is big. Let $s_{j} \in \mathbf{Z}_{\geqslant 0}$ be the Swan conductors of $p^{j} w(j=0,1, \ldots)$. Herbrand's function ψ is completely decided by the numbers s_{j}. The graph of Herbrand's function is the hooked line, which starts from the origin and has the slope p^{n-j} in the interval $s_{j}<x<s_{j-1}$. The x-coordinates of hooked points are s_{j}. We call $\psi\left(s_{j}\right)$ the ramification numbers of D / K.

In the classical case of L / K, there is a relation between the ramification numbers of L / K and valuations of $\sigma(a) / a-1$ with $\sigma \in \operatorname{Gal}(L / K)$ and $a \in L^{*}$. For example, the least ramification number of L / K is equal to

$$
\inf \left\{v_{L}(\sigma(a) / a-1) \mid \sigma \in \operatorname{Gal}(L / K), a \in L^{*}\right\}
$$

Here v_{L} denotes the normalized valuation on L. Our next theorem is to give a similar relation between ramification numbers of D / K and valuations of commutators.

THEOREM B. The least ramification number of D / K is equal to

$$
\inf \left\{v_{D}\left(a b a^{-1} b^{-1}-1\right) \mid a, b \in D^{*}\right\}
$$

Here v_{D} denotes the normalized valuation on D.
We will also give a certain description for all ramification numbers by using values $v_{D}\left(a b a^{-1} b^{-1}-1\right)$. But this is more complicated than the case denoted above. For details, see Theorem 5.1.

We will use the notations below:
The word 'field' means commutative fields, unless the contrary is explicitly stated.

The map Res denotes the restriction map and Cor the corestriction map of Galois cohomology.

For a complete discrete valuation field k or a finite dimensional division algebra k over a complete discrete valuation field,
v_{k} denotes the normalized valuation on k,

$$
O_{k}=\left\{x \in k \mid v_{k}(x) \geqslant 0\right\}
$$

$$
\begin{aligned}
& \mathfrak{m}_{k}=\left\{x \in k \mid v_{k}(x)>0\right\}, \\
& U_{k}=\left\{x \in k \mid v_{k}(x)=0\right\} \\
& U_{k}^{i}=\operatorname{ker}\left(U_{k} \rightarrow\left(O_{k} / \mathfrak{m}^{i}\right)^{*}\right) \quad \text { for } i=0,1,2, \ldots .
\end{aligned}
$$

For a complete discrete valuation field $k, k_{n r}$ denotes the maximal unramified extension of k.

For any field $k, k^{\text {sep }}$ denotes the separable closure of k, and $\operatorname{Br}(k)$ denotes the Brauer group of k.

For $\theta \in \operatorname{Br}(k), D(\theta)$ denotes the division algebra over k corresponding to θ.
For any field extension k^{\prime} / k and $\theta \in \operatorname{Br}(k), \theta_{k^{\prime}}$ denotes $\operatorname{Res}_{k^{\prime} / k}(\theta)$.
For any Abelian group A and natural number $m,{ }_{m} A$ denotes $\{a \in A \mid m a=0\}$.

2. Basic properties of elements of Brauer group

Let K be a complete discrete valuation field and F its residue field. Suppose that the characteristic of F is $p>0$ and $\left[F: F^{p}\right]=p$. Let D be a division algebra with center K and C its residue division algebra. We consider the following condition:
C is commutative and purely inseparable over F.
Let w be the class of D in the Brauer group of K.
PROPOSITION 2.1. (i) If $(*)$ holds, then

$$
[D: K]^{1 / 2}=[C: F]=v_{D}\left(\pi_{K}\right)
$$

(ii) The condition $\left(^{*}\right)$ is equivalent to the condition
the order of $w=$ the order of $w_{K_{n r}}$.
Furthermore, if this condition holds, then the order of w is equal to $[D: K]^{1 / 2}$.
(iii) Suppose that $(*)$ holdsfor D. Then $(*)$ also holds for $D\left(p^{j} w\right)(j=0,1, \ldots)$ and for $D\left(w_{L}\right)$ where L is an algebraic extension of K and satisfying either of the three conditions below
(a) $L \subset D$,
(b) L is unramified over K,
(c) $p \nmid[L: K]<\infty$.

Proof. (i) Put $[D: K]=r^{2},[C: F]=f$ and $v_{D}\left(\pi_{K}\right)=e$. It is well-known that $e f=r^{2}$. Take $y \in C-C^{p}$ so that $C=F(y)$. Take its lifting $x \in D$, then we have

$$
f=[C: F] \leqslant[K(x): K] \leqslant r
$$

(the last inequality follows from the fact $K(x)$ is a commutative subfield of D).
Next, we show that $1, \pi_{D}, \ldots, \pi_{D}^{e-1}$ are linearly independent over K. To show this, suppose that

$$
a_{0}+a_{1} \pi_{D}+\cdots+a_{e-1} \pi^{e-1}=0
$$

with $a_{j} \in K$. Since all of $v_{D}\left(a_{j} \pi_{D}^{j}\right)=e v_{K}\left(a_{j}\right)+j(j=0,1, \ldots, e-1)$ are distinct, all of a_{j} must be zero. This implies

$$
e \leqslant\left[K\left(\pi_{D}\right): K\right] \leqslant r
$$

From those two inequalities, we have $r=e=f$.
(ii) The assertions ' $(*)^{\prime}$ implies $(*)^{\prime}$ ' and ' $(*)^{\prime}$ implies the last assertion' can be shown easily by induction on the order of w, using [1] Section 4 Lemma 5 for the case that the order of w is p.

Now, we prove that $(*)$ implies $(*)^{\prime}$. From (i), we have $[D: K]^{1 / 2}=[C: F]=$ $v_{D}\left(\pi_{K}\right)$. Since C / F is purely inseparable, those common values are a power p^{n} of p. It is well-known that the order of w divides $[D: K]^{1 / 2}=p^{n}$. So let $p^{m}(m \leqslant n)$ be the order of w. We prove $m=n$ by induction on m.

We first consider the case $m=1$. Suppose that w is split by some finite unramified Galois extension L / K. Put $G=\operatorname{Gal}(L / K)$. Let H be some p-Sylow subgroup of G and L_{0} its fixed subfield. We see that the order of $w_{L_{0}}$ is also p (because $\operatorname{Cor}\left(w_{L_{0}}\right)=\left[L_{0}: K\right] w$ and $\left.p \nmid\left[L_{0}: K\right]\right)$. Further, we can see $D\left(w_{L_{0}}\right)=$ $D \otimes L_{0}$. To see this, put $p^{2 r}=\left[D\left(w_{L}\right): K\right]$, then it is enough to show $r=n$. Since $w_{L_{0}}$ is split by some extension of L_{0} of degree p^{r}, w is split by an extension of K of degree $\left[L_{0}: K\right] p^{r}$. So we have $p^{n} \mid\left[L_{0}: K\right] p^{r}$, and hence $r=n$. Since H is a p-group, there is a sequence of fields

$$
L_{0} \subset L_{1} \subset \cdots \subset L_{s}=L
$$

such that $\left[L_{j+1}: L_{j}\right]=p(j=0,1, \ldots, s-1)$. Take $r \in\{0,1, \ldots, s-1\}$ as

$$
\left[D\left(w_{L_{r}}\right): L_{r}\right]=p^{2 n}>\left[D\left(w_{L_{r+1}}\right): L_{r+1}\right]=p^{2 n^{\prime}}
$$

Take any maximal subfield M of $D\left(w_{L_{r+1}}\right)$. Then $w_{L_{r}}$ is split by the extension M / L_{r} whose degree is $p^{n^{\prime}+1}$. So we have $n^{\prime}+1=n$, and then $\left[M: L_{r}\right]=$ $\left[D\left(w_{L_{r}}\right): L_{r}\right]^{1 / 2}$. This shows that $D\left(w_{L_{r}}\right)$ contains a field which is isomorphic to M. But the extension M / L_{r} contains the unramified extension L_{r+1} / L_{r}, this contradicts $(*)$ for $D\left(w_{L_{r}}\right)$ (since $D\left(w_{L_{r}}\right)=D \otimes L_{r}$, it is clear that $(*)$ holds for $D\left(w_{L_{r}}\right)$). This shows $w_{K_{n r}} \neq 0$.

When $m>1$, the inductive hypothesis says that $[D(p w): K]=p^{2(m-1)}$. Take a maximal commutative subfield L of $D(p w)$, then the order of w_{L} is p. From the case $m=1, w_{L}$ is split by some extension of L of degree p, and it is an extension of K of degree p^{m}. This completes the proof.
(iii) The case (a) is clear from the fact that $D\left(w_{L}\right)$ is isomorphic to the centralizer of L in D. The other parts are clear from (ii).

3. Herbrand's function ψ

From now on we assume D is a division algebra satisfying ($*$). Let C be its residue field, w the element of $\operatorname{Br}(K)$ corresponding to D, and p^{n} the order of w.

Put $s_{j}=\operatorname{sw}\left(p^{j} w\right) \in \mathbf{Z}_{\geqslant 0}(j=0,1, \ldots, n)$. Here, for any $\theta \in \operatorname{Br}(K), \operatorname{sw}(\theta)$ denotes the Swan conductor of θ which is defined in [2] (see below). We have

$$
s_{0}>s_{1}>\cdots>s_{n}=0
$$

Formally put $s_{-1}=\infty$. Using those numbers, we define Herbrand's function $\psi: \mathbf{Z}_{\geqslant 0} \rightarrow \mathbf{Z}_{\geqslant 0}$ for D as follows

$$
\begin{aligned}
& \psi(0)=0 \\
& \psi(i)=\psi\left(s_{j}\right)+p^{n-j}\left(i-s_{j}\right) \quad \text { if } s_{j} \leqslant i \leqslant s_{j-1}
\end{aligned}
$$

We review on Swan conductors. For any $m \in \mathbf{Z}$, the cup product induces the map

$$
\begin{aligned}
K^{*} / K^{* m} \otimes_{m} \operatorname{Br}(K)= & H^{1}(K, \mathbf{Z} / m \mathbf{Z}(1)) \otimes H^{2}(K, \mathbf{Z} / m \mathbf{Z}(1)) \\
& \rightarrow H^{3}(K, \mathbf{Z} / m \mathbf{Z}(2))
\end{aligned}
$$

and taking the inductive limit on m, it induces

$$
K^{*} \otimes \operatorname{Br}(K) \rightarrow H^{3}(K, \mathbf{Q} / \mathbf{Z}(2))
$$

(In the case that the characteristic of K is p, the definitions of p-primary part of $\mathbf{Z} / m \mathbf{Z}(r)$ and $\mathbf{Q} / \mathbf{Z}(r)$ are complicated. For details, see [2].) We write the image of $a \otimes \theta \in K^{*} \otimes \operatorname{Br}(K)$ by this map as $\{\theta, a\}$.

For any finite extension L / K, we have

$$
\begin{array}{ll}
\operatorname{Cor}\left(\left\{\theta_{L}, a\right\}\right)=\left\{\theta, N_{L / K}(a)\right\} & \text { for any } \theta \in \operatorname{Br}(K), a \in L^{*}, \\
\operatorname{Cor}(\{\theta, a\}=\{\operatorname{Cor}(\theta), a\} & \text { for any } \theta \in \operatorname{Br}(L), a \in K^{*} . \tag{1}
\end{array}
$$

When ${ }_{p} \operatorname{Br}(F) \neq 0$, Swan conductors can be defined as ([2] Proposition(6.5))

$$
\begin{equation*}
\operatorname{sw}(\theta)=\inf \left\{m \mid \operatorname{ker}(\{\theta, ?\}) \supset U_{K}^{m+1}\right\} \tag{2}
\end{equation*}
$$

for any $\theta \in \operatorname{Br}(K)$. Remark that this definition is correct only when ${ }_{p} \operatorname{Br}(F) \neq 0$ and $\left[F: F^{p}\right]=p$.

Now, suppose ${ }_{p} \operatorname{Br}(F)=0$. In this case, we need more precise definition of Swan conductors, but after the proof of the next lemma, we can reduce all problems to the case ${ }_{p} \operatorname{Br}(F) \neq 0$.

Fix $\pi_{K} \in K$ such that $v_{K}\left(\pi_{K}\right)=1$. Let K_{m} be the fraction field of the completion of $O_{K}\left[T^{p^{-m}}\right]_{\left(\pi_{K}\right)}(m=0,1, \ldots)$ and K_{∞} the fraction field of the completion of $\bigcup_{m=0}^{\infty} O_{K}\left[T^{p^{-m}}\right]_{\left(\pi_{K}\right)}$. Then their residue fields are $F_{m}=F\left(T^{p^{-m}}\right)$ and $F_{\infty}=\cup F_{m}$.

LEMMA 3.1. (i) $\left[F_{\infty}: F_{\infty}^{p}\right]=p$ and $_{p} \operatorname{Br}\left(F_{\infty}\right) \neq 0$.
(ii) $D \otimes K_{\infty}$ is a division algebra.
(iii) For any $\theta \in B r(K)$, we have

$$
\operatorname{sw}(\theta)=\operatorname{sw}\left(\theta_{K_{\infty}}\right)
$$

In particular, Herbrand's functions for D and $D \otimes K_{\infty}$ coincide.
(iv) $v_{D}=\left.v_{D \otimes K_{\infty}}\right|_{D}$. In particular, for any $i=0,1, \ldots$, we have

$$
\begin{aligned}
U_{D}^{i} & =U_{D \otimes K_{\infty}}^{i} \cap D \\
U_{K}^{i} & =U_{K_{\infty}}^{i} \cap K
\end{aligned}
$$

(v) The diagram

commutes.
Proof. (iv), (v) and the first assertion of (i) are clear. Now, we prove the later part of (i). Let $\chi \in H^{1}\left(F_{\infty}, \mathbf{Q} / \mathbf{Z}\right)$ be the character of $\operatorname{Gal}\left(F_{\infty}^{\text {sep }} / F_{\infty}\right)$ which corresponds to the extension defined by the equation $\alpha^{p}-\alpha=T$. Take $a \in F-F^{p}$. Then the element (χ, a) of ${ }_{p} \operatorname{Br}\left(F_{\infty}\right)$ is not zero, because $(\chi, a)=0$ is equivalent to $a \in \mathrm{~N}_{F_{\infty}(\alpha) / F_{\infty}}\left(F_{\infty}(\alpha)^{*}\right)$ (see [5] Chapter 14 for the definition of (χ, a)).
(iii) From [2] Proposition(6.3), we can easily see

$$
\operatorname{sw}\left(\theta_{K_{0}}\right) \geqslant \operatorname{sw}\left(\theta_{K_{\infty}}\right)
$$

Further, the same proposition says that, to show the opposite inequality it is enough to show that

$$
\left\{\theta_{L_{\infty}}, 1+\pi_{K}^{N+1} S\right\}=0 \quad \text { implies }\left\{\theta_{L_{0}}, 1+\pi_{K}^{N+1} S\right\}=0 \quad \text { for any } N
$$

where L_{m} is the fractional field of the henselization of $O_{K_{m}}[S]_{\left(\pi_{K}\right)}$ and similarly L_{∞}. Since

$$
\left\{\theta_{L_{\infty}}, 1+\pi_{K}^{N+1} S\right\}=\operatorname{Res}\left(\left\{\theta_{L_{0}}, 1+\pi_{K}^{N+1} S\right\}\right)
$$

in $H^{3}\left(L_{\infty}, \mathbf{Q} / \mathbf{Z}(2)\right),\left\{\theta_{L_{\infty}}, 1+\pi_{K}^{N+1} S\right\}=0$ is equivalent to $\left\{\theta_{L_{m}}, 1+\pi_{K}^{N+1} S\right\}=$ 0 for some m. But [2] Lemma (6.2) says

$$
\operatorname{sw}(\theta)=\operatorname{sw}\left(\theta_{K_{m}}\right) \quad \text { for all } m=0,1, \ldots
$$

From this, if $\left\{\theta_{L_{m}}, 1+\pi_{K}^{N+1} S\right\}=0$ holds for some m, then it also holds for all m, especially for $m=0$. This completes the proof. When we have proved (ii), the later part of (iii) is clear from this.
(ii) It is enough to show $\left(p^{n-1} w\right)_{K_{\infty}} \neq 0$. But [2] Proposition (6.1) and (iii) $\operatorname{say} \operatorname{sw}\left(p^{n-1} w_{K_{\infty}}\right)=\operatorname{sw}\left(p^{n-1} w\right)>0$. This shows $\left(p^{n-1} w\right)_{K_{\infty}} \neq 0$.

In the rest of this section, we prove some properties of Swan conductors and Herbrand's functions. If a and b are two elements of some group, we write $[a, b]=$ $a b a^{-1} b^{-1}$. For $a \in O_{D}$, we write \bar{a} for the class of a in C.

LEMMA 3.2. If $n=1$, then we have

$$
s_{0}=\inf \left\{v_{D}([a, b]-1) \mid a, b \in D^{*}\right\}
$$

Proof. Let t be the right-hand side of above equation. First, we reduce to the case ${ }_{p} \operatorname{Br}(F) \neq 0$. Using notations in Lemma 3.1, we have $s_{0}=\operatorname{sw}\left(w_{K_{\infty}}\right)$. So we should show

$$
t=\inf \left\{v_{D \otimes K_{\infty}}([a, b]-1) \mid a, b \in\left(D \otimes K_{\infty}\right)^{*}\right\}
$$

Take $\alpha \in O_{D}$ such that $\bar{\alpha} \notin F$, and $\pi_{D} \in D^{*}$ such that $v_{D}\left(\pi_{D}\right)=1$. Then we also have $\bar{\alpha} \notin F_{\infty}$, and $v_{D \otimes K_{\infty}}\left(\pi_{D}\right)=1$. Hence, the claim is clear from [1] Section 1 Lemma 1. Now we assume ${ }_{p} \operatorname{Br}(F) \neq 0$. In this case, [1] Section 1 says

$$
t=\inf \left\{m \mid \operatorname{Nrd}\left(D^{*}\right) \supset U_{K}^{m+1}\right\}
$$

Further, [4] Theorem (12.2) says that

$$
\operatorname{Nrd}\left(D^{*}\right)=\operatorname{ker}(\{w, ?\})
$$

From (2), this completes the proof.

LEMMA 3.3. If L / K is a finite extension such that the residue extension is purely inseparable, then we have

$$
\text { Cor: } H^{3}(L, \mathbf{Q} / \mathbf{Z}(2)) \rightarrow H^{3}(K, \mathbf{Q} / \mathbf{Z}(2))
$$

is isomorphic in p-primary part.
Proof. For any m, there exists an isomorphism

$$
H^{3}\left(K, \mathbf{Z} / p^{m} \mathbf{Z}(2)\right) \rightarrow p^{m} \operatorname{Br}(F)
$$

described in [3]. Let E be the residue field of L. It is easy to see that the diagram

commutes, here right arrow is induced by $[E: F]$-th power map from E to F.
LEMMA 3.4. Let L / K be a field extension such that $[L: K]$ is prime to p. Then,
(i) $D \otimes L$ is a division algebra.
(ii) Let $e=v_{L}\left(\pi_{K}\right)$ and ψ^{\prime} be Herbrand's function for $D \otimes L$. Then, for any $i=0,1, \ldots$, we have

$$
\psi^{\prime}(e i)=e \psi(i)
$$

(iii) For any $m=0,1, \ldots$, we have

$$
\begin{aligned}
U_{D}^{i} & =U_{D \otimes L}^{e i} \cap D \\
U_{K}^{i} & =U_{L}^{e i} \cap K
\end{aligned}
$$

(iv) The diagram

commutes.
Proof. (i) It is enough to show that the order of w_{L} is p^{n}. But this is clear from the fact that the restriction map is injective in 'prime to $[L: K]$-part'.
(ii) It is enough to show that $\operatorname{sw}\left(\theta_{L}\right)=e \operatorname{sw}(\theta)$ for any $\theta \in \operatorname{Br}(K)$. From Lemma 3.1, we can assume ${ }_{p} \operatorname{Br}(F) \neq 0$. Take the maximal unramified extension L^{\prime} in L / K, then the extension L / L^{\prime} is totally ramified (since $[L: K]$ is prime to
$p)$. So it is enough to show the claim in the cases that L / K is unramified or totally ramified.

First, we consider the case L / K is totally ramified so that $e=[L: K]=$ $v_{L}\left(\pi_{K}\right)$. Take $l, m \in \mathbf{Z}$ such that $p^{n} l+e m=1$. Take any $a \in U_{K}^{i}\left(i>\operatorname{sw}\left(\theta_{L}\right) / e\right)$. Since $U_{K}^{i} \subset U_{L}^{\operatorname{sw}\left(\theta_{L}\right)+1}$, we have

$$
\begin{aligned}
\{\theta, a\} & =\left\{\left(p^{n} l+e m\right)(\theta), a\right\} \\
& =\{e m \theta, a\} \\
& =m\left\{\operatorname{Cor}\left(\theta_{L}\right), a\right\} \\
& =m \operatorname{Cor}\left(\left\{\theta_{L}, a\right\}\right) \quad \text { from }(1) \\
& =0
\end{aligned}
$$

From (2), this means $e \mathrm{sw}(\theta) \leqslant \mathrm{sw}\left(\theta_{L}\right)$. To show the opposite inequality, note that

$$
N_{L / K}\left(U_{L}^{e i+1}\right) \subset U_{K}^{i+1} \quad \text { for any } i=0,1, \ldots
$$

This is proved by [5] Chapter 5. Take any $a \in U_{L}^{\operatorname{esw}(\theta)+1}$. Then we have

$$
\operatorname{Cor}\left(\left\{\theta_{L}, a\right\}\right)=\{\theta, N(a)\}=0 \quad \text { from }(1)
$$

This proves the opposite inequality by using (2) and Lemma 3.3.
Next, we consider the case L / K is unramified so that $e=1$. In this case, we have (see [5] Chapter 5)

$$
N_{L / K}\left(U_{L}^{i}\right)=U_{K}^{i} \quad \text { for any } i=0,1, \ldots
$$

Using this fact, the inequality $\operatorname{sw}\left(\theta_{L^{\prime}}\right) \geqslant \operatorname{sw}(\theta)$ can be shown by a similar way as above. We can take $a \in U_{K}^{\mathrm{sw}(\theta)}$ such that $\{\theta, a\} \neq 0$. There exist $b \in U_{L}^{\mathrm{sw}(\theta)}$ such that $N(b)=a$. Then we have

$$
0 \neq\{\theta, a\}=\left\{\theta_{L}, b\right\} \quad \text { from (1). }
$$

From (2), this shows the opposite inequality and completes the proof.
(iii) and (iv) are trivial.

4. The action of reduced norm on the filtration

THEOREM 4.1. For any $i=0,1, \ldots$, we have

$$
\operatorname{Nrd}\left(U_{D}^{\psi(i)}\right) \subset U_{K}^{i}
$$

$$
\operatorname{Nrd}\left(U_{D}^{\psi(i)+1}\right) \subset U_{K}^{i+1}
$$

To prove this theorem, we use induction on n. For $n=1$, the proof is already done in [1] Section 1 and Lemma 3.2.

Assume $n>1$. From Lemma 3.1, we can assume ${ }_{p} \operatorname{Br}(F) \neq 0$. Our plan of the proof is as follows. Take a Galois extension L / K of degree p contained in D. Let D^{\prime} be the centralizer of L in D. For $x \in D^{\prime}$, we have

$$
\operatorname{Nrd}_{D / K}(x)=\mathrm{N}_{L / K}\left(\operatorname{Nrd}_{D^{\prime} / L}(x)\right) .
$$

Hence, for such x, the problem is divided into ' $\mathrm{Nrd}_{D^{\prime} / L}$-part' and ' $\mathrm{N}_{L / K}$-part'.
First, we prove the following claim: We can assume that for any $x \in U_{D}$ there exists a Galois extension of K of degree p contained in D such that x is an element of the centralizer of it in D.

When the characteristic of K is p and the extension $K(x) / K$ is purely inseparable, we have $\operatorname{Nrd}(x)=x^{p^{n}}$ and $x \in U_{D}^{i}$ implies $x^{p^{n}} \in U_{K}^{i}$. Whatever the values of $\operatorname{sw}\left(p^{j} w\right)$ are, we have $\psi(i) \geqslant i(i=0,1, \ldots)$. So there is no problem in this case.

In the every other case, we can take a commutative subfield L of D containing K such that the extension L / K is not trivial and separable, and x is an element of the centralizer of L in D. We can write $L=K(y)$ for some $y \in L$. Take any pro- p-Sylow subgroup of $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$ and let K_{1} be its fixed subfield in $K^{\text {sep }}$. Since a p-group is solvable, we can take a field extension $K_{1}(z) / K_{1}$ such that

$$
\begin{aligned}
& K_{1} \subset K_{1}(z) \subset K_{1}(y)=K_{1} L \\
& {\left[K_{1}(z): K_{1}\right]=p .}
\end{aligned}
$$

Write $z=f(y) / g(y)$ where f and g are polynomials whose coefficients are in K_{1}. Let K_{2} be the field generated by K, all coefficients of f and g, and all coefficients of the minimal equation of z over K_{1}. Then

$$
\begin{aligned}
& p \nmid\left[K_{2}: K\right]<\infty, \\
& K_{2} \subset K_{2}(z) \subset K_{2}(y), \\
& {\left[K_{2}(z): K_{2}\right]=p .}
\end{aligned}
$$

Using Lemma 3.4, we can assume the existence of separable (not necessary Galois) extension L / K of degree p.

Now assume that a separable extension L / K of degree p is given. Take the Galois closure L^{\prime} of L / K, and let K^{\prime} be the fixed field of some p-Sylow subgroup of $\operatorname{Gal}\left(L^{\prime} / K\right)$. Since $\left[L^{\prime}: K\right] \leqslant p!$, we have $p \nmid\left[K^{\prime}: K\right]$ and the extension L^{\prime} / K^{\prime} is Galois. Hence we have showed the claim, by using Lemma 3.4.

Now we take such a Galois extension L / K of degree p contained in D. Let D^{\prime} be the centralizer of L in D. It is well-known that the class of D^{\prime} in $\operatorname{Br}(L)$ is equal to w_{L}. The extension L / K is either a totally ramified extension or an extension with a purely inseparable residue extension of degree p. We call the first case 'totally ramified' and the latter case 'having residue extension'. Put $s_{j}^{\prime}=\operatorname{sw}\left(p^{n-1-j} w_{L}\right)(j=0,1, \ldots, n-1)$ and let ψ^{\prime} be the Herbrand's function for D^{\prime} / L. Now we can use inductive hypothesis, hence we have

$$
\begin{aligned}
& \operatorname{Nrd}_{D^{\prime} / L}\left(U_{D^{\prime}}^{\psi^{\prime}(i)}\right) \subset U_{L}^{i} \\
& \operatorname{Nrd}_{D^{\prime} / L}\left(U_{D^{\prime}}^{\psi^{\prime}(i)+1}\right) \subset U_{L}^{i+1} .
\end{aligned}
$$

In the case 'totally ramified', we can use [5] Chapter 5. Put $t=v_{L}\left(\pi_{L}^{\sigma} / \pi_{L}-1\right)$ where σ is a generator of $\operatorname{Gal}(L / K)$ and π_{L} is an element of L such that $v_{L}\left(\pi_{L}\right)=1$. Using this, we define

$$
\begin{array}{ll}
\rho(i)=i & \text { if } 0 \leqslant i \leqslant t \\
\rho(i)=t+p(i-t) & \text { if } t \leqslant i
\end{array}
$$

Then we have

$$
\begin{aligned}
& \mathrm{N}_{L / K}\left(U_{L}^{\rho(i)}\right) \subset U_{K}^{i} \\
& \mathrm{~N}_{L / K}\left(U_{L}^{\rho(i)+1}\right) \subset U_{K}^{i+1}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& U_{D^{\prime}}^{i}=U_{D}^{i} \cap D^{\prime} \\
& U_{K}^{i}=U_{L}^{p i} \cap K
\end{aligned}
$$

So we must show

$$
\psi \geqslant \psi^{\prime} \circ \rho
$$

This is an easy consequence of next lemma.
LEMMA 4.2. Use above assumptions and notations. Take m as $s_{m} \leqslant t<s_{m-1}$. Then we have $m \leqslant n-1$ (i.e. it does never happen that $t<s_{n-1}$), and

$$
\begin{aligned}
& s_{n-1} \leqslant s_{n-2}^{\prime} \leqslant s_{n-2} \leqslant s_{n-3}^{\prime} \leqslant \ldots \\
& \ldots \leqslant s_{m} \leqslant t<s_{m-1}=\rho^{-1}\left(s_{m-1}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& <s_{m-2}=\rho^{-1}\left(s_{m-2}^{\prime}\right) \\
& <\cdots .
\end{aligned}
$$

Proof. It is enough to show five inequalities below

$$
\begin{align*}
& s_{n-1} \leqslant t \tag{3}\\
& s_{j+1} \leqslant s_{j}^{\prime} \quad j=0,1, \ldots, n-1, \tag{4}\\
& s_{j}^{\prime} \leqslant \rho\left(s_{j}\right) \quad j=0,1, \ldots, n-1, \tag{5}\\
& t \leqslant s_{m-1}^{\prime} \tag{6}\\
& \rho\left(s_{j}\right) \leqslant s_{j}^{\prime} \quad j=0,1, \ldots, m-1 . \tag{7}
\end{align*}
$$

These inequalities can be proved rather easily as follows. The key of the proof is (1) and (2).

Proof of (3): Take $a \in U_{K}^{t+1}$. Then we can write $a=\mathrm{N}_{L / K}(b)$ for some $b \in U_{L}^{t+1}$ ([5] Chapter 5). So

$$
\left\{p^{n-1} w, a\right\}=\operatorname{Cor}\left(\left\{\left(p^{n-1} w\right)_{L}, b\right\}\right)=0
$$

and this implies (3).
Proof of (4): Take $a \in U_{K}^{s_{j}^{\prime}+1}$. Then $a \in U_{L}^{s_{j}^{\prime}+1}$. So

$$
\left\{p^{j+1} w, a\right\}=\operatorname{Cor}\left(\left\{\left(p^{j} w\right)_{L}, a\right\}\right)=0
$$

and this implies (4).
Proof of (5): Take $a \in U_{L}^{\rho\left(s_{j}\right)+1}$. Then $\mathrm{N}_{L / K}(a) \in U_{K}^{s_{j}+1}$. So

$$
\operatorname{Cor}\left(\left\{\left(p^{j} w\right)_{L}, a\right\}\right)=\left\{p^{j} w, \mathbf{N}(a)\right\}=0
$$

and this implies (5) by Lemma 3.3.
Proof of (6): Since $t<s_{m-1}$, we can take $a \in U_{K}^{t+1}$ such that $\left\{p^{m-1} w, a\right\} \neq 0$. We can also take $b \in U_{L}^{t+1}$ such that $a=\mathrm{N}(b)$. So

$$
0 \neq\left\{p^{m-1} w, a\right\}=\operatorname{Cor}\left(\left\{p^{m-1} w_{L}, b\right\}\right)
$$

and this implies (6).
Proofof(7): Take $a \in U_{K}^{i}$ as $\rho(i)>s_{j}^{\prime}$. Since $t \leqslant s_{j}^{\prime}$, we can write $a=\mathrm{N}_{L / K}(b)$ for some $b \in U_{L}^{s_{j}^{\prime}+1}$. So

$$
\left\{p^{j} w, a\right\}=\operatorname{Cor}\left(\left\{\left(p^{j} w\right)_{L}, b\right\}\right)=0
$$

and this implies (7).
Remark 4.3. From this lemma, for L such that $t=s_{n-1}$, we have

$$
\begin{aligned}
& \psi=\psi^{\prime} \circ \rho, \\
& \rho\left(s_{j}\right)=s_{j}^{\prime} \quad \text { for all } j=0,1, \ldots, n-2
\end{aligned}
$$

Similar fact holds when L/K has residue extension. See below.
In the case 'having residue extension', we can use [1] Section 1: Put $t=$ $p v_{L}\left(h^{\sigma} / h-1\right)$ where σ is a generator of $\operatorname{Gal}(L / K)$ and h is an element of O_{L} such that $\bar{h} \notin F$. Using this, we define

$$
\begin{array}{ll}
\rho(i)=i / p & \text { if } 0 \leqslant i \leqslant t \\
\rho(i)=t / p+(i-t) & \text { if } t \leqslant i .
\end{array}
$$

Then we have

$$
\begin{aligned}
& \mathrm{N}_{L / K}\left(U_{L}^{\rho(i)}\right) \subset U_{K}^{i}, \\
& \mathrm{~N}_{L / K}\left(U_{L}^{\rho(i)+1}\right) \subset U_{K}^{i+1} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& U_{D^{\prime}}^{i}=U_{D}^{p i} \cap D^{\prime}, \\
& U_{K}^{i}=U_{L}^{i} \cap K .
\end{aligned}
$$

So we must show

$$
\psi \geqslant p \psi^{\prime} \circ \rho .
$$

This is an easy consequence of next lemma.
LEMMA 4.4. Use above assumptions and notations. Take m as $s_{m} \leqslant t<s_{m-1}$.
Then we have $m \leqslant n-1$ and

$$
\begin{aligned}
& s_{n-1} \leqslant p s_{n-2}^{\prime} \leqslant s_{n-2} \leqslant p s_{n-3}^{\prime} \leqslant \cdots \\
& \cdots \leqslant s_{m} \leqslant t<s_{m-1}=\rho^{-1}\left(s_{m-1}^{\prime}\right) \\
& <s_{m-2}=\rho^{-1}\left(s_{m-2}^{\prime}\right) \\
& <\cdots .
\end{aligned}
$$

Proof. It is enough to show five inequalities below

$$
\begin{array}{ll}
s_{n-1} \leqslant t, & \\
s_{j+1} \leqslant s_{j}^{\prime}<p s_{j}^{\prime} & j=0,1, \ldots, n-1, \\
s_{j}^{\prime} \leqslant \rho\left(s_{j}\right) & j=0,1, \ldots, n-1, \\
t / p \leqslant s_{m-1}^{\prime}, & \\
\rho\left(s_{j}\right) \leqslant s_{j}^{\prime} & j=0,1, \ldots, m-1 .
\end{array}
$$

The proof is very similar to 'totally ramified case', so we omit it.

5. The ramification numbers

For any subset S of D^{*}, we write

$$
t_{D}(S)=\inf \left\{v_{D}([a, b]-1) \mid a, b \in S\right\}
$$

We can prove the following fact by just the same way as [1] Section 1 Lemma 1. If $\alpha \in O_{D}$ and $\pi_{D} \in D^{*}$ satisfy $\bar{\alpha} \in C-C^{p}$ and $v_{D}\left(\pi_{D}\right)=1$, then

$$
t_{D}\left(D^{*}\right)=v_{D}\left(\left[\alpha, \pi_{D}\right]-1\right)
$$

Recall that the numbers $\psi\left(s_{j}\right)$ are called the ramification numbers of D / K.
THEOREM 5.1. For $j=0,1, \ldots, n-1$, put
$t_{j}=\sup \left\{t_{D}\left(D^{\prime *}\right) \mid D^{\prime}\right.$ satisfies conditions below $\}$,
D^{\prime} is a division algebra,
$K \subset D^{\prime} \subset D$,
$\left[D:\right.$ center of $\left.D^{\prime}\right]=p^{2 j+2}$,
$\left[\right.$ center of $\left.D^{\prime}: K\right]=p^{n-j-1}$.
(In particular

$$
\left.t_{n-1}=t_{D}\left(D^{*}\right) .\right)
$$

Then we have

$$
\psi\left(s_{j}\right)=t_{j} \quad \text { for any } j=0,1, \ldots, n-1
$$

First we prove two lemmas.
LEMMA 5.2. Fix any $\pi_{D} \in D$ such that $v_{D}\left(\pi_{D}\right)=1$, and put $\pi_{K}=\operatorname{Nrd}\left(\pi_{D}\right)$. If $i<s_{n-1}$, then we have

$$
\operatorname{Nrd}\left(1+\pi_{D}^{i} u\right) \equiv 1+\pi_{K}^{i} u^{p^{n}} \quad \bmod \pi_{K}^{i+1}
$$

for any $u \in U_{D}$.
Proof. This can be showed easily by induction using three points below. The case $n=1$ is proved in [1] Section 1. Similar fact for $\mathrm{N}_{L / K}: L \rightarrow K$ is proved in [5] Chapter 6 or [1] Section 1. For any totally ramified Galois extension L / K of degree p, we already proved in Lemma 4.2 that

$$
\begin{aligned}
& s_{n-1} \leqslant t \\
& s_{n-1} \leqslant s_{n-2}^{\prime},
\end{aligned}
$$

or similar fact for a 'having residue extension' case, using notations as in the proof of Theorem 4.1.

LEMMA 5.3. If K_{0} / K is a finite field extension such that $p \nmid\left[K_{0}: K\right]$. Then $D \otimes K_{0}$ is a division algebra and

$$
t_{D \otimes K_{0}}\left(\left(D \otimes K_{0}\right)^{*}\right)=e t_{D}\left(D^{*}\right) .
$$

Here $e=v_{K_{0}}\left(\pi_{K}\right)$.
Proof. The first part of this lemma is already proved in Lemma 3.4. Take $\alpha \in O_{D}$ such that $\bar{\alpha} \in C-C^{p}$, then we also have

$$
\bar{\alpha} \in\left(O_{D \otimes K_{0}} / \mathfrak{m}_{D \otimes K_{0}}\right)-\left(O_{D \otimes K_{0}} / \mathfrak{m}_{D \otimes K_{0}}\right)^{p} .
$$

Fix $\pi_{D} \in D$ and $\pi_{K_{0}} \in K_{0}$ such that $v_{D}\left(\pi_{D}\right)=1$ and $v_{K_{0}}\left(\pi_{K_{0}}\right)=1$. Take $l, m \in$ \mathbf{Z} such that $p^{n} l+e m=1$. Put $\pi_{D \otimes K_{0}}=\pi_{K_{0}}^{l} \pi_{D}^{m}$ so that $v_{D \otimes K_{0}}\left(\pi_{D \otimes K_{0}}\right)=1$. Put $\left[\alpha, \pi_{D}\right]=1+\pi_{D}^{r} u$ with $u \in U_{D}$, then we have

$$
\begin{aligned}
{\left[\alpha, \pi_{D \otimes K_{0}}\right] } & =\left[\alpha, \pi_{K_{0}}^{l} \pi_{D}^{m}\right] \\
& =\left[\alpha, \pi_{D}^{m}\right] \\
& =\left[\alpha, \pi_{D}\right]\left(\pi_{D}\left[\alpha, \pi_{D}\right] \pi_{D}^{-1}\right) \cdots\left(\pi_{D}^{m-1}\left[\alpha, \pi_{D}\right] \pi_{D}^{1-m}\right) \\
& \equiv 1+\pi_{D}^{r}\left(u+\pi_{D} u \pi_{D}^{-1}+\cdots+\pi_{D}^{m-1} u \pi_{D}^{1-m}\right) \bmod \pi_{D \otimes K_{0}}^{e r+1} .
\end{aligned}
$$

Since $u \equiv \pi_{D} u \pi_{D}^{-1} \bmod \pi_{D}$ and $p \nmid m$, we have

$$
u+\pi_{D} u \pi_{D}^{-1}+\cdots+\pi_{D}^{m-1} u \pi_{D}^{1-m} \equiv m u \not \equiv 0 \quad \bmod \pi_{D} .
$$

Hence we have

$$
\begin{aligned}
t_{D \otimes K_{0}}\left(\left(D \otimes K_{0}\right)^{*}\right) & =v_{D \otimes K_{0}}\left(\left[\alpha, \pi_{D \otimes K_{0}}\right]-1\right)=e r \\
& =e v_{D}\left(\left[\alpha, \pi_{D}\right]-1\right)=e t_{D}\left(D^{*}\right)
\end{aligned}
$$

and this completes the proof.
Now, let us begin the proof of Theorem 5.1. We again use induction on n. The case $n=1$ is already done in Lemma 3.2.

Suppose that $n>1$. First, we prove the case $j=n-1$. We have $t_{n-1}=t_{D}\left(D^{*}\right)$ and $\psi\left(s_{n-1}\right)=s_{n-1}$. Since $\operatorname{Nrd}([a, b])=1$ for any $a, b \in D^{*}$, we can easily see $v_{D}([a, b]-1) \geqslant s_{n-1}$ using Lemma 5.2. Now, we must show the existence of $a, b \in D$ such that $v_{D}([a, b]-1)=s_{n-1}$.

The first step is to prove the following claim: We can assume an existence of a Galois extension L / K of degree p contained in D which satisfies the next condition: Let σ be a generator of $\operatorname{Gal}(L / K)$. Then,

$$
\begin{array}{ll}
s_{n-1}=v_{L}\left(\sigma\left(\pi_{L}\right) / \pi_{L}-1\right) & \begin{array}{l}
\text { for some } \pi_{L} \in L \text { such that } v_{L}\left(\pi_{L}\right)=1 \\
\text { when } L / K \text { is totally ramified, } \\
s_{n-1}=p v_{L}(\sigma(h) / h-1)
\end{array} \\
\begin{array}{l}
\text { for some } h \in O_{L} \text { such that } \bar{h} \notin F \\
\text { when } L / K \text { has residue extension }
\end{array}
\end{array}
$$

If L is a maximal commutative subfield of $D\left(p^{n-1} w\right)$, then there is an inclusion $L \hookrightarrow D$ (this can be proved by the same argument as in Section 2). Hence, it is enough to show the claim in the case $n=1$. In this case, we know that there exists some $x, y \in D^{*}$ such that

$$
s_{0}=v_{D}([x, y]-1)
$$

Take some maximal commutative subfield L of D which contains $[x, y]$. Again we can assume the extension L / K is Galois. If the extension L / K is totally ramified, put $=v_{L}\left(\sigma\left(\pi_{L}\right) / \pi_{L}-1\right)$, using the same notation as above. Then it is clear that

$$
1 \neq \text { the class of }[x, y] \in \operatorname{ker}\left(\mathrm{N}: U_{L}^{s_{0}} / U_{L}^{s_{0}+1} \rightarrow U_{K}^{s_{0}} / U_{K}^{s_{0}+1}\right)
$$

On the other hand, [5] Chapter 6 says that for $i<t$

$$
\mathrm{N}: U_{L}^{i} / U_{L}^{i+1} \rightarrow U_{K}^{i} / U_{K}^{i+1}
$$

is injective. This implies $s_{0} \geqslant t$. We already know $s_{0} \leqslant t$ by Lemma 4.2. This proves the claim in this case. The proof of the case that the extension L / K has residue extension goes similarly, and hence we omit it.

Now suppose that such an extension L / K is given. We use the same notations as in the proof of Theorem 4.1 for $D^{\prime}, s_{j}^{\prime}, \psi^{\prime}, t$ and ρ. Since the case L / K has
residue extension can be proved by the similar way, we prove the case L / K is totally ramified. In this case, there exists $\pi_{D^{\prime}} \in D^{\prime}$ such that $v_{D}\left(\pi_{D^{\prime}}\right)=1$. Put $\pi_{L}=\operatorname{Nrd}_{D^{\prime} / L}\left(\pi_{D}\right)$ and $\pi_{K}=\operatorname{Nrd}_{D / K}\left(\pi_{D}\right)$. From the definition, we have $s_{n-1}=t=v_{L}\left(\sigma\left(\pi_{L}\right) / \pi_{L}-1\right)$. From general theories of central simple algebras, there exists $\alpha \in D^{*}$ such that the restriction of the inner automorphism

$$
x \mapsto \alpha x \alpha^{-1}
$$

on D to L is equal to σ. We have

$$
\begin{aligned}
s_{n-1}=t & =v_{L}\left(\sigma\left(\pi_{L}\right) / \pi_{L}-1\right) \\
& =v_{L}\left(\left[\alpha, \pi_{L}\right]-1\right) \\
& =v_{L}\left(\left[\alpha, \operatorname{Nrd}_{D^{\prime} / L}\left(\pi_{D}\right)\right]-1\right) \\
& =v_{L}\left(\operatorname{Nrd}_{D^{\prime} / L}\left(\left[\alpha, \pi_{D}\right]\right)-1\right)
\end{aligned}
$$

Since $s_{n-1}=t$, Lemma 4.2 says $t<s_{n-2}^{\prime}$. Applying Lemma 5.2 to $\left[\alpha, \pi_{D}\right]$ on D^{\prime} / L, we have

$$
v_{L}\left(\operatorname{Nrd}_{D^{\prime} / L}\left(\left[\alpha, \pi_{D}\right]\right)-1\right)=v_{D}\left(\left[\alpha, \pi_{D}\right]-1\right)
$$

This completes the proof.
Next, we consider the case $j<n-1$. First, we prove the existence of D_{0} such that $t_{D}\left(D_{0}^{*}\right)=s_{j}$. We use the same L as in the proof of the case $j=n-1$. Again, we only deal with the case L / K is totally ramified, because the proof of the case L / K has residue extension goes similarly. In this case, we have $\psi=\psi^{\prime} \circ \rho$ and $t_{D}(S)=t_{D_{0}}(S)$ for any $S \subset D_{0}{ }^{*}$. Using the inductive hypothesis, there exists a sub-division algebra $D_{0} \subset D^{\prime}$ such that
[D_{0} : the center of $\left.D_{0}\right]=p^{2 j+2}$,
$\left[\right.$ the center of $\left.D_{0}: L\right]=p^{n-2-j}$,

$$
\psi^{\prime}\left(s_{j}^{\prime}\right)=t_{D_{0}}\left(D_{0}^{*}\right)
$$

Then we have

$$
t_{D}\left(D_{0}^{*}\right)=\psi^{\prime}\left(s_{j}^{\prime}\right)=\psi^{\prime}\left(\rho\left(s_{j}\right)\right)=\psi\left(s_{j}\right)
$$

This is what we wanted.
Next, take any sub division algebra $D_{0} \subset D$ such that

$$
\left[D_{0}: \text { the center of } D_{0}\right]=p^{2 j+2} \quad \text { and } \quad\left[\text { the center of } D_{0}: K\right]=p^{n-1-j}
$$

and we begin to prove $\psi\left(s_{j}\right) \geqslant t_{D}\left(D_{0}^{*}\right)$. Let L_{0} be the center of D_{0}. First, we consider the case L_{0} / K is not purely inseparable. In this case, we can assume that there exists L such that $K \subset L \subset L_{0}$ and L / K is a Galois extension of degree p by using Lemma 3.4 and 5.3. Let D^{\prime} be the centralizer of L in D so that $D_{0} \subset D^{\prime}$. We will use the same notations as before. Using the inductive hypothesis, we have

$$
t_{D^{\prime}}\left(D_{0}^{*}\right) \leqslant \psi^{\prime}\left(s_{j}^{\prime}\right)
$$

Again, we only prove in the case L / K is totally ramified. Lemma 4.2 says that we can choose $m \in\{0, \ldots, n-1\}$ so that

$$
\begin{aligned}
& s_{n-1} \leqslant s_{n-2}^{\prime} \leqslant s_{n-2} \leqslant s_{n-3}^{\prime} \leqslant \cdots \\
& \cdots \leqslant s_{m} \leqslant t<s_{m-1}=\rho^{-1}\left(s_{m-1}^{\prime}\right) \\
& <s_{m-2}=\rho^{-1}\left(s_{m-2}^{\prime}\right) \\
& <\cdots
\end{aligned}
$$

Hence we have

$$
\psi\left(s_{j}\right) \geqslant \psi^{\prime}\left(\rho\left(s_{j}\right)\right) \geqslant \psi^{\prime}\left(s_{j}^{\prime}\right) \geqslant t_{D^{\prime}}\left(D_{0}^{*}\right)=t_{D}\left(D_{0}^{*}\right)
$$

This proves the inequality.
When L_{0} / K is purely inseparable, we can prove the inequality more easily. Put $v_{L_{0}}\left(\pi_{K}\right)=p^{e}$. Then we have

$$
\begin{array}{ll}
v_{L_{0}}(a)=p^{e} v_{K}(a) & \text { for any } a \in K \\
v_{D}(a)=p^{n-j-1-e} v_{D_{0}}(a) & \text { for any } a \in D_{0}
\end{array}
$$

Using this, we have

$$
\begin{aligned}
t_{D}\left(D_{0}^{*}\right) & =p^{n-j-1-e} t_{D_{0}}\left(D_{0}^{*}\right) & & \\
& =p^{n-j-1-e} \operatorname{sw}\left(w_{L_{0}}\right) & & \text { by the inductive hypothesis } \\
& \leqslant \operatorname{sw}\left(p^{j} w\right) & & \text { see below } \\
& \leqslant \psi\left(s_{j}\right) & & \text { because } i \leqslant \psi(i) \text { for any } i
\end{aligned}
$$

Now, let us show $p^{n-j-1-e} \operatorname{sw}\left(w_{L_{0}}\right) \leqslant \operatorname{sw}\left(p^{j} w\right)$. Take $a \in U_{L_{0}}^{i}$ with $i>$ $p^{e+1+j-n} s_{j}$. Noting that

$$
\mathrm{N}_{L_{0} / K}(a)=a^{p^{n-j-1}} \in U_{L_{0}}^{i p^{n-j-1}} \cap K \subset U_{K}^{i p^{n-j-1-e}} \subset U_{K}^{s_{j}+1}
$$

we have

$$
\left\{w_{L_{0}}, a\right\}=\left\{w, a^{p^{n-j-1}}\right\}=0 \quad \text { from }(1)
$$

From (2), this proves the inequality. And hence, we have just proved Theorem 5.1.

Acknowledgements

The author wants to express his heart of thanks to Doctor Mutsuro Somekawa, to Doctor Chikara Nakayama and especially to Professor Kazuya Kato for their helpful advises and heartful encouraging. The author is supported by JSPS Research Fellowship for Young Scientists.

References

1. Kato, K.: A generalization of local class field theory by using K-groups I, J. Fac. Sci. U. of Tokyo, Sec. IA 26, 303-376.
2. Kato, K.: Swan conductors for characters of degree one in the imperfect residue field case, Contemporary Math. 83, 101-131.
3. Kato, K.: Galois cohomology of complete discrete valuation fields, Lecture Note in Math. 967, 215-238, Springer-Verlag, 1982.
4. Merkurev, A. S. and Suslin, A. A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izv. 21, 307-340.
5. Serre, J. P.: ‘Corps locaux', Hermann, Paris, 1962.
