
ANALYTIC EQUIVALENCE OF ALGEBROID CURVES 
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1. Intror" ict ion. Let k be an algebraically closed field and let xi, x%, . . . , xn 

be indeterminates. Denote by Rn the ring k[[xi, x2, . . . , xn]] of power series 
in the xt With coefficients in the field k. Let 21 and 21' be two ideals in this ring. 
Then 21 and 2T will be said to be analytically equivalent if there is an auto­
morphism T of Rn such that T{%) = 2T. 21 and 21' will be called analytically 
equivalent under T. 

The above situation can be described geometrically as follows. The ideals 
21 and 21' can be regarded as defining algebroid varieties V and V in 
(#i, x2, . . . , xn)-space, and these varieties will be said to be analytically 
equivalent under T. 

The automorphism T can be expressed by means of equations of the form : 

T(xt) = X dijXj+fiix) 

where the determinant \atj\ is not zero and the/* are power series of order not 
less than two (that is to say, containing terms of degree two or more only). 
If the fi are all of order greater than or equal to r, the analytic equivalence 
T will be said to be of order r. Throughout this paper the only analytic equiva­
lences which will be considered will be those in which the coefficients dtj in 
the above equations satisfy the conditions an = 1, atJ = 0 for i 7e j . This 
will not, in fact, impose any essential restriction, for in the main theorem to 
be proved the analytic equivalence which appears happens in any case to be 
of this form. 

The problem to be studied here can be formulated as follows. Suppose that 
Fiix) = 0, i = 1, 2, . . . , r and F/(x) = 0, i = 1, 2, . . . , r are sets of equa­
tions for the varieties V and V respectively, that is to say that Ft and the 
Ft are sets of generators of the ideals 21 and 2T respectively. Then if V and 
V are analytically equivalent under an analytic equivalence of sufficiently 
high order, it is clear that the F{ can be chosen as power series differing from 
the corresponding Ft only by terms of high order. The question is, to what 
extent is the converse of this statement true? 

A partial answer to this is given by a theorem of Samuel (4) for the case 
in which r = 1 and the origin is an isolated singular point of the variety V. 
Under these conditions Samuel's theorem states that, if the order of Fi — F\ 
is high enough, then the hypersurfaces V and V are analytically equivalent. 
The restrictions on the singularities of V here are very strong, and are imposed 
by the method of proof. On the other hand it is clear that if V and V are to be 
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analytically equivalent some restrictions on the relations between their 
singular points must be imposed. However it seems to be rather difficult to 
vSee exactly what these conditions should be for varieties of arbitrary dimen­
sion; and so a general answer to the question formulated above seems im­
possible until some new methods are found. 

In view of the difficulties mentioned I am restricting myself here to the 
attempt to answer the above question in the case of curves. The form which 
the answer takes in this case makes it sufficient to consider curves V and V 
defined by the sets of equations Ft = 0 and F/ = 0, respectively, i running 
in each case from 1 to n — 1. The question to be answered then becomes the 
following. F and V being as just described, will they be analytically equivalent 
if the orders of the Ft — F/ are high enough? Samuel's theorem gives the 
answer yes when n = 2 and V is irreducible. It is clear however that in general 
the answer will not be affirmative without some further restriction. For if V 
has a multiple component, geometrically speaking a component singular on 
one of the Ft = 0 or along which two of them touch, it is intuitively obvious 
that modification of the equations of F, even by terms of high order, may cause 
such a component to split, thus making analytic equivalence impossible. But 
it seems reasonable to hope that components of V along which the 7y\ inter­
sect simply and transversally will be carried by an analytic equivalence into 
similar components of V if the orders of the Ft — F/ are high enough. This 
is the main result to be proved in this paper. The components of V just des­
cribed correspond to the isolated prime components of the ideal 31. The corres­
ponding algebraic formulation of the result indicated will appear below as 
Theorem 2. 

Since it is not impossible that the problem treated here may sometime receive 
an answer in the case of varieties of dimension greater than 1, some of the 
auxiliary results are treated with greater generality than is actually needed 
for the present paper, in the hope that they may be useful for a more general 
treatment. 

The proof of the main theorem will be carried out by induction on the 
dimension of the ambient space, the step from n — 1 to n being made by 
means of a suitable projection. Changing the notation, denote the ideals ?f 
and W by (F) and (F'), with generators Ft and F/ respectively, i = 1 , 2 , . . . , 
r. The first step is to show that the Ft and F •' can be taken as polynomials 
in xn. Having done this let H{ be the resultant, with respect to xn, of Ft and 
FT and let (H) be the ideal generated in Rn~i = k[[%\, x2, . . . , x„_i]] by the 
Hi. Define (TIf) similarly by means of the F/. It will then be shown that, if 
the co-ordinates have been suitably chosen, and after a suitable adjustment 
of the Fu the isolated prime components of (F) project into isolated prime 
components of (H). Here the projection of an ideal in Rn means its intersection 
with Rn-\. When r — n — 1, the induction hypothesis will then imply that the 
intersection (G) of the isolated primes of (H) can be carried by an analytic 
equivalence in 7?n_i into the intersection (G') of certain components of (// '), 
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provided tha t the orders of the Ff - F(, and so (as will be shown) of the 
Hj — 11/, are sufficiently high. The next step is to prove tha t , again if the 
orders of the F, — F/ are high enough, this analytic equivalence can be 
extended to one in Rn carrying (G, FT) into ( C , Fr'). Now the isolated primes 
of (F) will be components of (G, Fr) and so will be carried by the extended 
analytic equivalence into components of (G', F/). I t remains to be shown 
tha t these will in fact be components of (F') if the orders of the Ft — F/ 
are high enough. The proof of this will be based on the fact tha t , in terms of 
a suitable topology, an analytic equivalence affects the components of (F) 
continuously, and tha t the only components of (Gf, F/) which are then 
sufficiently near to those of (F) are already components of (Fr). 

2. Pre l iminary a d j u s t m e n t s . One of the main objects of this section is 
to show tha t the series Ft can be assumed to be polynomials in xn. This is 
justified by means of the Weierstrass Preparation Theorem, which can be stated 
as follows: 

Let F be an element of Rn and let it be of order m, and suppose a linear change 
of co-ordinates has, if necessary, been made so that F contains the term xn

m with 
a non-zero coefficient. Then there is a power series P in Rn of order 0 (that is to 
say a unit of Rn) such that PF is a polynomial xn

m + aixn
m~] + . . . + am in 

xn with coefficients in Rn-\. Also, since PF is of order m, at is of order not less 
than i. 

The classical case of this theorem applies, of course, to the case where k 
is the field of complex numbers, bu t the proof can be given entirely in terms 
of formal power series over any field (1, p. 183 ff.). If this formal algebraic 
proof is examined, it will be observed tha t the terms of various degrees of the 
series P are determined step by step, and tha t the terms up to any given 
degree depend only on the terms of F up to a certain degree. I t follows t ha t a 
complement to the above theorem can be stated, namely: 

If F is as above and F' is a second series such that F — F' is of sufficiently 
high order, then the series P and P' of order zero can be found such that PF = 
xn

m + a,\Xnl~l + . • • + dm and P'F' = xn
m + a\Xn

m~l + . . . + am
f where the 

orders of the at —a/ are greater than a preassigned integer. 

Now let (F) be the ideal generated as in the introduction by Flf F2, . . . , Fr. 
Co-ordinates are to be chosen, if necessary after a linear change of variables, 
so t h a t the following conditions hold: 

(1) The Weierstrass Preparation Theorem can be applied to all the Fu 

which can therefore be assumed to be replaced by polynomials, wi thout 
changing the ideal (F). 

(2) If p is an isolated (n — r)-dimensional prime component of (F) then 
none of the series dFt/dxn (i = 1, 2, . . . , r), is in p. 
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(3) No two (n — r)-dimensional components of (F) have the same projec­
tion in Rn-.\- This is equivalent to the geometrical statement that no two 
(n — r) -dimensional components of the algebroid variety V have the same 
projection on xn = 0. 

It will now be checked that the co-ordinates can be chosen so that these 
conditions are satisfied. For these verifications it should be assumed that k 
has an infinite number of elements, or, if not, that the linear changes of 
variables made have generic coefficients, that is to say, independent indeter-
minates over k. 

To make condition (1) hold it is sufficient to change the variables so that 
each Ft contains among its terms of lowest degree a power of xn with a non­
zero coefficient. 

To show that condition (2) can be made to hold, let o be the quotient ring 
of Rn with respect to p, that is to say, the neighbourhood ring of the algebroid 
variety whose ideal is p. Then o is a regular local ring of dimension r (2, p. 33) 
with maximal ideal op. This ideal is generated by the r elements Fu which 
therefore form a system of parameters. It follows (2, p. 34) that the Jacobian 
matrix (dFi/dx3) is of rank r mod p. In particular, for any given i, all the 
dFi/dxh cannot be zero. Making the change of variables xt = ^ a ^ , it 
follows that dFjdXn = Y,dFi/dxhahn is not zero for suitably chosen ahn. 
Thus for suitably chosen aih dFi/dxn ^ 0 mod p for each i. Assume the ai} 

chosen in this way, make the appropriate co-ordinate change, and drop the 
bars over the new co-ordinates. 

The verification of condition (3) is equivalent to proving a special case of 
the following theorem : If a number of varieties are given in n-space, then co­
ordinates can be chosen so that no two of them have the same projections on xn = 0. 
To indicate the method of proof it will be sufficient to consider the case of 
two distinct varieties V\ and V2 in w-space. Let 211 and 212 be the corresponding 
ideals in Rn. Let 2l2' be the ideal in k[[yi, y2, . . . , yn]] obtained from 2l2 by 
substituting the yt for the corresponding xt. Then the ideal (211, 2I2') in 
k[[xu x2, . . . , xnj yi, y2, . . . , yn]] defines the product variety V\ X V2 in 
2w-space. Let Xi, X2, . . . , Xn be independent indeterminates and write 
4>i = (pcn — yn)/K — {pci — yi)/\i for i = 1, 2, . . . , n — 1. Then the ideal 
(2li, Sï2', 0i, . . . , 0n-i) defines a sub variety of V\ X F2 whose points are pairs 
(ph P2) with pi G Vt such that pi and p% project on the same point of xn — 0 
along the "direction" (Xi, X2, . . . , Xn). Calculating the Jacobian matrix of a 
set of generators of (3ti, 2ï2', 0i, . . . , <t>n-i) and using Proposition 2, (2, p. 34), 
it follows easily that the dimension of each component of this subvariety is 
less than the common dimension of V\ and V2 (it is, of course, sufficient to 
consider the case where the dimensions of Vi and V2 are the same). A suitable 
change of co-ordinates then gives the required result. 

The three conditions above have been considered separately, but it is easy 
to see that they can be made to hold simultaneously. 

The co-ordinates having been chosen as above, it is now necessary to make 
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certain adjustments to the generators of the ideal (F). Let the uijt (i,j = 1 
2, . . . , r), be independent indeterminates and write 

r 

Fi = ] £ UtjFj, i = 1, 2, . . . , r - 1, 

FT « Fr 

and let & be the algebraic closure of k(u), the field obtained from k by adjoining 
the Uij. Let Ht be the resultant of Ft and F r with respect to xn, and let (JT) 
denote the ideal in k[[xi, x2, . . . , #n-i]] generated by the ff<(i = 1, 2, . . . , 
r - 1). 

A component of (iJ) will be said to be independent of (u) if it has generators 
in k[[xi, x2, . . . , xn]]. For example, it is not hard to see that a component of 
the ideal in k[[xi, x2, . . . , xn]] generated by the Fu and so by the Fu will 
project into a component of (H) independent of (u). What is important for 
the present purpose is essentially the converse of this result. Namely: 

LEMMA 1. If p is a prime component of (H) independent of (w), then, for any i, 
a common root of the equations Ft = 0 and Fr = 0, both regarded as polynomial 
equations in xn with the coefficients reduced mod p, is necessarily a common root 
of all the Fj = 0 with coefficients reduced mod p. 

Proof. For it can be assumed that the utj are independent indeterminates 
over the field of fractions of k[[xh x2> . . . , #n-i]]/p. Any root of Fr = Fr = 0 
reduced mod p is algebraic over this field, and so, if it is a root of Ft = 0, 
reduced mod p, it must be a root of all the equations Fj = 0, reduced mod p, 
and this is equivalent to the result stated above. 

i\t this stage the notation will be changed. Fi will simply be written as Fu 

and k as k. But it is to be understood that, in the new notation, k contains a 
subfield and r(r — 1) indeterminates uih so that the phrase "independent of 
(u)" retains its meaning. 

3. Projection of an isolated prime of (F). Assume that the co-ordinates 
have been chosen as indicated in §2, so that in particular the Ft are polynomials 
in xn with highest coefficient unity and the other coefficients in Rn-i. 

LEMMA 2. Let p be an isolated prime component of (F) and let p = Rn-i ^ P 
be its projection. Then p is an isolated prime component of (H). 

Proof, p is obviously a prime ideal in Rn-\ containing (H); the essential 
point is to show that it occurs as an isolated component in a primary de­
composition of (H). 

Let o be the quotient ring of Rn with respect to p, and o that of Rn~i with 
respect to p. Let K be the residue class field o/op. This field can clearly be 
identified with a subfield of the residue class field o/op. Also if £i, £2, . . • , £w 

are the residue classes mod p of xi, x2, . . . , xny o/op is the field of fractions of 
the power series ring &[[£i, . . . , £„]], while a similar statement holds for K, 
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the element | n being omitted. On the other hand f„ is algebraic over K, since 
it satisfies each of the equations Ft = 0, reduced mod p. And since the co­
efficients of the powers of xn in each of the Ft are all of positive order, it 
follows that in the minimal equation of £„ over K all the coefficients, except 
the highest which is 1, will be power series in £i, . . . , £„_i of positive order. 
It follows that in any power series in k[[£u . . . , £„]], a power of £„ greater 
than the degree of £n over K can be replaced by lower powers without lowering 
the degree of the term in which it occurs. Each such power series can there­
fore be written as a polynomial in %n over K. That is to say, the field o/op can 
be written as K(£n). 

o and o are both neighbourhood rings of irreducible algebroid varieties, 
and so are regular local rings (2, p. 33). Their completions o* and o* are there­
fore also regular, and so (3, p. 88) are isomorphic to power series rings in the 
appropriate number of indeterminates over their respective residue class fields, 
namely K and K(%n). For the present purpose it will be convenient to identify 
K and K(^n) with subacids of o* and o*, respectively, writing, in particular, 
o* = K[[yi,y2, • • • ,yn-r]}' In this notation the maximal ideal o*p of o* is 
that generated by the yt. 

Now it has already been noted that £,4 is a root of each of the equations 
Fi = 0, regarded as a polynomial equation in xn with the coefficients reduced 
mod p. But Fiy written as a polynomial in xn, has coefficients in /^_ i , which 
is a subring of o* = K\[yi, y2, . . . , 3>n-r]]. Thus Ft is a polynomial in xn with 
coefficients which are power series in the yt over K such that, when the yt are 
set equal to zero (this is equivalent to reducing mod p) the resulting poly­
nomial has £w as a root. Also dFt/dxn ^ 0 for xn = £w and all the y$ set equal 
to zero; for otherwise dFjdxn would be equal to zero mod p, contrary to the 
condition (2) made to hold in §2. It follows at once by the implicit function 
theorem for polynomial equations with power series coefficients that there is 
a power series </>* in the yj with coefficients in K(£n) and with constant term 
in such that Ft(xi, x2t . . . , xn-U 4>i) = 0. 

The polynomials Ft in xn have coefficients in K[[yu y>z, • • • , 3'«-r]] = ^fb;JJ-
Let an algebraic extension of the field of fractions of this ring be made so that 
the Ft factorize completely into linear factors. Write 

(1) Fi = f i (fin - <t>ij) 

where, in particular <j>n = <f>t for each i. Then by the theory of the resultant 
of a pair of polynomials (5) 

(2) Hi = n (*<» - 4>r,) (i = 1, 2, . . . , r - 1). 

Now the prime ideal p is independent of (u) (cf. §2) and (II) C P- And so, 
by Lemma 1, the only common zeros of Ft and Fr for any i, these equations 
being reduced mod p, must be common to all the Ft mod p. But, since it has 
been arranged that only one component p of (F) projects on p it follows at 
once that the only common zero of Ft and Fr reduced mod p, for any z, is 
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%n. And since i>n is a simple root of each Ft reduced mod p (by condition (2) 
of §2) the only factor of IIt which is congruent to zero modulo the appropriate 
extension of p is 0^ — </>r. Thus (2) can be rewritten as 

Hi = (4>i - 4>r)Ku 

where K t is not zero modulo a suitable extension of p. 
Now Hi is rational in the coefficients of Ft and FT and so is in i£[[;y]]. On 

the other hand the <fo are power series in the jj with coefficients in K(£n), and 
so the same is true of the Kt. Writ ing for brevi ty K' = K(£n), this means tha t 
the Kt are in the ring i£'[[;y]] = K'[[yu y2, yz, . . . , yn~r]] and are not zero 
modulo the maximal ideal i£'[[:y]]p of this ring. T h a t is to say the Kt are units 
of K'[[y]], and so 

(3) Kf[[y]](H) = K'[[y]](4>i ~ </>,, <t>* - * „ . . . , * r - i - </>,)• 

Going back to equation (1), multiply out the factors on the right for which 
j ^ 1, and arrange the result as a power series in the yt with coefficients in 
K'[xn]. In part icular write Ai(xn) for the term independent of the y j . Thus 
(1) becomes: 
(4) Ft = (*n - ^ J U . W + . ..) 
where the dots represent terms containing the yjm 

I t has already been observed tha t £„ is a simple root of each of the Ft re­
duced mod p, and so . l ^ ^ ) ^ 0 for each i. Now o* C o*, and i l ' is the residue 
class field of o*, and is identified with a subfield of this ring; finally xn Ç o*. 
I t follows tha t both factors on the right of (4) are in o*. On the other hand, 
all the y j are in p and so in o*p, and xn — £re G o*p, whence the second factor 
on the right of (4) is congruent to A ,(£„) mod o*p. Thus the second factor on 
the right of (4) is not zero mod o*p, and so is a unit of o*. I t follows a t once 
tha t 
(5) o*(F) = o*(xn - 0i, xn - fa, . . . , xn - </>r) 

Now compare equations (3) and (5). Since p is an isolated prime component 
of (F), o*(F) = o*p, and so, by (5) 

0*P = O * ( 0 i - <j>T, 4>2 - <j>r, . . . , Xn ~ 4>r). 

A straightforward verification shows tha t the intersection of the ideal on the 
right of the last equation with i£'[[3>]] is obtained simply by dropping the last 
generator. And so, applying equation (3), it follows tha t 

(6) o*pr\K'[\y]] = K'[[y]](H). 

An element of i£'[[;y]] is a power series in the yj and is congruent mod o*p 
to its constant term, an element of K', namely the residue class field of the 
local ring o*. I t follows a t once tha t o*$ F\ K'[[y]] (Z K'[[y]]$ .The reverse 
inclusion relation is obvious. Hence (6) is equivalent to 

(7) K'[{y}](H) = K'[[y]]p. 
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The next step is to form the intersection of each side of the last equation 
with 2£[[y]]. Noting that K! is a finite algebraic extension of K, and writing 
the elements of K' in terms of a linear basis (including the element 1) over K 
it follows at once from (7) that K[[y]](H) = K[[y]}$. Since K[[y]] = ? 
this implies that p is an isolated prime component of (H) as required. 

4. Equations over a field with a valuation. Let K be a field complete 
with respect to a valuation v, the value group being written additively. Thus 
v(ab) = v{a) + v{b) and v{a + b) ^ min(v(a)y v(b)), where a and b are any 
elements of K. Extend v to the algebraic closure K of K; this can be done in 
a unique manner (5). The extended valuation will still be denoted by v. 

For each a in the value group of v let Na be the set of elements of K with 
values greater than a. Then the collection of sets of the type Na can be taken 
as the basis of the neighbourhoods of 0 defining on K the structure of a topo­
logical group under addition. With this topology K is actually a topological 
field; that is to say, the operation of multiplication is also continuous. 

LEMMA 3. Let F(z) and F(z) be two polynomials in z of the same degree, both 
with highest coefficient 1 and with all other coefficients in K having non-negative 
values under v. Let V be a preassigned neighbourhood of 0 in K. Then if the 
coefficients of F' are sufficiently near those of F, in the sense of the topology just 
defined, each root of F' will differ from some root of F by an element of V. 

Proof. According to the definition of extended valuations (cf. van der 
Waerden (5) the conditions on the coefficients of Ff imply that v(Ç/) ^ 0 
for each root f / of F'. Let c be the smallest of the values under v of the 
differences of corresponding coefficients of F and F'. Then, for each root of Fr, 
the definition of a valuation along with the condition w(f / ) > 0 implies that 
v(F(t/) - F ( r / ) ) £ c That is to say w(F(f/)) > c. But if fu f2, . . . , fm are 
the roots of F, 

F(?i') = «Y - f i ) ( f / - f 2 ) . . . ( f / -U) 

and so the last inequality implies that, for some j , v(f/ — f̂ ) > c/tn. If the 
preassigned neighbourhood F of 0 is assumed to be the set of elements of K 
for which v{a) > c/m, the last inequality establishes the lemma. 

5. Lifting theorem for analytic equivalence. Let (F) and (F) be ideals in 
k[[xi, x2, . . . , xn]] with sets of generators Fh F2, . . . , Fr and Fi, F2\ . . . , 
FT\ respectively. The object here is to show that, under certain conditions, 
if the orders of the Ft — F/ are high enough there exists an analytic equiva­
lence between the isolated prime components of (F) and certain components 
of (Ff). Clearly the final result is not going to be affected if the various adjust­
ments described in §2 are made in advance. In particular the Ft can be assumed 
to have been replaced by polynomials in xn. The complementary remark to 
the Weierstrass Preparation Theorem in §2 implies that the F/ can also be 
replaced by polynomials in xnj and that F/ will be of the same degree as Fi, 
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the differences of corresponding coefficients being of high order if the order 
of F/ — Ft is high enough. It will also be assumed that the F{ and F/ have 
been replaced in advance by generic linear combinations involving indeter-
minates utj as in §2, so that the results of §3 can be applied; but as at the end 
of §2, the presence of the u^ will not be indicated in the notation. 

Let Hi, H2, . . . , Hr-i be the set of resultants of FT with Fi, F2, . . . , Fr-i, 
respectively, with respect to xn, and let Hi, HJ, . . . , HT-\ be calculated in 
the same way from the F/. Since the resultant of two polynomials is rational 
in the coefficients in the polynomials, it follows that the orders of the 
Hi — Hf will be arbitrarily high if those of the F/ — F{ are high enough. 

Assume that the following condition, to be referred to later as condition A, 
holds; it will be shown later that this is certainly so for the case in which 
the variety defined by (F) is a curve: 

A. Given an integer m, there exists an integer m! such that, if the orders of 
the Fi — Fi > m!, then there is an analytic equivalence 5 in Rn-\ carrying 
the isolated prime components of (H) into components of (Hf), and also an 
extension of this to an analytic equivalence T in Rn carrying (G, Fr) into 
(Gf, FT

f), where (G) is the intersection of the isolated primes of (H) and (GO 
is its image under S, and 5 and T are both of order > m. 

THEOREM 1. If the integers m and m' of condition A are big enough, then 
the analytic equivalence T carries the isolated prime components of (F) into 
components of (Ff). 

Proof. Let the generators of (G) be denoted by Gu i = 1, 2, . . . , q, those of 
(GO by Gi, i = 1, 2, . . . , q. In the following proof (x) will stand for the set 
(xi, X2, . . . , xn-i), and 5 -1(x) for the set of series 5-1(x*) obtained by applying 
the inverse S~1 of 5 to the xt. S~1(^) will denote the result of replacing the 
Xi in 5_1(^) by their residue classes mod p, where p is a given isolated prime 
component of (F). Condition A states that T carries (G, Fr) into (G', F/), 
and, of course, T~l effects the reverse transformation. Hence there are elements 
A i and B of Rn such that 

T-'Fr'&Xn) = 2 A£t(x) +BFr(x,xn), 

or, what is the same thing, 

(8) Fr'(S~\x), T~\xn)) = £ AtGi(x) + BFT(x, xn). 

By Lemma 2, p = Rn^i C\ p is an isolated prime component of (H) and so of 
(G); from which it follows that G*(£) = 0 for each i. Substituting the £* for 
the xu i = 1, 2, . . . , n - 1, in (8), and writing ({0 = S'1^): 

Fr'(it',T-l(xn)) ^B&xjFr&Xn). 

Since, however, £n is a root of Fr(%, xn) = 0, the last equation implies that 
& = T~l{^ is a root of Fr'(%', xn) = 0. The main task of this proof is to 
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show tha t , under the conditions of the theorem, £n
; is a root of each of the 

equations F/(^, xn) = 0. This will be done now by applying Lemma 3. 

As in §3 take K as the residue class field of the local ring o. A valuat ion is 
to be introduced on K in such a way t h a t the £/;, i = 1, 2, . . . , n — 1, all have 
values greater than zero. This can be done as follows. Making, if necessary, 
a suitable linear change of variables (it will be assumed tha t this has already 
been done in advance along with the other adjus tments in §2) it can be 
arranged t ha t no element of k[[x\, x2, . . . , xw_r]] vanishes when reduced mod 
p, while for each i from 1 to r — 1, S;n-r+i is integral over fe[[£i, £2, • • • , f«-r+t-i]]-
In addit ion, the coefficients of the minimal equation of %n-T+i over the ring 
k[[£u £2, • • . , £w,-r+/_i]], except the first which is 1, are all power series of positive 
order in the £;-. The assertions jus t made follow from repeated applications of 
the Weierstrass Preparat ion Theorem. Define the valuat ion v on the field 
of fractions of &[[£i, £2, . . . , %n-r]] by sett ing v(a), for a power series a in the 
£i, equal to the order of a. This valuat ion v can then be extended in the usual 
way, step by step, to K, and the na ture of the coefficients of the minimal 
equat ions of the £,. ensures t ha t v(^) > 0 for all i. The field of fractions of 
k[[%u £2, . . . , £»-r]] is complete with respect to v, and so, since K is obtained 
by a finite algebraic extension, K is complete with respect to the extended 
valuat ion (5). As in §4 let K be the algebraic closure of K and let v be extended 
to K. 

The equations Ft(£, x„) = 0 and F/(£', xn) = 0 are now to be compared. 
Note tha t , since (£') = S~l(Ç), K is the field of fractions of £[[&', &', . . . , £„V]] 
and so the equations to be examined both have their coefficients in K. If the 
order of Fi(x, xn) — F/(x, xn) and t h a t of the analyt ic equivalence 5 are high 
enough it is clear t ha t /^(£, x„) and F/(£', x„) will be of the same degree in xn 

and tha t the differences of corresponding coefficients will have arbi tar i ly high 
values under v. In part icular the highest coefficients will both be 1, and all 
the other coefficients will have non-negative values. Condit ions are therefore 
suitable for the application of Lemma 3. 

By Lemma 3, if the integers m and m' of condition A are large enough, 
each root of F{{g, xv) = 0 is arbitrari ly near some root of Fi(%, xn) = 0. 
Choose the neighbourhood V of Lemma 3 so tha t , among the set of all the 
roots of Fi(£,xn) = 0 and Fr(^xn) = 0, the common root £„ being counted just 
once, no two differ by an element of V + V. Then if m and mr are big enough, 
each root of F/(£', xn) = 0 is in a F-neighbourhood of some root of Ft(^ xn) = 0; 
a similar s t a t ement holds for Fr' (%', xn) = 0 in relation to F r(£, xn) = 0. I t follows 
tha t no root of F / (£ ' , xn) = 0 can coincide with a root of Fr

f (£r, xn) = 0 except 
possibly roots of these equat ions lying in a F-neighbourhood of £w. 

But , by hypothesis, S carries p into some component of (H'). And so, since 
(£0 = S~l(%), (£0 is a zero of (Hr). In part icular the resul tant of F/ and 
FT' with respect to xn vanishes when (x) is replaced by (£')> whence the equa­
tions F/(£', xn) — 0 and F/(^, xn) = 0 must, have a t least one common root. 
I t has just been shown t h a t this common root mus t be in a F-neighbourhood 
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of £n; if it is proved tha t F/(^y xn) — 0 has only one root near £n when the 
coefficients of Fr'(£',xn) are near those of FT(£, xn) then this root must be 
£ / , which, being equal to r - 1 ( £ n ) , is certainly near %n if m! is large. The fact 
t ha t £ / is a root of FI {£, x„) = 0 would then be established as required. 

To check this last point note tha t if, on the contrary, a rb i t rary neighbour­
hoods of £n contain two roots of FT'(£', xn) = 0 for large values of m and m'', 
then in the limit as m, m' tend to infinity, it would turn out t h a t £w would be 
a double root of Fr(i-, xtl) = 0. This is not so, and thus the proof t h a t £ / is a 
root of each F/(!»', xn) = 0 is completed. 

The result just obtained implies tha t (£/ , £2', • . . , £«') is a zero of the 
ideal (F'), and vSO of some prime component p' of (Ff). Now if <j> Ç p', 
<!>(£, in) = <t>($~l(&, T-l(Çn)) = 0; hence Z1-1^ Ç p and so T~ltf C p. A similar 
a rgument shows tha t Tp C p'. Hence p' = Tp. T h a t is to say, it has been shown 
tha t T carries p into a component of (Fr). Since this holds for any isolated 
prime component of (F) the proof of the theorem is completed. 

6. Algebroid curves . Attent ion will now be restricted to the case 
r — n — 1, the components of (F) = (Fi, F2} . . . , Fn-i) being all one-dimen­
sional, and the result indicated in the introduction will be proved. As pointed 
out there, the proof will be by induction on n, the case n = 2 being established 
by means of the following theorem of Samuel (stated here only in the case of 
two variables) : 

LEMMA 4. If F and F' are power series in x and y over a field k and if F — F' 
is in the ideal (x, y) (dF/dx, dF/dy)2, then there is an analytic equivalence of 
k[[x, y)] carrying F into F'. 

Proof. See Samuel (4). 

Now if F has no multiple factors, F, dF/dx and dF/dy have an isolated 
common zero a t the origin, and so a power of the ideal (x, y) is in 
(dF/dx, dF/dy) mod F. I t follows easily (4) tha t : 

LEMMA 5. If F — F' is of sufficiently high order and F is free of multiple 
factors then the principal ideals (F) and (F r) are analytically equivalent. 

In the case where F does possibly have double factors, let G be the product 
of the simple factors of F. Thus G is a product of simple factors. In order t ha t 
Lemma 5 can be applied to this situation, it must be shown tha t F' has a 
factor G differing from G by terms of high degree, provided t ha t the order of 
F — F' is high enough. This will be done by means of the following modi­
fication of Hensel 's Lemma. 

LEMMA 6. Let F, G, II be polynomials in y with coefficients which are power 
series in x over a field k, and let F — Gil. Also suppose that G and H have no 
common factor. Then if F' is a polynomial in y of the same degree as F, also with 
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power series in x as coefficients, and if the differences of corresponding coefficients 
are of sufficiently high order, in particular the coefficients of the highest powers 
of y in F, Fr, G, and H all being 1, Ff will have a factorisation GfHr where Gf 

and Hr are polynomials in y of the same degrees as G and H respectively, and 
such that G — Gf and H — Hf, written as series in x, are of arbitrarily high 
order. The highest coefficients of G and H' will be 1. 

Proof. If the orders of the differences of corresponding coefficients of F and 
F' are all greater than r, it will be convenient to use the notation F= F' 
(xr). This notation will be used throughout this proof. 

By hypothesis, the highest common factor of G and H, regarded as poly­
nomials in y over the field of fractions of the power series ring &[[#]], is 1. 
Remembering that an element of this field of fractions can be written as a 
series of positive powers of x divided by a power of x, it follows at once that 
there is an integer h, and polynomials A and B in y with coefficients in k[[x]] 
such that the degrees of A and B in y are less than those of H and G, res­
pectively, and 
(9) AG + BE = x\ 

Now let s be any integer greater than 2h, and suppose that F = F'(x8). 
The lemma will be proved if it can be shown that, for each q > s, there are 
polynomials GQ and HQ in y with coefficients in fe[[x]], the highest coefficients 
being in each case 1, of the same degrees in y as G and H respectively, and 
satisfying the conditions 

F' s GqHq(x
Q) ) 

(10) Gq ^ G(x°-h) [ • 
Hq s H(xs~h) J 

For then G' and H' can be taken as the limits of Gq and Hq as q tends to oo. 
This result will be proved by induction on q ; it is clearly true for q = s, taking 
Gs = G and Hs = H. Suppose that Gq and Hq have already been found satisfy­
ing (10). It will now be shown that, setting Gq+\ = Gq + uxq~h and Hq+i = 
Hq + vxq~h, u and v can be determined as polynomials in y over k[[x]] of 
degrees less than those of G and H respectively in such a way that conditions 
(10) hold with q replaced by q + 1. 

By the first of the conditions (10) Ff = GqHq + wxQ, where w is a poly­
nomial in y over &[[#]], the degree in y being less than that of F. And so 

(11) F' - Gq+iHq+1 = x*-h(wxh - vGq - uHq) - uvx2q~2h. 

Multiply (9) by w, obtaining AwG + BwH = wxh. Here the right-hand side 
is of degree in y less than that of F, and so the standard adjustment, using 
the long division algorithm, can be made to Aw and Bw} replacing them by 
polynomials A' and B' in y over k[[x]] of degrees less than those of H and G 
respectively. Thus 

A'G + B'B = wx\ 

https://doi.org/10.4153/CJM-1959-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-001-6


ANALYTIC EQUIVALENCE OF ALGEBROID CURVES 13 

Applying the second and third conditions of (10) 

(12) A'Gq + B'Hg = wxh(x°-h). 

Now in the definitions of Gq+i and Hq+i take u = A' and v = B\ and (11) 
along with (12) gives at once the result Ff — Gq+iHq+i =s 0 (xq+1). The other 
two conditions corresponding to (10) with q replaced by q + 1 are clearly 
satisfied and so the induction is completed, and with it the proof of this 
lemma. 

The above lemmas can now be combined to give the following result: 

LEMMA 7. Let F and Ff be power series in x and y over k. Then if the order 
of F — F' is sufficiently high there is an analytic equivalence in k[[x, y]] which 
carries the isolated prime components of the ideal (F) into components of (F'). 

Proof. It may be assumed that co-ordinates have been changed so that F 
and F' can be replaced by polynomials in y over k[[x]] of the same degree in 
y and having highest coefficient 1. Then the isolated prime components of 
(F) are the components of (G) where G is the product of the simple factors 
of F. By Lemma 6 there is a factor G of F' such that the order of G — G is 
high if that of F — F' is high enough. Applying Lemma 5 to G and G', the 
result follows at once. 

The main result of this paper can now be stated : 

THEOREM 2. Let an algebroid curve in n-space be defined by the ideal 
(F) = (Fi, Ft, . . . , /V-i) in k[[xi, x2, . . . , xn]]. Then if the orders of the series 
Ft — Ft are high enough, there is an analytic equivalence of arbitrarily high 
order carrying the isolated prime components of (F) into components of the 
ideal (F'). 

Proof. As usual the preliminary adjustments to the co-ordinates and to the 
generators of (F) described in §2 will be assumed to have been carried out in 
advance, so that the results of §§3, 5 can be applied here. The proof of the 
present theorem will be carried out by induction on n, the case n = 2 having 
been already established in Lemma 7. Clearly the proof will be completed if 
it is shown that, on the basis of the induction hypothesis that the present 
theorem holds for algebroid curves in (n — 1)-space, condition A of §5 must 
hold ; for then Theorem 1 can be applied to give the transition from n — 1 to 
n. But the holding of condition A under this induction hypothesis was proved 
as Lemma 6.1 in (6). Admittedly I was dealing in that paper with algebroid 
curves defined over the real field, but the proof of the quoted lemma was en­
tirely algebraic in character, and so applies equally well to the present situa­
tion. The inductive proof of Theorem 2 is thus completed. 

7. Projection of analytically equivalent curves. It has already been 
shown that if C and G are analytically equivalent curves in (n — 1)-space 
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then they lift into analytically equivalent curves in a hypersurface in w-space, 
provided t ha t the given analytic equivalence is of sufficiently high order cf 
(6, Lemrna 6.1). A sort of converse to this will now be obtained, namely, 
tha t algebroid curves of w-space which are analytically equivalent to a suffi­
ciently high order will project into analytically equivalent curves of (n — 1)-
space. This result is non-trivial since a curve and its projection need not be 
analytically equivalent; for example the space curve x = t;j, y = t\ z = t5 is 
not analytically equivalent to any plane curve. And it is certainly not obvious 
tha t a given analytic equivalence can be modified in such a way t h a t series 
not involving xn are carried into series not involving xn. 

T H E O R E M 3. Let C and C be algebroid curves in n-space analytically equivalent 
under T, and, possibly after a sufficiently general change of co-ordinates, let 
C and C be their projections into {xh x2, . . . , xn-i)-space. Then if T is of 
sufficiently high order, C and Cr will be analytically equivalent to an arbitrarily 
high order. 

Proof. Let % be the ideal of C, W t ha t of C'. Of course, by the definition of 
algebroid varieties (see (2)) C is actually defined by some ideal in Rn; ?l is to 
be the radical of t ha t ideal. T h u s §1 is an intersection of primes, say pi, p2, • • • , 
pm. A similar remark holds for 31'. Wri te p / = r(P*)> i — 1, 2, . . . , m. 

The first s tep of the proof is to find an ideal (F) in Rn having exactly n — 1 
generators and having pi, p2, . . . , pm as isolated prime components . Let ot 

be the quot ient ring of Rn with respect to the prime ideal p t . Then o* is the 
neighbourhood ring of a var iety and so is a regular local ring (2, p. 33) . T h e 
maximal ideal of o* is 0/p;. For each i,j with i ^ j choose 0 / in p; bu t not in 
p/, this is possible since no two of the pi contain one another . Then make the 
definition 

*> * n «J 
the product being taken over i. I t is clear t h a t cf>j is in each p; for /' ^ j , but 
is not in p ; , since none of its factors is. Next define \j/1 by 

the summat ion being over j . ypt is in pz, since each of its summands is, bu t 
\j/i = <j)j (p;.), and so ypi $ pj, for i ^ j . Set t ing ^ / ' _ 1 = ip t choose co-ordinates 
so t ha t the pt have dist inct projections in Rn-i, and, proceeding as above, 
find an element \f/il~2 of pz fA Rn~i which is not in any p; (~\ Rn-\ for i ^ j . 
In this way, step by step, a set of elements xpi1, i /v, . . . , TA/ ' - 1 of p^ is obtained 
with the proper ty t h a t they are not in any p;- for j ^ i. In addit ion, if £i, 
£2, • • • , tn denote the residue classes of x\, x2, . . . , xn mod p,, it is known tha t , 
possibly after a suitable linear change of co-ordinates £2, £3, . . . , £ « are separ­
ably algebraic over the field of fractions of fe[[£i]] (2, p . 32) . I t follows tha t , 
possibly after discarding superfluous factors, one can assume tha t 

(13) dtf/dxj+i ^ 0 ( p t ) . 
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Finally define 

p, = n ti-
Then the ideal (F) generated by the Ft has the above asserted property, 
namely t h a t the p* are all isolated prime components. For, extending to ou 

Oi(F) = Oityi1, \//i2, • . • , ^in~l), all the other factors of the Fj being units of 
o*. The condition (13) implies t ha t the rf/t

3 form a regular system of para­
meters in Qi (2, p. 34) and so 0i(F) = 0jp2; tha t is to say, p,- is an isolated 
prime component of (F) as was to be shown. 

Let the given analytic equivalence T carry Ft into F/, and write (Fr) for 
the ideal generated by the F/ in Rn. 

If necessary making a further linear change of co-ordinates, apply the 
Weierstrass Preparat ion Theorem to the F{ and the F/. The ideals (F) and 
(Fr) can thus be generated by Gi, G2, . . . , G»_i and G / , G 2 \ . . . , Gn..\ res­
pectively, where the GL and G / are all polynomials in x„. Also if the order of 
T is high enough, the orders of the corresponding coefficient differences of 
Gi and G / for each i can be made arbitrari ly high. The top coefficients of the 
Gt and G / are of course all equal to 1. I t will in addition be assumed tha t the 
procedure of §2 has been applied to the Gz and G', introducing indeterminates 
Uijy whose presence, however, is not indicated by the notation. 

Let Hi be the resultant with respect to xn of Gi and Gn~u and let (H) denote 
the ideal generated in Rn by the Ht; the H( and (IF) are to be similarly de­
fined from the G / . Since the resultants of polynomials are rational in the 
coefficients, it follows t ha t the order of Ht — H/, for each i, can be made 
arbitrari ly high if the order of T is high enough. 

From the last remark it follows by means of Theorem 2 tha t if the order of 
T is high enough there will be an analytic equivalence 5 in Rn~i of arbitrari ly 
high order carrying the isolated prime components of (H) into components of 
(Hr). In particular, for each i, pz = pt Pi Rn-i is an isolated prime component 
of (H), provided the co-ordinates are suitably chosen (Lemma 2). Thus 5(fy) 
is a component p / of (H'). I t is required to prove now tha t p / = p / Pi Rn-\. 
If this is known for each i, then it will be known tha t S carries C into G' as 
was to be proved. 

Wri te %j for the residue class of Xj mod p<, and denote (£i, £2, . . • , ?w-i) 
by (£). Thus (f) is a zero of p/. In the notat ion employed in the proof of 
Theorem 1, it follows tha t 5_ 1(^) is a zero of p / . But p / is a component of 
(Hf), and so, for some value of j which is to be fixed in the meant ime (any 
value of course will do) S~l(£) is a zero of H/. I t follows tha t G / ( 5 - 1 ( £ ) , x„) 
and GW_-/(5_1(J), xn), polynomials in xni have a common zero. Call this 
zero in'. 

The polynomials G/(S~1(^)i xn) and Gj(^xn) are now to be compared. 
Assume as in the proof of Theorem 1 a valuation has been introduced on the 
field of fractions of &[[£i, £2, . . • , f«-i]] and extended to its algebraic closure. 
If the order of T, and so tha t of 5, is sufficiently high the values of the differ-
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ences of the corresponding coefficients of G/(S_1(£), *„) and Gj(£, xn) will be 
arbitrarily large. Lemma 3 then shows that, if the order of T, and so of S, 
is large enough, the root fn' of G / ( S - 1 (f)> *n) will lie in a F-neighbourhood of 
some root of G^(£, xn), where V is preassigned. Similarly, replacing j by n — 1, 
in will lie in a F-neighbourhood of some root of Gn-i(f» *»»)• If F is taken so 
that no two of the roots of G;(£, xn) and G»_i(£, xn) differ by an element of 
V + F, this implies that fn' is in a F-neighbourhood of a common root of 
these polynomials. In view of Lemma 1 the only common root of G^(£, xn) 
and Gn_i(£, xn) is common to all the G/»(£, xn), A = 1, 2, . . . , n — 1, and, 
since condition (3) of §2 is supposed to be satisfied here by the Ghl the only 
such common root is £ra. Thus if the order of T is sufficiently high £/ is 
arbitrarily near £n. It follows that £n' is the unique common root of all the 
G^/(5_1(J), xn), h = 1, 2, . . . , n — 1, unique since otherwise a limiting pro­
cedure would lead to a double root of Gn_i(£, #n), which is ruled out by con­
dition (2) of §2. Thus (S~l{i), in) is a zero of a uniquely defined prime com­
ponent p / ' of (F ;) = (G'). The proof of the theorem will be completed by 
showing that p / ' = p / . 

The proof that p / ' = p / will involve an additional technical device which 
will now be described. Let p be any prime ideal of Rn of dimension one. Then, 
as has already been remarked, the fraction field of Rn/$ is an algebraic ex­
tension of a field of power series in one variable. Thus it is a field with a 
discrete valuation and clearly contains a congruent representative of the 
residue class field corresponding to this valuation, namely k itself. Thus, 
by a known theorem of valuation theory, the field of fractions of i?n/p can be 
identified with a subfield of the field of fractions of &[[£]]. This could also be 
expressed by saying that the algebroid curve defined by p can be parametrized 
by means of power series in t. 

Now if parametrizations are introduced as above on a number of algebroid 
curves, the same parameter symbol / can be used for all of them. This gives 
a means of comparing different curves. An immediate question which arises 
is: What is the relation between different parametrizations of the same curve? 
The answer is that they may be obtained from one another by means of an 
invertible power series substitution, replacing t by a power series in t having 
zero constant term but non-zero linear term. This is easily seen by noting 
that in a parametrization, the parameter can be identified with any element 
of minimum value. 

Let pi and p2 be two ideals of Rn and let x^{t) and Xi2(t), i running in each 
case from 1 to n, be parametrizations of the corresponding curves. Define 

5(pi, P2) = sup[min order of [x^t) — Xt2(t)]] 

the supremum being taken over all possible parametrizations of the twro 
curves, and the minimum over i\ the order of an element is to be its order as 
a series in t. 

In the first place note that ô(pi, p2) is finite for pi 9^ p2. To prove this, it 
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is sufficient in the above definition to assume that the parametrization of 
the first curve is kept fixed; this can always be arranged by means of a 
simultaneous change of parameter without changing the order of any of the 
xt

l(t) — Xi2{f). But then, if the orders of the xx
x(t) — Xi2{t) were unbounded, 

the parametrization of the second curve being varied, it would follow by 
a limiting process that the two curves would have a common parametrization, 
contrary to the fact that pi 9^ p2-

Returning now to the proof that p / ' = p / , apply T~l to both ideals. Thus 
it is to be shown that T~lpi" = pt. To do this replace the zero (£, £J of p* 
by some parametrization. The zero (TS~l(£), JH(£„')) of T~lpt

ff is automatically 
replaced by a parametrization of the appropriate curve, simply by substitu­
tion of the power series. And the orders (in the parameter i) of the corres­
ponding co-ordinate differences of (£, £w) and (75_1(J), T{%n

r)) will be arbi­
trarily high if the orders of T and 5 are high enough (it will be remembered 
that the £,• are all of positive value, as noted in the proof of Theorem 1, and 
also that the value of %n

f — %n is high when the orders of 5 and T are high 
enough). It follows at once that <5(p*, T~lpi") can be made arbitrarily large 
if the order of T is high enough. Then choose T and S so that ô(pif T~lpir) > 
<5(pt, pj) for all components pj of (F). Then r _ 1 p / ' , which is a component of 
(F), can only be equal to p*, as was to be proved. 
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