On Hardy's Theory of m-Functions.

By E. T. Copson.

(Received 16th October 1927. Read 4 th November 1927.)
§ 1. The Cardinal Function of Interpolation Theory ${ }^{1}$ is the function

$$
C(x)=\sum_{-\infty}^{\infty} a_{n} \frac{\sin \pi(x-n)}{\pi(x-n)}
$$

which takes the values a_{n} at the points $x=n$. Ferrar ${ }^{2}$ has recently proved
Theorem 1. If $\sum_{1}^{\infty}\left|a_{n} \log n\right| / n$ and $\sum_{1}^{\infty}\left|a_{-n} \log n\right| / n$ are convergent, $C(x)$ is an m-function ${ }^{3}$ for $m \geqslant \pi$.
This means that $C(x)$ is a solution of the integral equation

$$
f(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin m(x-t)}{x-t} f(t) d t
$$

.................. ${ }^{\text { }}$
Ferrar's proof deals with functions of a real variable and involves some rather difficult double limit considerations. In §2 of the present paper is given a complex variable treatment, which provider a much more direct proof of the property in question.

In the concluding sections, ${ }^{4}$ we show that this m-function property of the Cardinal Function is closely allied to the fact that it can be represented, under certain circumstances, by an integral of the form

$$
C(x)=\int_{0}^{1}[\phi(t) \cos \pi x t+\psi(t) \sin \pi x t] d t .
$$

[^0]
§ 2. Proof of Theorem 1.

Under the conditions of Theorem 1, the Cardinal Function Series is uniformly and absolutely convergent in any finite part of the z-plane, and represents an integral function. Consider now

$$
\int_{\Gamma} \frac{e^{i m(z-x)}}{z-x} C(z) d z
$$

where Γ is the contour formed of the segment of the real axis from $-R$ to R, indented at x, and the semicircle in the upper half plane on this segment as diameter; we suppose that $R=N+\delta$, where N is an integer, and $0<\delta<1$. This contour integral vanishes, since the integrand is analytic inside and on the contour. The evaluation of the contour integral gives at once

$$
P \int_{-R}^{R} \frac{e^{i m(t-x)}}{t-x} C(t) d t=\pi i C(x)-I(R)
$$

where the integral on the left-hand-side is a Cauchy principal value, and where $I(R)$ is the integral round the semicircle.

Now we easily see that, if $0 \leqslant \theta \leqslant \pi,\left|C\left(R e^{\theta i}\right)\right|$ is less than

$$
\frac{1}{\pi} e^{\pi R} \sin \theta\left[\frac{\left|a_{0}\right|}{R}+\sum_{1}^{\infty} \frac{\left|a_{n}\right|}{\left\{R^{2}+n^{2}-2 R n \cos \theta\right\}^{\frac{1}{2}}}+\sum_{1}^{\infty} \frac{\left|a_{-n}\right|}{\left\{R^{2}+n^{2}+2 R n \cos \theta\right\}^{\frac{1}{2}}}\right]
$$

the series on the right-hand-side being uniformly convergent with respect to θ. Since

$$
I(R)=\int_{0}^{\pi} \frac{e^{i m(R \cos \theta-x)-m R \sin \theta}}{R e^{\theta i}-x} C\left(R e^{\theta i}\right) i R e^{\theta i} d \theta
$$

$\pi(R-|x|)|I(R)| / R$ is less than

$$
\begin{aligned}
& \int_{0}^{\pi} e^{-(m-\pi) R \sin \theta}\left[\frac{\left|a_{0}\right|}{R}+\sum_{1}^{\infty} \frac{\left|a_{n}\right|}{\left\{R^{2}+n^{2}-2 R n \cos \theta\right\}^{\frac{1}{2}}}+\sum_{1}^{\infty}\left\{\overline{\left.R^{2}+n^{2}+2 R n \cos \theta\right\}}\right] d \theta\right. \\
\leqslant & \int_{0}^{\pi}\left[\frac{\left|a_{0}\right|}{R}+\sum_{1}^{\infty} \frac{\left|a_{n}\right|}{\left\{R^{2}+n^{2}-2 R n \cos \theta\right\}^{\frac{1}{2}}}+\sum_{1}^{\infty} \frac{\left|a_{-n}\right|}{\left\{R^{2}+n^{2}+2 R n \cos \theta\right\}^{\frac{1}{2}}}\right] d \theta \\
\leqslant & \pi\left\{\frac{\left|a_{0}\right|}{R}+\frac{2}{\pi} \sum_{1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{R n}}{R+n}\right]\right\}
\end{aligned}
$$

where $K(k)$ denotes the complete elliptic integral of the first kind, modulus k. We have here used the condition that $m \geqslant \pi$, and have integrated term-by-term, which is obviously valid in this case.

This inequality may be written in the form

$$
\frac{R-|x|}{R}|I(R)| \leqslant \frac{\left|a_{0}\right|}{R}+\frac{2}{\pi}\left(\sum_{1}^{N}+\sum_{N+1}^{\infty}\right) \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{ } \overline{R n}}{\bar{R}+n}\right]
$$

where $R=N+\delta$. We shall shew from this that $I(R)$ tends to zero as N tends to infinity, δ being fixed.

Now when $n \geqslant N+1$, we have

$$
\frac{2 \sqrt{R n}}{\bar{R}+n} \leqslant \frac{2 \sqrt{(N+\delta)(N+1)}}{2 N+1+\delta}<1-\frac{C_{1}}{N^{2}}
$$

where C_{1} is a positive constant depending only on δ; since $K(k)$ is a monotone increasing function of K, if $0 \leqslant k \leqslant 1$, we see that

$$
\sum_{N+1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+\delta} K\left[\frac{2 \sqrt{R n}}{R+n}\right] \leqslant \sum_{N+1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{N+\delta+n} K\left[1-\frac{C_{1}}{N^{2}}\right]
$$

Now it can be easily shewn ${ }^{1}$ that

$$
K\left[1-\frac{C_{\mathbf{1}}}{N^{2}}\right] / \log N
$$

is positive and finite for all $N(>1)$ and tends to unity as $N \rightarrow \infty$. Consequently

$$
\begin{aligned}
\sum_{N+1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{R n}}{\overline{R+n}}\right] & \leqslant C_{2} \sum_{N+1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{N+\delta+n} \log N \\
& \leqslant C_{2} \sum_{N+1}^{\infty} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{n} \log n \\
& \rightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

since the two series $\sum_{\sum}^{\infty}\left|a_{n} \log n\right| / n$ and $\sum_{\sum}^{\infty}\left|a_{-n} \log n\right| / n$ are convergent.

It is a consequence of Tannery's Theorem ${ }^{2}$ that

$$
\frac{\left|a_{0}\right|}{R}+\frac{2}{\pi} \sum_{1}^{N} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{R n}}{R+n}\right] \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

[^1]if we can shew that
$$
\frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{R n}}{R+n}\right] \leqslant M_{n}
$$
where M_{n} is independent of R, and ΣM_{n} is convergent. But, as above, we may shew that
$$
\frac{\left|a_{n}\right|+\left|a_{-n}\right|}{R+n} K\left[\frac{2 \sqrt{ } \overline{R n}}{R+n}\right] \leqslant C_{3} \frac{\left|a_{n}\right|+\left|a_{-n}\right|}{n} \log n
$$
which is sufficient for our purpose.
We have thus shewn that, under the conditions of Theorem 1, $I(R) \rightarrow 0$ as $N \rightarrow \infty$, and hence that
$$
P \int_{-\infty}^{\infty} \frac{e^{i m(t-x)}}{t-x} C(t) d t=\pi i C(x)
$$
where the integral on the left-hand-side is a principal value, both at $t=x$, and $t=\infty$. Equating imaginary parts, we have at once, if $m \geqslant \pi$,
$$
\int_{-\infty}^{\infty} \frac{\sin m(t-x)}{t-x} C(t) d t=\pi C(x)
$$
the principal value sign has been omitted because $t=x$ is a removable singularity, and because $C(t)$ is an integral function finite on the real axis and
$$
\int_{-\infty}^{\infty} \frac{\sin m(t-x)}{t-x} d t
$$
exists. This completes the proof of Theorem 1.
It may be pointed out that the proof that $I(R) \rightarrow 0$ may be considerably shortened in the case $m>\pi$, by the use of the inequality
$$
\left|C\left(R e^{\theta i}\right)\right| \leqslant K e^{\pi R \sin \theta} R / \log R
$$
if $0 \leqslant \theta \leqslant \pi$. But the proof by the use of this inequality fails in the case $m=\pi$.
§3. We have just seen that the fact that the Cardinal Function is a solution of the equation (1) depends chiefly upon the result that $I(R) \rightarrow 0$ as $R \rightarrow \infty$, the other parts of the proof being straightforward deductions from Cauchy's Integral Theorem.

Ferrar ${ }^{1}$ has recently shown that, if $\sum_{-\infty}^{\infty}\left|a_{n}\right|^{1+\frac{1}{p}}$ is convergent $(p \geqslant 1)$, then the Cardinal Function has the definite integral representation

$$
C(x)=\int_{0}^{1}[\phi(t) \cos \pi x t+\psi(t) \sin \pi x t] d t
$$

where ϕ and ψ are each L^{1+p} over (0,1). From this result we are able to prove, with very little trouble, that $I(R) \rightarrow 0$ as $R \rightarrow \infty$, and thus to bring out the connection between the two properties of the Cardinal Function which we have noted in § 1.

For, considered as a function of the complex variable $z, C(z)$ is an integral function which remains finite as z tends to infinity in either direction along the real axis. In the upper half plane, we have

$$
\begin{aligned}
& z=r e^{\theta i} \quad(0 \leqslant \theta \leqslant \pi) \\
& \left|\begin{array}{l}
\cos \\
\sin \\
\sin
\end{array}\right| \leqslant e^{\pi r \sin \theta \cdot t}(t \geqslant 0)
\end{aligned}
$$

Hence, by the use of Hölder's inequality for integrals, we have

$$
\begin{aligned}
&\left|C\left(r e^{\theta i}\right)\right| \leqslant \int_{0}^{1}|\phi|\left|\cos \pi r e^{\theta i} t\right| d t+\int_{0}^{1}|\psi|\left|\sin \pi r e^{\theta i} t\right| d t \\
& \leqslant\left\{\left(\int_{0}^{1}|\phi|^{1+p} d t\right)^{\frac{1}{1+p}}+\left(\int_{0}^{1}|\psi|^{1+p} d t\right)^{\frac{1}{1+p}}\right\}\left\{\int_{0}^{1} e^{\pi\left(1+\frac{1}{p}\right) r \sin \theta \cdot t} d t\right\}^{\frac{p}{1+p}} \\
&<K e^{\pi r \sin \theta}(r \sin \theta)^{-\frac{p}{1+p}}
\end{aligned}
$$

where K is a finite constant, since ϕ and ψ are each L^{1+p} over (0,1).

We now have

$$
\begin{aligned}
|I(R)| & \leqslant \frac{R K}{R-|x|} \int_{0}^{\pi} e^{-(m-\pi) R \sin \theta} R^{\frac{p}{1+p}} \sin ^{-\frac{p}{1+p}} \theta d \theta \\
& \leqslant \frac{2 R K}{R-|x|} \int_{0}^{\frac{1}{2} \pi} e^{-2(m-\pi) R \theta / \pi}\left(\frac{2 R \theta}{\pi}\right)^{-\frac{p}{1+p}} d \theta \\
& \rightarrow 0, \text { as } R \rightarrow \infty, \text { if } m \geqslant \pi
\end{aligned}
$$

[^2]We can now easily complete the proof, exactly as in §2, of the following theorem:-
Theorem 1.* If $\sum_{-\infty}^{\infty}\left|a_{n}\right|^{1+\frac{1}{p}}(p \geqslant 1)$ is convergent, then $C(x)$ possesses the definite integral representation

$$
C(x)=\int_{0}^{1}[\phi(t) \cos \pi x t+\psi(t) \sin \pi x t] d t
$$

where ϕ and ψ are each L^{1+p} over $(0,1)$, and is an $m-f u n c t i o n$ for $m \geqslant \pi$.
Theorem 1* is, of course, included in Theorem 1; for, by Hölder's inequality, the convergence of $\sum_{-\infty}^{\infty}\left|a_{n}\right|^{1+\frac{1}{p}}(p \geqslant 1)$ implies the convergence of $\sum_{l}^{\infty}\left|a_{n} \log n\right| / n$ and $\sum_{1}^{\infty}\left|a_{-n} \log n\right| / n$, but not conversely.
§4. Finally, the use of functions of class L^{p} enables us to prove, by the same direct method, Theorems ${ }^{1} 2$ and 3 below.
Theorem 2. The integrals

$$
f(x)=\int_{a}^{A} \phi(w) \frac{\cos }{\sin } w x d w
$$

represent m-functions, if $-m \leqslant a<A \leqslant m$, provided only that $\phi(w)$ is $L^{p}(p>1)$ over (a, A).

Theorem 3. The integral

$$
f(x)=\int_{-\infty}^{\infty} \frac{\sin \mu(w-x)}{w-x} \phi(w) d w
$$

represents an m-function, if $m \geqslant \mu>0$, provided only that $\phi(w)$ is $L^{p}(p>1)$ over $(-\infty, \infty)$.
${ }^{1}$ Compare the rather similar theorems given by Hardy, loc. cit., 457, 459.

[^0]: ${ }^{1}$ This function was introduced by Prof. Whittaker, Proc. Roy. Soc. Edin., 35 (1915), 181-194.
 ${ }^{2}$ ibid., 46 (1926), 323-333; in particular 330-333.
 ${ }^{3}$ The theory of m-functions is due to Prof. Hardy, Proc. Lond. Math. Soc. (2), 7 (1909), 445-472.
 ${ }^{4} \S \S 3,4$ have been rewritten in accordance with the valuable suggestions of Mr W. L. Ferrar, who kindly read the paper in manuscript.

[^1]: ${ }^{1}$ It is an elementary consequence of the result (given in Whittaker and Watson, Modern Analysis (1920), §22.737), $\lim _{k \rightarrow 0}\left\{K^{\prime}-\log (4 / k)\right\}=0$.
 ${ }^{2}$ See Bromwich, Infinite Series (1926). §49.

[^2]: ${ }^{1}$ Proc. Roy. Soc. Edin., 47 (1927), 230-242. The particular case $p=1$ was previously discussed by J. M. Whittaker, Proc. Edin. Math. Soc. (2), 1 (1927), 41-46.

