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Abstract. The interplanetary magnetic field may cause large amplitude changes in the orbital
inclinations of charged dust particles. In order to study this effect in the case of dust grains
moving in 1:1 mean motion resonance with planet Jupiter, a simplified semi-analytical model is
developed to reduce the full dynamics of the system to the terms containing the information of
the secular evolution dominated by the Lorentz force. It was found that while the planet causes
variations in all orbital elements, the influence of the magnetic field most heavily impacts the
long-term evolution of the inclination and the longitude of the ascending node. The simplified
secular-resonant model recreates the oscillations in these parameters very well in comparison
to the full solution, despite neglecting the influence of the magnetic field on the other orbital
parameters.
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1. Introduction & Background

Interplanetary space is not empty but rather filled with dust particles of various sizes.
Dust grains are produced in several physical processes, i.e. the activity of the comets
and collisions of asteroids, see e.g. Koschny et al. (2019). Additionally, dust may also be
released into space via plumes (e.g. Enceladus) or by the interaction of celestial bodies
with the solar wind (by sputtering and erosion). The actual origin and resulting distri-
bution of interplanetary dust still remain an unsolved problem today. One reason for
this is found in the lack of in-situ observations in large areas of interplanetary space.
While observations of the zodiacal light indicate the presence of dust bands near the
ecliptic plane, the presence of dust at high ecliptic latitudes can generally not be ruled
out. In Jorgensen et al. (2020), the authors propose that a secondary population of dust
at higher inclination wrt. the ecliptic is caused by scattering of a primary population at
low latitudes by orbital resonances with planet Jupiter via the Kozai-Lidov (KL) effect.
Alternatively, these features may be explained by dust bands that originate from a few
asteroid families which deliver the dust to the inner solar system at high enough orbital
inclinations – Dermott et al. (1984). In the present paper, we provide an alternative
explanation for high latitudinal motions of small dust grains, namely via oscillations
induced by the heliospheric magnetic field. Dust in space gets positively charged due to
the photo-electric effect, see Lhotka et al. (2020). The orbital motion of charged dust
results in a Lorentz force term in the equations of motion which acts normal to the
orbital plane of the dust grains, leading to perturbations of the orbit. The present study
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Figure 1. Overview of the coordinate systems and the shape of the magnetic field.

is motivated by recent findings in Liu & Schmidt (2018a), Liu & Schmidt (2018b), and
can be seen as a continuation of previous studies: While the focus in Lhotka et al. (2016)
was the role of the normal component of the interplanetary magnetic field on the radial
drift of particle motions, the role of outer mean motion resonances has been investigated
in Lhotka & Galeş (2019). In Zhou et al. (2021); Lhotka & Zhou (2021) extensive numer-
ical studies are used to investigate the role of the interplanetary magnetic field on the
location and extent of the 1:1 mean motion resonance (MMR) for co-orbital dust with
a planet (Jupiter and Venus), yielding interesting results on the asymmetry between the
Lagrange points L4 and L5. While these former studies heavily relied on numerical simu-
lations, in the present work we report on the progress of deriving a semi-analytical model
for co-orbital motion of dust with planet Jupiter.

Let the position vector of a micron-sized dust particle be �r= (x, y, z) in the reference
frame of the ecliptic coordinate system. The rotation of the orbital frame into the ecliptic
frame (a comparison between the two is given in Figure 1a) allows it to define all orbital
elements, i.e. the semi-major axis a, the eccentricity e, the orbital inclination i, the
argument of perihelion ω, the longitude of the ascending node Ω, and the mean anomaly
M . Assuming that the particle is only influenced by the Sun, it would move on a Keplerian
orbit with constant values for the orbital elements. The angular momentum h of the
particle in this case is conserved and given by h=

√
(1 − e2)a2n, where n gives the

mean motion of the particle. Any force (per unit mass) term beside the solar gravity is
introduced into the body’s equation of motion in the following way:

�̈r+ μ
�r

r3
= �F , (1.1)

with �̈r representing the acceleration vector of the particle, μ the term Gm0 (i.e. the

gravitational constant G and the solar mass m0), and �F an arbitrary external force (which
is already assumed to be divided by particle mass in this case). Due to the influence of

this perturbing force �F , h is no longer a conserved quantity, which relates to variations
in the orbital elements. It is thereby possible to derive the so-called Gauss equations –
for all Kepler elements see e.g. Fitzpatrick (2016) – in the form of

di

dt
=
Fzr cos(ϑ+ ω)

h

dΩ

dt
=
Fzr sin(ϑ+ ω)

h sin i
(1.2)
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where ϑ is the true anomaly. The force terms Fr, Fϑ and Fz (which all appear in the full
set of Gauss’ equations) result from a transformation of the Cartesian force components
Fx, Fy, Fz in the orbital system to the cylindrical coordinates in the ecliptic system, see
e.g. Moulton (1914).

2. Dynamical model

As we are interested in studying the influence of the interplanetary magnetic field on
charged particles trapped in 1:1 mean motion resonance with Jupiter, the force vector
�F in (1.1) is made up of a combination of the Lorentz force and the gravitational force
caused by the planet. The semi-analytical model developed from this is used to analyse
the long-term effects of the Lorentz force on the orbital plane of charged dust grains (in co-
orbital motion with Jupiter) in Reiter (2021). Here, we mainly focus on the development
of this secular-resonant model, and its accuracy in comparison to the purely numerical
approach.

For simplicity, Jupiter is placed on a circular orbit within the ecliptic plane (i.e. the
x-y-plane in Figure 1a). For the perturber’s position vector �r1, we therefore find �r1 =
(x1, y1, z1) = (a1 cosM1, a1 sinM1, 0), with a1 as the semi-major axis and M1 as the
mean anomaly of the planet. For the implementation of the Lorentz force, we assume
the form of the modified Parker spiral model in Webb et al. (2010), taking into account
the dipole structure of the magnetic field. According to Parker (1958), the solar wind
carries the field lines out into the solar system, and due to the solar rotation, they curl
up in the shape of a spiral. This coiled-up structure of the field lines is sketched in
Figure 1b. The dipole structure of the interplanetary magnetic field leads to a polarity
reversal at the transition region, the so-called heliospheric current sheet. Hence, the
configuration of the magnetic field depends on both the orientation of the dipole axis
and the solar rotation axis, which is given by the �ez̃-axis of the equatorial system in
Figure 1a. For simplicity, we assume that these two axes align, placing the current sheet
within the equatorial plane. The equatorial coordinate system results from a rotation of
the ecliptic system around the angles ic and Ωc, as indicated in Figure 1a. In this work,
they are fixed to Ωc = 73.5deg and ic = 7.15deg, as in Beck & Giles (2005). This results
in �ez̃ = (x0, y0, z0) for the expression in ecliptic coordinates. Finally, we note that we
neglect the time-dependency of the magnetic field (i.e. the solar cycle).

First, we look at the implementation of the planetary perturbations into (1.1). The
gravitational influence of the perturbing body on the dust grain can be defined by the
potential energy U – compare e.g. Lhotka & Celletti (2015) – according to

U = −Gmm1

(
1

‖�r− �r1‖ − �r�r1
r31

− 1

r

)
, (2.1)

where m1 represents the mass of the planet. We notice that in order to obtain n= n1 at
a= a1 the gravitational mass parameter G(m0 +m1) results in the additional term −1/r
in U stemming from the potential part of the Kepler problem G(m0 +m1)/r, that we
collect with respect to m1 in U . As for any conservative force, the perturbing force term
�F1 can be derived from the gradient of the potential, i.e. via �F1 = −∇U/m, for which we
find:

�F1 = −Gm1

(
− �r

r3
+
�r1
r31

+
�r− �r1

‖�r− �r1‖3
)
, (2.2)

Plugging (2.2) into (1.1) results in the full dynamical (Newton) solution of the influ-
ence of Jupiter. The process is similar for the implementation of the Lorentz force.
Generally, the effect of the interplanetary magnetic field is expressed, see e.g. Gruen
et al. (1994), as �FL = q

m (�v− �uSW ) × �B, where q is the charge of the particle, m its mass,
�v its velocity, �uSW = uSW�er the velocity of the solar wind moving radially away from the
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Sun†, and �B the magnetic field vector. The full expression of the Lorentz force used in
the computations is adopted from Eq. 16 in Lhotka & Galeş (2019) in the form of

�FL = −qB0r
2
0

mr2

(
�r× �̇r

r
+

Ωs
r
�r× (�r× �ez̃) +

Ωs
uSW

(�r× �ez̃) × �̇r

)
tanh

(
α�r�ez̃
r

)
, (2.3)

where B0 gives the background magnetic field strength at a reference distance of r0
(typically 1AU), and Ωs represents the solar rotation rate. The unit vector �ez̃ yields the
z̃-direction in the equatorial system, so it represents both the dipole and the rotation
axis of the Sun, as already explained above. Finally, the parameter α is used to model
the sign change of the magnetic field at the solar equator (i.e. it represents the effect

at the heliospheric current sheet). Combining (2.3) and (2.2) into (1.1) as �F = �F1 + �FL
describes the numerical approach for the particle dynamics.

As we are primarily interested in studying the secular evolution of the particle ana-
lytically rather than numerically, it is necessary to express the force terms (2.2) and
(2.3) in cylindrical coordinates and plug the resulting values for Fr, Fϑ and Fz into all
Gauss equations exemplified in (1.2). Starting again with the influence of the perturb-
ing body, it is beneficial to expand the potential U , i.e. (2.1), into small parameters (e
and ρ= r/r1 − 1) and the angle cosψ= �r�r1

rr1
between the two position vectors. The gra-

dient of this expression is then used to compute the cylindrical vector components. For
more details on this series expansion, see Lhotka & Celletti (2015). This computation is
advantageous, as it facilitates isolating the secular terms from the full solution and hence
from the short-period oscillations induced by M . With the example of a, we note that
the terms for the long-term evolution of each orbital element take the form of a Fourier
series according to

da

dt
=

K∑
k=0

L∑
l=0

M ′∑
m

c
(a)
klm(e) cos (ki) sin (lΦ +mω), (2.4)

where Φ =M + ω+ Ω−M1 is the resonant angle – see e.g. Beauge (1994) – and c
denotes polynomials in e. The three orders of expansion (k, l, m) occur due to the
expression of U in terms of e, ρ and cos(ψ). A comparison of the results from the full
solution in terms of the planetary perturbations using the Newton equations – i.e. (2.2)
in (1.1) – and of the secular evolution from the Gauss equations is given in Figure 2.

As for the influence of the interplanetary magnetic field, (2.3) also needs to be imple-
mented into all Gauss equations, from e.g. Fitzpatrick (2016). In Lhotka & Galeş (2019),
the authors have been able to isolate those terms of the equations, which do not average
out on longer timescales, from the full solution. As it was solely the normal component
of the magnetic field causing long-term oscillations, only i and Ω are the dynamically
relevant terms for our semi-analytical model. The equations of Lhotka & Galeş (2019)
are implemented here in the form of

di

dt
= −αqB0

2m

(r0
a

)2
((

1 − z0 cos i
Ωs
n

)
(x0 cos Ω + y0 sin Ω)

)
(2.5)

dΩ

dt
= −αqB0

2m

(r0
a

)2
((

cot i− z0
Ωs cos (2i)

n sin i

)
(y0 cos Ω − x0 sin Ω)

+ cos i(1 − 2z0)
Ωs
n

+ z0

)
,

(2.6)

† Due to the combination of a so-called frozen-in magnetic field and no background current
resistivity (Lhotka et al. (2016)), the solar wind vector appears due to the form of the electric

field vector �E =−�uSW × �B.
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Figure 2. Comparison of the Newton solution (blue) and the resonant secular model (yellow)
for uncharged particles in 1:1 mean motion resonance with Jupiter.

where �ez̃ = (x0, y0, z0). The combination of these two expressions with the resonant
terms resulting from the Gauss equations in the form of (2.4) yields the secular dynamics
of a charged dust particle in co-orbital motion with Jupiter, as it is affected by the
magnetic field. As we only implement the effect of the Lorentz force on the inclination
and the longitude of the ascending node into the model, we limit the analysis of the
dynamics to the parameter space of i and Ω. Figure 3 shows that in the case of these two
orbital elements, the agreement between the full Newton solution and the approximated
Gauss model is very good. A comparison of the results in Figure 3 and the middle and
lower left graphs in Figure 2 indicates that the magnetic field, rather than the influence
of Jupiter, governs the secular dynamics in the i-Ω-space. The results demonstrate that
the semi-analytical model comprised of (2.5) and (2.6) in combination with (2.4) for all
orbital elements is very useful for analysing the long-term evolution of the orbital plane
of charged dust grains in 1:1 mean motion resonance with Jupiter, as is done in detail in
Reiter (2021). Most notably, we find that the latitudinal motion of micron-sized dust can
easily be explained by the Lorentz force stemming from the interaction of micron-sized
charged dust with the heliospheric magnetic field. A study on the dynamics in the full
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Figure 3. As Figure 2 for the inclination i and the longitude of the ascending node Ω, but in
the case of a charged dust grain affected by both Jupiter and the interplanetary magnetic field.

(Ω, i)-plane for charged dust of varying particle size, and located at different regions in
the solar system is currently in progress.
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