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1. Introduction

Diophantine equations involving factorials have a long history. For example, in 1876 Bro-
card [6] asked for the integral solutions of n! + 1 = x2; this was asked again (apparently
independently) by Ramanujan [17] in 1913. The Brocard–Ramanujan equation is still
an unsolved problem today; see D25 in Guy’s book [13]. Other Diophantine equations
involving factorials have proved more tractable. For example, Erdős and Obláth [11]
showed that the equation xp + yp = n! has no solutions with x, y coprime and p > 2.
Many have considered equations of the form P (x) = n!, where P is a polynomial; the
best results so far appear to be those of Berend and Harmse [1], who show that there
are only finitely many solutions if P has an irreducible factor of relatively large degree.

Diophantine equations involving Fibonacci numbers have been no less popular, as
documented in [13, D25] and in the historical sections of [8] and [7]. Moreover, there
have been several papers attacking Diophantine equations that involve both factorials
and Fibonacci numbers. For example, in [12] it is shown that if k is fixed, then there are
only finitely many positive integers n such that

Fn = m1! + m2! + · · · + mk!

holds for some positive integers m1, . . . , mk, and all solutions of the above equation with
k � 2 have been determined. It is conjectured in [12] that if m1 < m2 < · · · < mk

holds in the above equation, then k itself must be bounded. Some results on this problem
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can be found in [3]. In [16], it was shown that the largest solution of the Diophantine
equation

Fn1Fn2 · · ·Fnk
= m1!m2! · · ·m�!

with 1 � n1 < · · · < nk and 2 � m1 � · · · � m� is F1F2F3F4F5F6F8F10F12 = 11!.
In this paper we prove the following result.

Theorem 1.1. Let (Fm)m�0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and
Fm+2 = Fm+1 + Fm for all m � 0. The only factorials expressible as the sum of at most
three Fibonacci numbers are

0! = 1! = F1 = F2, 2! = F1 + F1 = F2 + F1 = F2 + F2 = F3,

3! = F4 + F4 = F5 + F1 = F5 + F2 = F3 + F3 + F3 = F4 + F3 + F1 = F4 + F3 + F2,

4! = F8 + F4 = F6 + F6 + F6 = F7 + F6 + F4 = F8 + F3 + F1 = F8 + F3 + F2,

6! = F15 + F10 + F10 = F15 + F11 + F8.

It is not hard to show that every positive integer N has a representation, called the
Zeckendorf decomposition, of the form N = Fn1 + Fn2 + · · · + Fns

, where ni − ni+1 � 2,
and that, up to identifying F1 with F2, this representation is unique. Our problem is
therefore related to the Zeckendorf decomposition of factorials. Denote by Z(N) the
number s of Fibonacci numbers appearing in the Zeckendorf decomposition of N .

Conjecture. Z(n!) tends to infinity with n.

We are unable to prove our conjecture, but our Theorem 1.1 determines all positive
integers n such that Z(n!) � 3.

It is appropriate to point out some analogous results to our conjecture that appear
in [15]. Let b � 2 be a positive integer. For a positive integer N let sb(N) be the
sum of the base b digits of n. In [15], it is shown that the inequality sb(n!) � log n

holds for all positive integers n, where the implied constant depends on b. Thus, the
complexity of representing n! in base b grows as n tends to infinity. The method of proof
is elementary and it is based on the observation that n! is a multiple of bm − 1 for all
m = 1, 2, . . . , �log n/ log b�.

Particular Diophantine equations of the form

ax1
1 + · · · + axk

k = n!,

where a1, . . . , ak are given positive integers and x1, . . . , xk, n are non-negative integer
unknowns, have been studied in [10]. For example, all the solutions of the Diophantine
equation

2x1 + 3x2 + 5x3 + 7x4 + 11x5 = n! (1.1)

have n � 6.
For the purpose of the present paper, as F0 = 0, it suffices to determine all solutions

to the following Diophantine equation:

Fx + Fy + Fz = n!, x, y, z � 0, n � 1. (1.2)
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Before doing this, we explain very briefly why our method for solving this equation is far
more complicated than the method for solving (1.1) in [10]. To solve (1.1), all we have
to do is find a positive integer M such that the congruence

2x1 + 3x2 + 5x3 + 7x4 + 11x5 ≡ 0 (mod M)

has no solutions. Once this is done, we know that, for any solution to (1.1), M � n!, giving
a bound on n. This elementary idea cannot be used for (1.2); for example, F0+F−2+F1 =
0, and so the congruence Fx + Fy + Fz ≡ 0 (mod M) has solutions for all M .

Our strategy for (1.2) is as follows. Let (Lm)m�0 be the Lucas sequence defined by
L0 = 2, L1 = 1 and Lm+2 = Lm+1 + Lm for all m � 0. Let m � 6 be an even
integer such that Lm/2 � n. We compute the first few terms of an expansion of Fx

as an ‘Fm/2-adic’ power series, in a way that is very similar to Strassman’s Theorem
(see [9, pp. 59–73]), except that we do not require Fm/2 to be prime. From this, we deduce
congruence conditions modulo m and modulo Fm/2 on the unknowns x, y, z in (1.2);
the idea here is reminiscent of Skolem’s method (see [9, pp. 228–231] and [4, pp. 290–
300]). We use the Chebyshev θ-function to combine the information obtained from all
even m � 6 with Lm/2 � n. For n very large, this shows that x, y, z are too large
compared with n for Equation (1.2) to hold, and so gives a bound on n. Our initial
bound obtained in this way is n � L501 < 5.045 × 10104. An iterative argument, using
the same information derived from the ‘Strassman’ expansion, is applied 50 times to
reduce the bound to n � L37 = 54 018 521. The proof is completed using a sieving
argument.

2. Inequalities

In this section, we gather some inequalities that will be useful later.

Lemma 2.1. For all integers n � 2,

log(n!) < (n + 1
2 ) log n − n + 1 � n log n. (2.1)

Proof. By Stirling’s formula,

n! =
√

2πn

(
n

e

)n

eλn ,

where
1

12n + 1
< λn <

1
12n

.

Hence,
log(n!) � (n + 1

2 ) log n − n + 1
2 log(2π) + λn.

But 1
2 log(2π) + λn � 1

2 log(2π) + 1
24 < 1, leading to the first inequality in the statement

of the lemma. To obtain the second, we need to show that

n � 1
2 log n + 1
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holds for all n � 2. This is in fact true for n = 2, and so is true for all real n � 2 since

d
dt

(
t − log t

2
− 1

)
= 1 − 1

2t
> 0 for all t � 2.

�

We write α = 1
2 (1 +

√
5) and β = 1

2 (1 −
√

5) for the two roots of the characteristic
equation λ2−λ−1 = 0 of the Fibonacci sequence. It is well known that the Binet formula

Fn =
αn − βn

α − β

holds for all n � 0. We will find it convenient to extend the Fibonacci sequence to negative
subscripts either using Binet’s formula directly or by defining Fn−2 = Fn − Fn−1 for all
n = 1, 0,−1, . . . . The Binet formula for the Lucas numbers is

Ln = αn + βn for all n � 0.

As with the Fibonacci numbers, we will sometimes make use of negative subscripted Lucas
numbers. It is easy to see that if n � 0, then F−n = (−1)n−1Fn and L−n = (−1)nLn.

Here are a few inequalities involving the Fibonacci and Lucas numbers.

Lemma 2.2. Any solution to the Diophantine equation (1.2) with n � 3 satisfies

max(x, y, z) � n log n

log α
− 1.

Proof. From Fx � n! and the Binet formula, we obtain that αx �
√

5n! + 1. Hence,

x log α � log(n!) + log(
√

5) + log(1 + 1/(
√

5n!))

� (n + 1
2 ) log n − n + 1 + log(

√
5) + log(1 + 1/(6

√
5)).

The lemma follows from the inequality

n � 1
2 log n + 1 + log α + log(

√
5) + log(1 + 1/(6

√
5)),

which is easily established for n � 3 by modifying the argument at the end of the proof
of Lemma 2.1. �

Lemma 2.3. Let y � 1. If x � 2.079 log y + 2.441, then Fx � y. Moreover, if y � 200
and x � 2.076 log y, then Lx � y.

Proof. For the first part, note that 2.079 log α = 1.0004 . . . to four decimal places.
Thus,

x log α � log y + 2.441 log α

� log
√

5y + log(1 + 1/
√

5)

� log
√

5y + log(1 + 1/(
√

5y)).

Hence, αx �
√

5y + 1, giving Fx � y.
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For the second part, observe that 2.076 log α = 0.998996 . . . to six decimal places. So,
x log α � 0.999 log y, and therefore

Lx � αx + 1 � y0.999 + 1 � y

(
1

2000.001 +
1

200

)
< y.

�

Lemma 2.4. For x � 0, we have log(1 + x) � x. For 0 � x � 1
2 , we have log(1 − x) �

−2x.

2.1. The Chebyshev function

We shall need some estimates involving the Chebyshev function

θ(x) =
∑
p�x

log p,

where the sum is taken over all primes less than or equal to x. It is well known that
θ(x)/x → 1 as x → ∞. Here, we need lower estimates for this ratio for small values of x.

Proposition 2.5. For all real x � 1, θ(x) � 1.001102x. Moreover,

if 10 � x � 20, then θ(x)/x � 0.4861,

if 20 � x � 30, then θ(x)/x � 0.6628,

if 30 � x � 40, then θ(x)/x � 0.7033,

if 40 � x � 50, then θ(x)/x � 0.7228,

if 50 � x � 500, then θ(x)/x � 0.7615,

if 500 � x � 1000, then θ(x)/x � 0.9194,

if x � 1000, then θ(x)/x � 0.9456.

Proof. Theorem 6 of [18] gives θ(x) < 1.001102x if 0 < x, and θ(x) � 0.998684x if
x � 1 319 007. To obtain the lower bounds claimed by the proposition, we used a simple
Magma [5] script to determine the infima of θ(x)/x in the finite ranges above as well
as in the range 1000 � x � 2 × 106. Note that over the interval [p, p′], where p, p′ are
primes, the infimum of θ(x)/x is θ(p)/p′. �

3. Elementary lemmas

We shall also need the following elementary properties of the Fibonacci and Lucas num-
bers. Properties (3.1)–(3.3) are well known (see, for example, [14]) and can be proved
immediately using the Binet formulae for the Fibonacci and Lucas numbers. For integers
n,

F2n = FnLn, L2n = 5F 2
n + 2(−1)n, L2

n = 5F 2
n + 4(−1)n. (3.1)

For all pairs of integers m and n,

2Fm+n = FmLn + FnLm, 2Lm+n = LmLn + 5FmFn. (3.2)
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If m and n have the same parity, then

Fm + Fn =

{
F(m+n)/2L(m−n)/2 if m ≡ n (mod 4),

F(m−n)/2L(m+n)/2 if m �≡ n (mod 4).
(3.3)

Lemma 3.1. Let m be a non-zero integer. Then

F 2
λm ≡ (−1)(λ+1)mλ2F 2

m (mod F 4
m).

Moreover, if m is even, then

Fλm ≡ (−1)m(λ+1)/2λFm (mod F 3
m/2).

Proof. Define

Hλ =
(

Fλm

Fm

)2

=
α2λm + β2λm − 2(−1)λm

(αm − βm)2
.

This is a ternary recurrence sequence with characteristic polynomial

(X − α2m)(X − β2m)(X − (−1)m) = (X2 − L2mX + 1)(X − (−1)m).

However, from (3.1) we have L2m ≡ 2(−1)m (mod F 2
m). Hence,

Hλ+3 ≡ 3(−1)mHλ+2 − 3Hλ+2 + (−1)mHλ (mod F 2
m).

Moreover, H0 = 0, H1 = 1 and H2 = L2
m ≡ 4(−1)m (mod F 2

m), again by (3.1). An easy
induction shows that

Hλ ≡ (−1)(λ+1)mλ2 (mod F 2
m),

and multiplying by F 2
m completes the proof of the first part of the lemma.

The proof of the second part is similar, but easier, using the binary recurrence sequence
of general term Gλ = Fλm/Fm. �

Lemma 3.2. Let m be a non-zero even integer. Then

Fx0+2λm ≡ Fx0 (mod Fm), (3.4)

and

2Fx0+λm ≡ 2(−1)mλ/2Fx0 + 2(−1)m(λ+1)/2FmLx0λ + 5F 2
mFx0λ

2 (mod F 3
m/2). (3.5)

Proof. Using (3.2), we see that

2Fx0+2λm = Fx0L2λm + Lx0F2λm

= Fx0(2 + 5F 2
λm) + Lx0F2λm.

However, Fm divides Fλm and F2λm. If 2 � Fm, then (3.4) follows. Suppose now that
2 | Fm. Then 2 | Lm, and we note that 2Fm divides both F 2

λm and LmFm = F2m | F2λm.
Hence, 2Fx0+2λm ≡ 2Fx0 (mod 2Fm). This completes the proof of (3.4).
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We now drop the requirement that 2 divides Fm and we move on to prove (3.5). To
this aim, we combine (3.1) and (3.2) with Lemma 3.1 to obtain

2Fx0+λm = Fx0Lλm + Lx0Fλm

= Fx0(2(−1)m/2 + 5F 2
λm) + Lx0Fλm

≡ Fx0(2(−1)m/2 + 5F 2
mλ2) + (−1)m(λ+1)/2FmLx0λ (mod F 3

m/2),

which gives (3.5). �

4. Some congruences

The following two results are useful in applying the ‘Strassman procedure’ alluded to
in § 1.

Lemma 4.1. Let m � 4 be even and let −m < x0, y0 � m be integers such that x0 is
odd, y0 is even and Fx0 + Fy0 ≡ 0 (mod Fm). Then (x0, y0) ∈ {(±(m−1), m−2), (±1, 2)}.

Proof. Since x0, y0 ∈ (−m, m] and m � 4, it follows that if either Fx0 or Fy0 is
negative, then it is less than Fm in absolute value. Thus, Fx0 + Fy0 ∈ {−Fm, 0, Fm, 2Fm}.

The case Fx0 + Fy0 = 2Fm is impossible since Fx0 � Fm, Fy0 � Fm and at least one
of these two inequalities is strict because x0 is not equal to y0.

Assume that Fx0 + Fy0 = Fm. Since both x0 and y0 are at most m, it follows that
Fx0 � 0 and Fy0 � 0. Furthermore, both these inequalities are in fact strict since equality
is achieved only in the case y0 = 0, leading to Fx0 = Fm, so x0 = m, which in turn is
impossible because x0 must be odd. Thus, both Fx0 and Fy0 are positive and less than
Fm. If max{Fx0 , Fy0} � Fm−2, then

Fm−3 + 2Fm−2 = Fm = Fx0 + Fy0 < 2Fm−2,

leading to Fm−3 < 0, which is impossible. So one of Fx0 or Fy0 equals Fm−1, and therefore
the other one is Fm − Fm−1 = Fm−2. By parity arguments, we get that Fy0 = Fm−2 and
Fx0 = Fm−1; so (x0, y0) = (±(m − 1), m − 2).

Assume that Fx0 + Fy0 = 0. Then Fx0 = −Fy0 = F−y0 , since y0 is even. Since x0 is odd,
Fx0 is positive, so y0 < 0. If y0 = −2, we then get Fx0 = F2 = 1, leading to x0 = ±1.
This gives us the possibilities (x0, y0) = (±1,−2). Finally, if y0 � −4, then x0 = ±y0,
which is false since x0 must be odd.

Assume that Fx0 + Fy0 = −Fm. Then Fm � |Fy0 | = |−Fm − Fx0 | = Fm + Fx0 > Fm,
again because Fx0 > 0, but this last inequality is false. This completes the proof of this
lemma. �

Lemma 4.2. Let m � 6 be even and let −m < x0, y0, z0 � m be integers satisfying
Fx0 + Fy0 + Fz0 ≡ 0 (mod Fm). Then
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(i) either all three x0, y0, z0 are even and their sum is a multiple of m, or

(ii) up to symmetries, (x0, y0, z0) equals (a,±(a + 1),−a − 2) for some even integer a,
or

(iii) up to symmetries, (x0, y0, z0) equals one of (±3,−2,−2), (±1,±3,−4), (m,±1,−2),
(m,±(m − 1), m − 2), (±(m − 1),±(m − 3), m − 4), (m − 2, m − 2,±(m − 3)) or
(0,±(m − 1), m − 2).

Proof. Assume that one of x0, y0, z0 ∈ {0, m}. Say x0 ∈ {0, m}. Then Fy0 + Fz0 ≡ 0
(mod Fm). If y0 and z0 have distinct parities, then, by Lemma 4.1, we get that, up to
symmetries,

(x0, y0, z0) ∈ {(m,±(m − 1), m − 2), (m,±1,−2)}.

Assume now that y0 and z0 have the same parities. If y0 ∈ {0, m}, then Fm | Fz0 ,
so that z0 ∈ {0, m} and x0 + y0 + z0 ≡ 0 (mod m). Assume now that neither of
y0, z0 is in {0, m}. If they are even, then |Fy0 | � Fm−2 and |Fz0 | � Fm−2, therefore
|Fy0 + Fz0 | � 2Fm−2 < Fm, so Fy0 + Fz0 = 0, leading to Fy0 = −Fz0 = F−z0 . Since both
y0 and z0 are even, we get that y0 = −z0, so indeed all three numbers x0, y0, z0 are even
and x0 + y0 + z0 ≡ 0 (mod m). If y0 and z0 are odd, then we may replace y0 and z0 by
their absolute values and note that Fy0 and Fz0 are both positive. Assume that y0 � z0.
If y0 � m − 3, then Fy0 + Fz0 � 2Fm−3 < Fm, which is impossible. If y0 = m − 1, then
Fz0 = Fm − Fm−1 = Fm−2, leading to z0 = m − 2 (because m − 2 � 4), which is false
since z0 is odd.

From now on, we assume that x0, y0, z0 ∈ (−m, m) and that none of them is zero.
Then |Fx0 + Fy0 + Fz0 | � 3Fm−1 < 2Fm, so that Fx0 + Fy0 + Fz0 ∈ {0,±Fm}. Assume
that Fx0 + Fy0 + Fz0 = 0. Since none of these numbers is zero, it follows that at least one
of them is negative. Say z0 is such that Fz0 is negative and has the largest absolute value
(among the negative numbers from the set {Fx0 , Fy0 , Fz0}). Then z0 is even and negative
and Fx0 + Fy0 = F−z0 . Assume first that Fx0 and Fy0 are positive. Then |y0| < |z0|. If
|y0| = |z0| − 1 = −z0 − 1, we then get that Fx0 = F−z0−2. If |z0| � 6, then x0 = −z0 − 2.
Putting x0 = a, we get that x0 = a, y0 = ±(a + 1), z0 = −a − 2. Thus, we obtain the
possibility

(x0, y0, z0) = (a,±(a + 1),−a − 2), for some even a.

If z0 = −4, then |y0| = 3 and Fx0 = F2, and therefore x0 ∈ {±1, 2}. The case x0 = 2
is part of the previous parametric family with a = 2, while, for x0 = ±1, we obtain the
possibilities

(x0, y0, z0) = (±1,±3,−4).

Continue to assume that Fx0 + Fy0 = F−z0 but that one of Fx0 and Fy0 is negative. Say
Fy0 < 0. Then y0 is even and negative. Thus, Fx0 = F|y0| + F|z0|. If |z0| = 2, then |y0| = 2
and we get that Fx0 = 2, so x0 = ±3. Thus, we obtain the possibility

(x0, y0, z0) = (±3,−2, 2).
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If |z0| � 4, then either F|y0| + F|z0| = 2F|z0| ∈ (F|z0|+1, F|z0|+2), so this is not a Fibonacci
number, or |y0| � |z0| − 2, therefore F|z0| < F|z0| + F|y0| � F|z0| + F|z0|−2 < F|z0|+1, so
F|z0| + F|y0| is not a Fibonacci number either.

Now assume that Fx0 + Fy0 + Fz0 = Fm. If max{Fx0 , Fy0 , Fz0} � Fm−3, we then
get that Fx0 + Fy0 + Fz0 � 3Fm−3 < Fm, which is impossible. So, let us assume that
Fx0 ∈ {Fm−1, Fm−2} and that Fx0 � Fy0 � Fz0 . If Fx0 = Fm−1, then Fy0 + Fz0 = Fm−2.
If Fy0 = Fm−1 also, then Fz0 = Fm−2 −Fm−1 = −Fm−3, which is impossible since m− 3
is odd. Clearly, Fy0 �= Fm−2, since the contrary leads to Fz0 = 0. If Fy0 = Fm−3, then
Fz0 = Fm−2 − Fm−3 = Fm−4. Thus, we have obtained the possibilities

(x0, y0, z0) = (±(m − 1),±(m − 3), m − 4).

If Fy0 � Fm−4, then Fz0 = Fm−2 − Fy0 � Fm−3 > Fm−4 � Fy0 , which is impossible. This
takes care of the case when Fx0 = Fm−1. Assume now that Fx0 = Fm−2. Then Fy0+Fz0 =
Fm−1. If Fy0 � Fm−3, then Fy0 + Fz0 � 2Fm−3 < Fm−1, which is a contradiction. Thus,
Fy0 = Fm−2, giving Fz0 = Fm−3. Hence,

(x0, y0, z0) = (m − 2, m − 2,±(m − 3)).

Now assume that Fx0 + Fy0 + Fz0 = −Fm = F−m. If at most two of the Fibonacci
numbers involved are negative, then they are in absolute value less than or equal to Fm−2

(because their indices are even). Thus, Fm = |Fx0 + Fy0 + Fz0 | < 2Fm−2, which is false.
Consequently, all three Fibonacci numbers are negative, so all their indices are negative
and even. Changing (x0, y0, z0) to (−x0,−y0,−z0) = (|x0|, |y0|, |z0|), we get a solution to

F|x0| + F|y0| + F|z0| = Fm.

If at most two of the Fibonacci numbers involved are less than or equal to Fm−2, then

Fm = F|x0| + F|y0| + F|z0| � 2Fm−2 + Fm−4 < Fm,

which is impossible, while if all three of them are Fm−2, we then get 3Fm−2 = Fm, which
is also impossible for m � 6 since the left-hand side is in fact larger than the right-hand
side.

This completes the proof of Lemma 4.2. �

5. Skolem’s method

In this section we show—using an argument similar to Skolem’s method—that if x, y, z, n

is a solution of the Diophantine equation (1.2), then certain linear forms in x, y, z are
multiples of m or Fm/2 for all even integers m � 6 such that Fm is not too large with
respect to n. Throughout this section we study the equation

Fx + Fy + Fz = n!

in non-negative integers x, y, z with n � 7. From now on we make the following conven-
tion. If precisely two of the unknowns x, y, z are even, then we shall suppose that these
are x and z. If exactly one of them is even, we shall suppose that it is x.
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Lemma 5.1. Let x, y, z, n be as above. Let m � 6 be an even integer such that both
Fm and 2F 2

m/2 divide n! (a sufficient condition for both of these to divide n! is Lm/2 � n).
Then

(a) not all of x, y, z are odd,

(b) if x, y, z are all even, m divides x + y + z,

(c) if x is even and y, z are odd, m divides x + 4,

(d) if x, z are both even and y is odd, either m divides x + z + 2 or Fm/2 divides
3x ± 4y + 3z; moreover, this latter expression is non-zero.

Proof. Let m � 6 be an even integer. First, we prove the observation that Lm/2 � n

implies that both Fm and 2F 2
m/2 divide n!. Thus, suppose that Lm/2 � n. Then Fm/2 <

Lm/2 and Fm = Fm/2Lm/2. Hence, Fm divides n!. Clearly, 2F 2
m/2 divides n! for m = 6.

Suppose m � 8, so Fm/2 < 1
2Lm/2. Thus, 2F 2

m/2 divides n!. This proves the observation.
From now on we drop the condition that Lm/2 � n but assume that both Fm and

2F 2
m/2 divide n!. Write

x = x0 + 2λm, y = y0 + 2µm, z = z0 + 2εm,

where −m < x0, y0, z0 � m. By (3.4), Fx0 + Fy0 + Fz0 ≡ 0 (mod Fm). Lemma 4.2 gives
a number of possibilities for x0, y0, z0. Clearly, x, y, z have the the same parities,
respectively, as x0, y0, z0. By examining the possibilities in Lemma 4.2, we see that x,
y, z are not all odd, and that if x, y, z are all even, then m divides x + y + z.

Suppose that two of x, y, z are odd and one is even. By our convention above, x must
be even. Then, from Lemma 4.2, we see that (x, y, z) is congruent modulo m to one of

(−4,±1,±3), (−4,±3,±1),

showing that m divides x + 4.
There now only remains the case in which precisely two of x, y, z are even and one

is odd. By our convention, x, z are even and y is odd. From Lemma 4.2, we see that
(x, y, z) is congruent modulo 2m to one of

(a,±(a + 1),−a − 2), (−a − 2,±(a + 1), a), (m,±(m − 1), m − 2),

(m − 2,±(m − 1), m), (0,±(m − 1), m − 2), (m − 2,±(m − 1), 0),

(m,±1,−2), (−2,±1, m),

or to one of (−2,±3,−2), (m − 2,±(m − 3), m − 2). In all but the last two cases, m

divides x + z + 2.
It remains to consider the case where (x, y, z) is congruent modulo 2m to one of

(−2,±3,−2), (m−2,±(m−3), m−2). Note here that x ≡ z (mod 4) and that (x, y, z) ≡
(−2,±3,−2) (mod m). We now write

x = −2 + λ1m, y = ±3 + µ1m, z = −2 + ε1m.
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Observe that λ1, µ1 and ε1 have the same parity. Moreover, F−2 + F±3 + F−2 = 0. It
follows from (3.5) that

2n! ≡ ±2Fm(L−2λ1 + L±3µ1 + L−2ε1) + 5F 2
m(F−2λ

2
1 + F±3µ

2
1 + F−2ε

2
1) (mod F 3

m/2).

Here, our observation that λ1, µ1 and ε1 have the same parity is crucial. We now consider
two subcases. The first is 3 � m. This means that Fm/2, Lm/2 are odd and coprime.
Recall that 2F 2

m/2 divides n!. From Fm = Fm/2Lm/2 and the coprimality of Fm/2 and
Lm/2, we obtain that Fm/2 divides L−2λ1 + L±3µ1 + L−2ε1 = 3λ1 ± 4µ1 + 3ε1. Thus,
3x ± 4y + 3z = m(3λ1 ± 4µ1 + 3ε1) is divisible by Fm/2. The second subcase is 3 | m.
Hence, Fm/2 and Lm/2 are both even, and their greatest common divisor is 2. We now
obtain that 1

2Fm/2 divides 3λ1 ± 4µ1 +3ε1. But m is even. Thus, 3x± 4y +3z is divisible
by Fm/2 in this case as well.

All that it remains to prove is that the expression 3x ± 4y + 3z does not vanish. This
is clearly true for 3x + 4y + 3z. Suppose that 3x − 4y + 3z = 0. Recall our observation
above that x ≡ z (mod 4). Then y = 3

4 (x + z), and using (3.3) we obtain

n! = Fx + Fz + F3(x+z)/4 = F(x+z)/2L(x−z)/2 + F3(x+z)/4.

The right-hand side is divisible by F(x+z)/4, and so this divides n!. If 1
4 (x+ z) � 12, then

we can list all the solutions. Hence, suppose that 1
4 (x+z) > 12. By the Primitive Divisor

Theorem [2], F(x+z)/4 has some prime divisor p such that p ≡ ±1 (mod 1
4 (x + z)). But

p | n!, which gives that p � n. Thus,

1
4 (x + z) � n + 1,

and so x � 4n + 4, y � 3n + 3 and z � 4n + 4. However, Fmax{x,y,z} � 1
3n!, giving a

contradiction for n � 7. �

6. Bounds on n when x is even and y, z have the same parity

6.1. Case I: x, y, z are all even

Let us suppose that n � 200. In this case, we know from Lemma 5.1 that all even m � 6
with Lm/2 � n satisfy m | (x + y + z).

Let p run through the integers

3 � p � 2.076 log n.

By Lemma 2.3, Lp � n, and so 2p divides x + y + z. Thus, by Lemma 2.2,

θ(2.076 log n) � log(x + y + z) � log
(

3n log n

log α

)
.

The first bound that we prove for n is n � L31. Suppose that n � L31 + 1. Then
2.076 log n > 30, and so, by Proposition 2.5,

θ(2.076 log n) � 0.7033 × 2.076 log n > 1.46 log n.
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Hence,

1.46 log n < log
(

3n log n

log α

)
= log n + log log n + log(3/ log α).

This is impossible for n � L31 + 1. Thus, n � L31.
Hence,

x + y + z � 3n log n

log α
� 279 962 456.

Suppose that n � L19. Then x + y + z is divisible by 2p for all integers 3 � p � 19.
However,

lcm(6, 8, . . . , 38) = 465 585 120 > 279 962 456 � x + y + z,

giving a contradiction. Thus, n � L19. Repeating the argument shows that n � L13 and
finally that n � L11 = 199. This contradicts our initial assumption that n � 200, and so
n � 199.

6.2. Case II: x is even and y and z are odd

In this case we know from Lemma 5.1 that all even m � 6 with Lm/2 � n satisfy
m | (x + 4). A similar argument to the one above now shows that n � 199.

7. Bound for n when x, z are even and y is odd

7.1. An initial bound

Suppose that n � 200. Let 0 < γ < 1 be a real number to be chosen later. Let p be a
prime satisfying

2.079γ log n + 2.441 � p � 2.076 log n.

By Lemma 2.3, we have that Lp � n and Fp � nγ . We know, by Lemma 5.1 applied to
m = 2p, that either 2p divides x + z + 2 or Fp divides one of the (non-zero) expressions
3x ± 4y + 3z.

From Lemma 2.2,

x + z + 2 � 2n log n

log α
, |3x ± 4y + 3z| � 10n log n

log α
.

Suppose that k is a positive integer satisfying

nγ(k+1) >
10n log n

log α
. (7.1)

Then at most k of the numbers Fp for the primes p in the given range divide 3x+4y+3z,
and at most another k of these divide 3x − 4y + 3z. Note that here we are making use of
the fact that the Fp are coprime as p runs through the primes; this is a consequence of
the well-known property gcd(Fu, Fv) = Fgcd(u,v) for all integers u and v.
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It follows that for all but at most 2k primes p in the range above, 2p divides x+ z +2.
Hence,

θ(2.076 log n) − θ(2.079γ log n + 2.441) − 2k log(2.076 log n)

� log(x + z + 2) � log
(

2n log n

log α

)
� log n + log log n + 1.425. (7.2)

Now suppose that k and γ are fixed and that n is very large. Recall that for large x,
θ(x) = x + o(x) as x → ∞. Thus, the above inequalities give

(1.076 − 2.079γ) log n � o(log n) as n → ∞,

showing that n must in fact be bounded provided that γ is small enough. We use this
idea to obtain an explicit bound for n.

We first show that n � L501. So, suppose that n � L501+1. We let k = 2 and γ = 0.35.
It is easy to show that (7.1) holds. Moreover,

2.076 log n � 500,

and so, by Proposition 2.5, we have

θ(2.076 log n) � 0.9194 × 2.076 log n > 1.908 log n

and

θ(2.079γ log n + 2.441) � 1.001102(2.079γ log n + 2.441) < 0.729 log n + 2.444.

Equation (7.2) gives
0.188 log n � 5 log log n + 6.791.

This is impossible for n � L501 + 1. Hence, n � L501 < 5.045 × 10104.

7.2. A recursive procedure for reducing the bound

We now give an iterative argument that will be used repeatedly to reduce the above
bound. Our argument is reminiscent of that given at the end of § 6 but is substantially
more complicated. Write

E = x + z + 2, F = |(3x + 4y + 3z)(3x − 4y + 3z)|.

For a positive integer b � 2 we put

CE,b =
2Lb log Lb

log α
, CF,b =

60L2
b(log Lb)2

(log α)2
.

Lemma 7.1. If n � Lb, then E � CE,b and F � CF,b.

Proof. This follows from Lemma 2.2. �
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For positive integers u and a with 2 � u � a define

Ha(u) = lcm{Fv : 3 � v � a, u | v}.

For 2 � u1 < u2 < · · · < un � a define

Ha(u1, . . . , un) = lcm(Ha(u1), . . . , Ha(un)).

Lemma 7.2. Suppose that n � La and that 2 � u � a. If u � E , then Ha(u) | F . If
2 � u1 < u2 < · · · < un � a and all ui � E , then Ha(u1, . . . , un) divides F .

Proof. Let v be an integer satisfying 3 � v � a and u | v. Write m = 2v. Then m is
an even integer satisfying m � 6 and Lm/2 � La � n. By Lemma 5.1, either m divides
E or Fv = Fm/2 divides F . But u | v | m and u � E . Thus, m � E , and so Fv divides F as
required. �

Now let 2 � a � b. Put

Pa = {u : 2 � u � a, u is a prime power}.

We define a sequence of subsets of the powerset of Pa as

S0(a, b) = {∅}, S1(a, b) = {{u} : 2 � u � a, Hu,a � CF,b},

and, for k � 1, we define Sk+1(a, b) to be the set of (k+1)-tuples {u1, . . . , uk+1} satisfying

(i) 2 � u1 < u2 < · · · < uk+1 � a,

(ii) {u1, . . . , uk} ∈ Sk(a, b),

(iii) {uk+1} ∈ S1(a, b),

(iv) Ha(u1, . . . , uk+1) � CF,b.

We put
S(a, b) =

⋃
k�0

Sk(a, b).

Lemma 7.3. Let 2 � a � b and suppose that La � n � Lb. Let V = {u ∈ Pa : u | E}.
Then Pa \ V ∈ S(a, b).

Proof. Write Pa \V = {u1, . . . , uj}, where u1 < · · · < uj . No ui divides E , and so, by
Lemma 7.2, Ha(u1, . . . , uj) divides F . By Lemma 7.1, we have Ha(u1, . . . , uj) � CF,b.
Clearly, for each k � j − 1, Ha(u1, . . . , uk−1) � CF,b and Ha(uk) � CF,b. This shows
inductively that {u1, . . . , uk} ∈ Sk(a, b) for k = 1, . . . , j. Thus, Pa \ V ∈ Sj(a, b) ⊆
S(a, b). �

Lemma 7.4. Let 2 � a � b. Suppose that for each U ∈ S(a, b) we have

lcm(Pa \ U) > CE,b.

Then there is no solution to the Diophantine equation (1.2) with x, z even, y odd and
La � n � Lb.
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Proof. Suppose that La � n � Lb. Let V = {u ∈ Pa : u | E} and let U = Pa \ V . By
Lemma 7.3, U ∈ S(a, b). Moreover,

lcm(Pa \ U) = lcm(V ) | E .

However, by Lemma 7.1, E � CE,b. This gives a contradiction. �

We have shown previously that n � L501. We shall apply Lemma 7.4 to repeatedly
reduce this bound on n. First we let a = 490 and b = 501. We used a simple Magma

script to compute Pa and Sk(a, b). We found that Pa has 112 elements, S1(a, b) has 84
elements, S2(a, b) has 2565 elements, S3(a, b) has 8609 elements, S4(a, b) has 16 elements
and Sk(a, b) = ∅ for k � 5. Altogether, S(a, b) has 11 275 elements. We check the criterion
of Lemma 7.4 and find that it holds for all U ∈ S(a, b). Thus, there are no solutions to
(1.2) with x, z even, y odd, and L490 � n � L501. This shows that n � L490. Repeating
the above argument another 50 times shows that n � L37 = 54 018 521.

8. The final sieve

We know from the previous three sections that all solutions of the Diophantine equation
(1.2) satisfy n � 54 018 521. In this section, we shall determine all solutions to (1.2) with
n � 6 × 107 and thus complete the proof of Theorem 1.1.

Lemma 8.1. In (1.2), suppose that x � y � z. Then

log n!
log α

+ C1 � x � log n!
log α

+ C2, (8.1)

where

C1 =
log( 1

3

√
5) − 1/

√
5

log α
, C2 =

log(
√

5) + 1/(6
√

5)
log α

.

Proof. The lemma is easily checked for n � 2, so suppose n � 3. Clearly,

1
3n! � Fx � n!,

and so
1
3

√
5n! − 1 � αx �

√
5n! + 1.

Taking logarithms, we find that

x log α � log n! + log
√

5 + log(1 + 1/(n!
√

5)) � log n! + log
√

5 + 1/(6
√

5)

by using Lemma 2.4 and the fact that n � 3. Moreover,

x log α � log n! + log(1
3

√
5) + log(1 − 3/(n!

√
5)) � log n! + log(1

3

√
5) − 1/

√
5,

again using Lemma 2.4 and n � 3. This completes the proof. �
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For the purpose of searching for all solutions to (1.2), we may without loss of generality
suppose that x � y � z. The last lemma above gives, for each n, an interval containing
at most three integers x.

Now let

l1 = F43 = 433 494 437, l2 = F47 = 2 971 215 073.

Both these Fibonacci numbers are prime and they have been chosen because the period
of the Fibonacci sequence modulo each li is particularly small; the periods are 172 and
188, respectively. Let

T1 = {Fu + Fv (mod l1) : 0 � u � 171}

and

T2 = {Fu + Fv (mod l2) : 0 � u � 187}.

Using Magma, we find that T1 has 2821 elements and T2 has 3453 elements. Thus,

#T1/l1 ≈ 6.5 × 10−6, #T2/l2 ≈ 1.16 × 10−6.

Now our Magma program for determining the solutions of (1.2) with n � 6×107 is as
follows. For each n we need to compute three quantities. The first is log(n!)/ log(α), the
second is n! (mod l1) and the third is n! (mod l2). Knowing these for n = k − 1 quickly
gives these for n = k. For each n, we determine the integers x in the interval (8.1). For
each x, we compute Fx (mod l1) and Fx (mod l2). If n! − Fx modulo l1 does not belong
to T1, or n!−Fx modulo l2 does not belong to T2, then we know that there is no solution
to Equation (1.2) with the given values of n and x. Computing Fx (mod li) can be done
in O(log x) = O(log n) steps as it involves only computing αx modulo li, and so it is
very fast. Our script took less than six hours to run on a dual core 3.00 GHz Opteron
and produced only the following pairs of values of (x, n) for which n! − Fx belongs to Ti

modulo li (i = 1, 2):

(0, 1), (1, 1), (0, 2), (1, 2), (2, 2), (3, 2), (3, 3), (4, 3), (5, 3),

(6, 4), (7, 4), (8, 4), (9, 5), (11, 5), (14, 6), (15, 6).

From this, we easily recover our list of solutions in Theorem 1.1.
Note that the probability of a random integer belonging modulo l1 to T1 and modulo l2

to T2 is less than 10−11. Since the possibilities for (x, n) are most 3 × 6 × 107 < 2 × 108,
it is not at all surprising that our sieve found only pairs of (x, n) for which there are
solutions (n, x, y, z) to (1.2).
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