
INTEGRAL INEQUALITIES FOR EQUIMEASURABLE 
REARRANGEMENTS 

G. F . D. DUFF 

1. Introduction. For a real-valued function/ on the domain [0,6], the 
equimeasurable decreasing rearrangement /* of / is defined as a function 
JJT1 inverse to /z, where piy) is the measure of the set {x\f(x) > y}. In­
equalities connected with rearrangements of sequences as well as functions 
play a considerable part in various branches of analysis, and, for example, 
the concluding chapter of Hardy, Littlewood, and Pôlya [3] is devoted to 
rearrangement inequalities. Equimeasurable rearrangements of functions are 
also used by Zygmund [6, Vol. II, Chapters I and XII] . 

One well-known feature of the rearrangement operation is its variation 
reducing property. This has been extensively utilized for example, by Pôlya 
and Szego [4] in their work on isoperimetric inequalities. A study of the 
variation reducing property for infinite sequences, and functions defined on 
non-compact domains, has been made in [2], a typical result being an in­
equality for the derivative functions/*' as follows: 

(1.1) f"\f*'(.x)\pdxg C\f(x)\*dx, p>l. 

This inequality has been extended to almost everywhere differentiable func­
tions by Ryff [5]. While such inequalities are sharp for monotonie functions, 
they are evidently far from best possible for functions that oscillate rapidly. 
Our aim in this paper is to present improved versions of such inequalities by 
means of index or multiplicity functions. It is found that stronger inequalities 
sharp for a much larger class of functions can be obtained in this way. Indeed, 
if n(y) = n(f) is the multiplicity function for / , enumerating the roots 
Xi, . . . , xn of f{x) = y, then (1.1) is strengthened to 

(1.2) flf'ix^dx^ f /'(*) dx, p > 1. 
U(/(*)) I 

The technique used in obtaining (1.2) also opens the way to similar in­
equalities involving different ranges for p, functions of several variables, and 
other generalizations. 

The outline of the work is as follows. A basic one-dimensional relation is 
established in § 2, followed by the study in § 3 of a special function and its 
range. The principal inequalities and corollaries are given in § 4. A particular 
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case of interest is the relation for integral geometric means, which corresponds 
to the case p = 0 of the basic inequality. We then give the generalization to 
spherically symmetric rearrangements in m dimensions, where the multiplicity 
factor n is now replaced by an integrated level surface area. A corresponding 
but somewhat less strong inequality for sequences is derived in § 6. 

The notion of an equivariational transform is then introduced, and a basic 
arc length inequality established, in § 7. Inequalities for the equivariational 
transform containing suitable convex functions, and others involving vector 
norms, are constructed. These types are then combined in a single extended 
vector norm inequality. Corresponding results in m dimensions are subse­
quently given, including a generalization of the arc length result to surface area. 

2. The multiplicity function and the basic relation. Given are a 
function/ with domain [0, b] and a point y of the range of/. 

Definition. The multiplicity n(y) of f at the level y is the number of roots 
%k = %k(y), k = 1, . . . , n(y), of the equation 

(2.1) ? = / ( * ) • 

If the number of roots is infinite, we set n(y) = co. The reader can easily 
make his own interpretation of the following results in such circumstances. 

Suppose now t h a t / £ Cx[0, 6], and that h is so small that n(y + h) ~ n(y). 
This is true if, for instance, f'(xk) exists and is not zero for all k = 1, . . . , n. 
Denoting by x = x*(y) the abscissa M(y) corresponding to the value y of the 
rearranged decreasing function /*, we note that since the rearrangement is 
equimeasurable, we have 

n 

(2.2) |**60 - x*(y + A)| = E My + A) - xk(y)\. 
k=i 

Dividing by h and letting h —> 0, we obtain the basic relation for the derivative 
function, 

(2-3) WW\=^WM' 
As can be seen from this derivation, this relation expresses the equimeasurable 
property of the rearrangement. 

More precisely, we have the following preliminary result. 

LEMMA 1. If f (z C^O, b], then the basic relation (2.3) holds for almost all 
x e [o, b]. 

Proof. Since/* is monotonie, the derivative/*'(x) exists almost everywhere 
in x. For any such x, let Xi, . . . , xn be the roots of f(x) = /*(x), with n a 
positive integer or infinity. We must consider four cases, according as n is 
finite or infinite, and whether or not any of the values of the derivative are 
zero. 
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Suppose first that n is finite, and that f'(xk) ^ 0, k = 1, . . . , n. Setting 
y = /*(#*) = f(xk), we note that for sufficiently small h the number of roots 
of f(x) = y + h will also be equal to n. Denote these roots by xk(y + h), so 
that xk = xk(y). Since the rearrangement is equimeasurable, by (2.2) we can 
divide by h and let h tend to zero. The relation (2.3) then follows at once. 

Suppose next that one or more of the/ '(#*) are equal to zero, including say 
/'(tfj), and let xt(y + h) approach x i — x i (y) as h approaches zero. From 
(2.2) after division by h, we easily deduce, as h —* 0, 

(2.4) 
x*(y) — x*(y + Z0 

h 
> 

%i(y + h) - x%(y) 
h 

y + h — y 
%i(y + h) - xt(y) I7(*i) 

7 = 00 . 

Consequently, the left side of (2.4) also tends to infinity as h approaches zero. 
We conclude that/* r(x*) exists and has the value zero. The basic relation (2.3) 
therefore holds in this sense, that if the right-hand side is infinite, so is the 
left-hand side. 

Consider now the case when n is infinite. If one or more values oif'(xk) are 
zero, then the reasoning just given for n finite still holds. 

Finally, suppose that n is infinite, and that a l l / ' ^ ) are different from zero. 
Since f (x) G C[0, b], f (x) is bounded, say \f'(x)\ < M. Hence each term in 
the sum on the right exceeds 1/M, and the "series" will not converge. More 
precisely, to each crossing "feM, there corresponds an hk > 0 such that 
%k(y + h) is defined for \h\ < hk, while by the fundamental theorem of calculus 

h = jfdx £ M\xk{y + h) -xk(y)\, 

that 

(2.5) *k(y + h) - xk(y) 
h = M' 

Now for any given N choose h less than hi, 

(2.6) 

hN. Observe that 

x*(y + h) — x*(y) 
h 

N %k(y + h) - xk(y) 
h = M 

by (2.5). Since N can be chosen arbitrarily large as h approaches zero, it 
follows that the quotient on the left tends to infinity. Consequently,/*'^*) 
has the value zero, and the formula holds in this sense. This completes the 
proof of the lemma. 

The basic relation (2.3) was used in [2, § 7] as a starting point for the 
construction of inequalities for higher-order derivatives. 
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3. The range of a special function on the positive orthant. To derive 
an inequality for the pth power of/*'(#), we shall proceed as follows. By (2.3) 
we have, for p ^ 1, 

eu) [rwr'=(i:il74l)'"'sCÊi/'(x,)r. 
where the constant C is chosen as the maximum value of 

(3-2) \Ei7W 'zi/wr-
Here all real values are permitted for the derivatives f'(xk) and hence all 
real non-negative values for the \f'(xk)\. 

To compute the best value for c, we replace l/\f'(xk)\ by akl where 
0 < ak < oo, and determine the maximum of 

(3.3) c(a) = 
( n \v— 1 n 

( Z ^ ) Z 
\ k=\ / k=l 

We may also consider other real values of p. For p ^ 1 it will be possible 
to obtain both upper and lower bounds for integrals containing \f*f(x)\p, 
since the function c(a) then has a positive minimum value. 

Let Cp denote the maximum (or, if appropriate, supremum) value of c(a) 
for a given p, in the non-negative orthant 0 ^ afc < GO , and let cp denote the 
minimum (or infimum) value there. 

LEMMA 2. The extreme values of (3.3) in the orthant 0 ^ ak < oo are as follows: 

Op {^maximum) cp (minimum 

p > 1 1 0 (infimum) 

£ = 1 1 1 

0 <p < 1 1 1 

£ = 0 1 1 

/> < o n __ _1_ 1 

Proof. Since the expression for c(a) is homogeneous of degree zero in the ak 

(k = 1, . . . , n), we may without loss of generality set 

(3.4) F = t f l * - 1 = 0. 

The problem is thus reduced to finding the constrained extrema of 
Œft=i &*1~20~1> that is, to finding the constrained extrema of 

(3.5) G = è a/-p. 
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With a Lagrangian multiplier X, we have 

/ - (G + \F) = - (p - 1) —P + X = 0, k = 1, . . . , », 

which shows that there is one stationary point a& = 1/n (k = I, . . . , n). 
Since 

/o «^ f ^ g ^ _ (P1P_^) « \f» 0, £ > 1, i>< 0, 
(3-faj VdMa*/ ~ V ^?+1 ~ Ô"/ l « 0, 0 < p < 1, 
it is easily verified that this extreme point is of the type indicated in the table. 
Returning to the original expression (3.3) for c{a) we observe that in these 
cases the extreme value is c(a) = n~v. Note that (3.6) shows there is at most 
one interior extremum on the hyperplane YL an — 1- Denote by II the portion 
of this hyperplane lying in the non-negative orthant 0 ^ ak < oo . 

For p ^ 1 the minimum value must be taken on the boundary 6II. This 
value is easily seen to be zero since the sum Yl=i a^~v becomes unbounded 
as 611 is approached (when one or more of the ak tends to zero). 

For p = 1, c(a) = 1. 
For 0 < p < 1, the inequality (3.6) is reversed, so that the interior ex­

tremum l/np is now a minimum value. To determine the maximum, we examine 
c(a) on the boundary simplexes of descending dimension of 611. If, for instance, 
q of the as are zero, we find the same problem with n replaced by n — q. On 
such a boundary simplex the minimum is (n — q)~p. Thus the maximum 
value must be taken at a vertex such as (1, 0, 0, . . .) and by inspection this 
maximum value is seen to be 1. 

F o r £ = 0, c(a) = 1. 
For p < 0, the interior extremum value \/nv is again a maximum, while 

the minimum is found as in the preceding case to be 1. This completes the 
proof of Lemma 2. 

4. Integral inequalities in one dimension. While integral inequalities 
concerning the derivative of a rearranged function can be formulated at 
various levels of generality, the arithmetic inequalities considered in the 
preceding section lead naturally to the consideration of pth power integrals. 

THEOREM 1. Let f*(x) be the equimeasurable decreasing rearrangement of 
f G CM0, 6], and let n(y) be the multiplicity of f at the level y. Then the following 
inequalities hold for the indicated ranges of p: 

(a) forp ^ 1, 

(4.1) fb\f*'(x)\'dx£ f 
"0 •SO 

(b) for0<p^l, 

fix) V 

dx, 
h \n(f(x))\ 
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(c) for p < 0, 

(4-3) JoiAx)r^ = Jor(x)i^x = J l ^ r " x -
Equality holds on the right in (a) and (c), tmd 0?z the left in (b), i/ and only if 

the values of \f(xk)\ are independent of k, k = 1, 2, . . . , n, for almost all xk. 

Proof. We have, by (2.3), 

By the definition (3.3) of c(a), we thus find 

(4.5) c,i, ifix^r1 Û irwr1 ^ cv± \f{xk)Y-\ 
k=l k=l 

where cv and Cv denote minimum and maximum values of c(a) in the non-
negative orthant. Multiply by \df*\ = \df\ and integrate over the range of/. 
As y = f = /* traverses the range of / in decreasing order, x* traverses the 
domain [0, b] of/* in increasing order and the set of roots xk covers the domain 
[0, b] of/ exactly once. We thus find 

(4.6) (cp± i/'(*t)r
1 w\ ^ f i r w r 1 w*\ 

s c ,E !/'(*.)I v-i 

k=l 

Since \df*\ = |/*'(x)| dx and \df\ = \f(x)\ dx, we then obtain 

(4.7) f\\f(x)\*dx£ f\f*'(x)\pdx£ fcp\f'(x)\*dx, 
•SO «'O v o 

where 

cp = cv(n{f(x))) and C„ = Cv(n(f(x))). 

Replacing cv and Cv by their values as functions of n as given by Lemma 2 
for the various ranges in p, we find the inequalities stated in the theorem. 
Note that for p ^ 1 the infimum cp = 0 does not yield any lower bound, 
whereas in the other two cases such a positive lower bound is obtained. (It 
will be shown below that these lower bounds occur only in the one-dimensional 
case and are not present for higher dimensions.) 

Since the proof of Lemma 2 shows that the interior extremum point is the 
place where all ak are equal, it follows that the maximum value Cv in cases 
(a) and (c), and the minimum value ck in case (b), are achieved when the 
values of all \f(xk)\ are equal, k = 1, . . . , n = n(j{x)). The concluding 
statement of the theorem now follows, and the proof is complete. 
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Since n(J) ^ 1, (4.1) implies (1.1) for p > 1. Note that the right-hand 
inequality in (4.2) implies (1.1) for 0 < p < 1. Thus, as noted by Ryff [4], 
(1.1) holds for p > 0. 

A more precise characterization of the class of functions for which equality 
on the right in (4.1) and (4.3) and on the left in (4.2) will hold is the following. 

COROLLARY 1.1. / / \f(xk)\ has the same value for all xk such that f{xk) = y, 
and if this value determines a once differentiable function F(y) of y, then f(x) 
satisfies a second-order differential equation in normal form 

(4.8) / " (* ) = F{f{x))F'(J{x)). 

Conversely, if f(x) satisfies a second-order differential equation of the type 

(4.9) / " = G(f), 

then equality will hold for f in Theorem 1 on the right for p > 1, p < 0 and on 
the left if 0 < p < 1. 

Proof. Since all values of \f (xk)\ are equal, we have 

Lf(*)| = F(J(x)), 

and, squaring, we find 

r(X) = p(f(X)). 

Differentiation with respect to x yields 

2f'f" = 2F(f)F'(f)f. 

Cancellation of the factor 2f (which will vanish at isolated points only 
unless evanishes in an open set of values of/) proves (4.8). 

Conversely, suppose that a second-order equation (4.9) holds for some func­
tion G. It is then directly possible to show by integration that \f(x)\ = Fi(J), 
where Fi(f) = (2JG(f) df + K)1/2 and K is a constant of integration. Then 
equality will surely hold for / as indicated. This completes the proof. 

If p = 1, it is obvious from the proof of the theorem that equality will 
always hold. Indeed, we then obtain from (4.1) and the left-hand inequality 
of (4.2) an obvious formal result 

f \df*\ = f \f*'(x)\d* = CMlT^dx = f-l^i 
Jo Jo Jo n(f(x)) Jo n 

in which the common value of the integrals is the measure of the range of / . 
This proves the following result. 

COROLLARY 1.2. 
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We may compare (4.10) with the slightly different result 

(4.11) f n\df*\ = f »|/*'(*) | dx = f \f'(x)\ dx = f \df\ = TV (f) 
«/o «'o «/ o «'o 

wherein the common value is the total variation of / . This latter formula was 
studied by Banach [1, Theorem 2] and will be derived again below. 

For the limiting case p = 0 we employ the integral geometric mean 

(4.12) G(f) = exp(±f\ogfdx) 

[3, p. 136]. 

COROLLARY 1.3. Suppose that the integrals in either (4.2) or (4.3) exist for 
sufficiently small p. Then 

(4.i3) ^Q- ^ G(\r\) ̂  G(\r\). 

Proof. Starting for example from (4.2), we take the (l/p)th power of each 
expression. Setting 

as in [3, p. 134], we obtain 

(4.14) Mp ( J £ l ) g Mv{\r\) g Mv(\f'\)-

But by [3, Theorem 187], we have 

G(f) = lim Mvif). 

Noting the "geometric" property G (Jif 2) = G(fi)G(f2) and the corresponding 
formula for quotients, and letting p —» 0 in (4.14), we obtain the results 
stated in Corollary 1.3. 

In view of the entries for p = 0 in the table of Lemma 2, it is tempting to 
conjecture that equality on the left in (4.13) might hold in general. This 
however is not known one way or the other. 

Recall now that by definition the rearranged function/* is the inverse of ^, 
where ji{y) is the measure of the set \x\f(x) > y}. Consequently, the first 
derivatives of /* and of ju are reciprocals. 

Let us refer to the function 

(4.15) v(y)m\^)\m^m±iU^5[ 

as the value density of f at the level y. Let the range set of/ be denoted by R. 
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COROLLARY 1.4. For v > 1, the value density function <p satisfies 

^ T i 7 ^ - ^ ̂  X *<yy dy = f0ff$Pdx-
Proof. The inequalities follow at once from (4.3) with v = \p\ + 1, when 

we note that 

(4.17) dx = TJ&ttdy = <PW dy. 

The two following corollaries indicate different possible generalizations of 
the main theorem. 

In the next corollary we shall state the results that correspond to the case 
p > 1 of the theorem, leaving the remaining cases 0 < p < 1 and p < 0 to 
the reader. 

COROLLARY 1.5. If x(f) ^ 0, then forp^l we have 

(4.18) fx(f)\f*'(x)\Pdx^ fx(f) 
V 

dx. 
\n(J(x))\ 

Proof. We have only to modify the calculation leading to (4.1) by inserting 
the factor x(/*) ° n the left and the equal factor %(/) on the right before 
integrating over the range of / . 

Since in Corollary 1.5 x rnay be any non-negative function on the range of/, 
that is, any non-negative function of / itself, we may use the fact that the 
multiplicity function n{y) has this property, and choose 

(4.19) x(j) = n(yy. 

Hence 

(4.20) fn(f*r\r(x)\Pdx ^ f \f(x)\pdx, p * 1, 

and corresponding inequalities hold for other values of p. 
Indeed, whenever 

x(y) = xi(y) n(y)p, 

with xi(y) independent of n, the right-hand side in (4.18) will not contain the 
multiplicity function n. 

Finally, we note that the method used in Theorem 1 yields the following 
generalization, which we state without further proof. 

COROLLARY 1.6. If $(s) = s^f(s) > 0, for s > 0, and if C(n) and c(n) 
denote, respectively, the maximum and minimum values in the non-negative 
orthant 0 < ak, k = 1, . . . , n, of 

n 
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then 

(4.21) f c(n)$(\f'(x)\)dx^ ( $(\f*'(x)\) dx 
Jo Jo 

^ fc(n)H\f'(x)\)dx. 
•SO 

Note that Theorem 1 is in effect the particular case ^(s) = sp_1 of this 
result. 

5. Rearrangements of functions of several variables. Given a function 
/ on an ra-dimensional domain D in a Cartesian ra-space with coordinates 
x = (xi, . . . , xm), we can apply the basic construction for the equimeasurable 
decreasing rearranged function with little alteration from the one-dimensional 
case. Denote the range of / by R. Let 

(5.1) n(z) = meas{ (xlt . . . , xm)\ f(xu . . . , xm) > z) 

and let the function /* of one variable x be defined by 

(5.2) /*(*) = M-i(x). 

Then /* has the range R and the domain 0 S oc S meas(Z>). 
Observe that this construction yields a one-dimensional rearranged function. 

However, spherically symmetrical functions of any number of variables can 
be used. For instance, if k variables are chosen, and the rearranged function 
fk* depends on r = (xi2 + . . . + xfc

2)1/2, then 

ii = x = oikhrlrk 

and 

(5.3) dfx = dx = co^r*-1 dr. 

Here uk denotes the surface area of the unit sphere in &-space, thus «i = 2t 
co2 = 2ir, C03 = 47T, . . . . Note that the spherically symmetric rearrangemen-
in the case k = 1 is the symmetric or even equimeasurable monotonie re. 
arrangement of/, not the decreasing equimeasurable rearrangement [3, p. 278], 

A derivat ive/* '^) would be replaced by fk*'(r)/*)*?*"1, so that the replace­
ment for an integral such as $\f*'(x)\p dx is 

(5.4) / | / ** , ( f ) | ' ( «* r^ 1 ) M dr . 

In the following theorems we shall state the results for the one-dimensional 
rearranged function/* (x) = / i* (# ) , leaving the replacements given above to 
the reader. The case k = m is a natural one to consider for many of the 
applications. Note that the domain for r above will usually but not necessarily 
terminate at r = 0. 

We next require analogues for several variables of Lemmas 1 and 2. For the 
basic relation we again assume that / G C1 on some given closed domain 
D in Em. 
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LEMMA 3 (Basic relation in Em). Let f Ç C1^) and let f* be the one-
dimensional equimeasurable decreasing rearrangement of f. Then 

(5-5) Fwl = i : L w l ' 
where the integration and summation on the right run over all components of the 
level surfaces f = f*(x) in D, and where Vf denotes the gradient vector of f. 

Proof. Since f is constant on the level surface, the gradient Vf is parallel to 
the normal, and we have 

(5.6) |v/| = dn i 

whence 

(5.7) 

From (5.1) we have 

dn = w\-
(5.8) /*(*) = Jf^zdV 

from which follows 

(5.9) dfi - E f dn d 

where the integration again extends over the level surfaces/ = z. From (5.7) 
we now find 

(5.10) & = -£ j-^df. 

However we also have, for the rearranged function in the one-dimensional 
case, and reckoning df* as negative, since /* is a decreasing function of x, 

df* 
(5.11) dM = d r = _ _ , _ _ . 

Since \df*\ = \df\y we find on comparing (5.10) and (5.11) that (5.5) holds. 
This completes the proof of Lemma 3. 

To employ Lemma 3 in an integral inequality, we shall be led to consider 
the integral analogue of (3.2), namely 

(s.i2) {^-(E/^rCL/lvrw)"1. 
Setting 

(5.13) g(s) = | ^ ^ 0 

and noting again that (5.12) is homogeneous of degree zero in g(s), we may 
normalize the variational problem by imposing the constraint 

(5.14) EJg(^) dS = 1. 
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Consider therefore the extreme values of 

(5.15) c[g] = (E jg(s) as)"* (E J ^ T ) - 1 . 

The results may be summarized as follows, where the level surface area 

(5.16) 5 = 2 / A S 

now corresponds to the multiplicity n. 

LEMMA 4. The extreme values of (5.15) in the junction space orthant g(s) ^ 0 
are as follows: 

maximum minimum 

p > 1 1 
5* 

0 (infimum) 

p = 1 1 1 

0 <p < 1 oo (supremum) 1 

p = 0 1 1 

p < 0 0 (infimum) 

Proof. With the constraint (5.14), we have in effect to find the extrema of 

(5.i7) xSi§=" 
that is, to find the free extrema of 

(5-18) E J l ^ i + **(*)] <*S, 
where X is a Lagrange multiplier. Variation of g at once yields the equation 

whence 

(5.19) g (s) = const = 1/5. 

The sole interior extremum is then given by (5.19), entirely in analogy with 
the results of Lemma 2. The second variation of (5.17) with respect to g (s) is 

(5.20) P(P-DZ J^XdS 
which is positive for p > 1 and p < 0 and negative for 0 < p < 1. It follows 
that a maximum of (5.15) is attained for p > 1 and p < 0 while a minimum 
is attained for 0 < p < 1. 

https://doi.org/10.4153/CJM-1970-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-050-1


420 G. F. D. DUFF 

For these ranges of p the opposite extremes are however not analogous to 
those of Lemma 2, essentially because we are now considering an integral 
variational problem rather than a finite-dimensional maximum or minimum 
problem. Consider any subset S€ of 5 of measure e, where e > 0, and let 

\e on o — o€, 

where the constant b is bounded independently of e for e small and is chosen 
so that (5.14) holds. (Actually b = -S + e.) 

Then we have 

f gtis)1-* dS = f (- + b)1PdS+ f e'-'dS 

= \-t+b) "e + e^CS - e). 

For p > 1 the second term tends to infinity as e tends to zero. For 0 < p < 1 
the integral is 

0(é>) + 0(e1~2'), 

and hence tends to zero with e. Finally, for p < 0 the first term above tends 
to infinity as e tends to zero. From these cases the infimum of 0 for p > 1, 
p < 0 follows together with the supremum GO for 0 < p < 1 as indicated 
in the lemma. 

The cases p = 0 and p = 1 are trivial, and this completes the proof of 
Lemma 4. 

The main result for functions of m variables may now be stated as follows, 
where b = V = j D d V. 

THEOREM 2. Let f(x) Ç Cl(D), where D is a closed domain in Em, 
x = (xi, . . . , xm), and let f* be the one-dimensional equimeasurable decreasing 
rearrangement of f. Then we have 

(5.2i) £ i/*'(x) r dx ^ £ ^ L ! dVt p^i,pso, 
and the opposite inequality holds for 0 ^ £ ^ 1. 

Remark. Observe that for m > 1 we have only a single inequality for each 
range of values of p. The reason is as stated in the proof of Lemma 4 and can be 
interpreted as follows: The surface measure of the set whereon / takes a given 
value need not have any positive lower bound, whereas in one dimension one 
is the minimal multiplicity. 
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Proof. We may confine attention to the case p > 1, leaving the two similar 
remaining cases to the reader. By Lemma 3 we have 

(5.22) i/*'(x)r = ( z J"-^)1" ^ cz f wrus, 
where C denotes a maximum or least upper bound for the functional c[|Vf|_1] 
of (5.12). By Lemma 4, for p > 1 we have C = S~p. Therefore, from (5.22) 
and (5.7) we find successively 

(5.23) f\f*'(x)\vdx = J i r W r 1 \df\ ^ Js~PZ J IVfr'dSldfl 

which proves the result for p > 1, as required. 
This completes the proof of Theorem 2. The cases of equality are, as before, 

those in which the value of | V/| depends only on the value of / . 

COROLLARY 2.1. Equality holds in Theorem 4 if and only if the level surfaces 
of f form a family of wave fronts, that is, if and only if there exists a function g 
depending only on f and satisfying the eikonal equation 

(5.24) (V£)2 = 1. 

Proof. We suppose that / is not constant in any open set in D, or if so we 
consider only intervals of the range of / not containing such constant values. 
Thus equality holds if and only if the values of | V/| depend only on the values 
of/: that is 

(5.25) (yjy = F{f), 

where F(J) denotes a positive function of / . Define 

(5.26) g(/) = J " V ( s ) r 1 / 2 ^ ; 
then g (J) will satisfy the eikonal equation. 

In the converse case, (5.24) implies (5.25) and hence equality. This com­
pletes the proof. 

By analogy with Corollary 1.2, we have the following result. 

COROLLARY 2.2. For f Ç Cl(D) we have 

(5.27) j m = JBM.dVt 

the common value of these integrals being the measure of the range of f. 
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Proof. Either from the case p = 1 of Theorem 2, or directly as follows: 

(5.28) meas (range/) = j\df\ = j\df\ = Z J JW\ ~ ^ 

Remark. A related formula involves the total variation TV(/) as follows: 

(5.29) TV(f) = J\Vf\dV=jZ JjgljdndS 

= / Z J\df\dS= fs(f*)\df\. 
For the w-dimensional geometric mean 

(5.30) Gm(f) = exp(-^ j log fdVJ , 

we find the following single inequality. 

COROLLARY 2.3. The integral geometric means of Vf and f*' satisfy 

(5.31) Gm(|V/|) fg Gm(S(f))Gi(\f*'D-

Proof. Assuming that the integrals in (5.21) exist for, sufficiently small, 
say, positive p, multiply (5.21) by 1/F, where V = fDdV, take the (l/p)th 
power of each side, and let p —» 0. Then use the geometric mean property 
Gm(\Vf\/S) = Gm(\Vf\)/Gm(S). The one-dimensional geometric mean of 
|/*'| is that defined in (4.12) with b = V. The result is thus proved. A similar 
proof using negative values of p is also available. 

Again we may introduce the concept of a value density function p, where 

(5-32) p(y) = l74)T = EX=,M-
COROLLARY 2.4. For v > 1, 

(5.33) f^YdyzS^pW 
Proof. This follows at once from Theorem 2 for p < 0 with v = — p + 1. 

Generalizations similar to Corollaries 1.5 and 1.6 may also be formulated 
but we shall omit them here. 

6. Sequences. The study of rearranged functions and sequences made in 
[2] indicates a certain analogy between the two. However, this analogy 
cannot be pressed too far; it fails for second differences, and we will show here 
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that it only partially holds for inequalities involving the index or counting 
function n. More precisely, we have the following result (for definitions and 
notation see [2]). 

THEOREM 3. If {ak*}^=i is the decreasing rearrangement of {ak}%=i, Aak = 
ak+i — ak, and if nk* denotes the number of intervals of {ak} that contain the 
open interval (ak*, a*+i), then 

(6.1) Z%*|Aa*T^Z |Aa*rf p * 1, 
A = l k=l 

and the opposite inequality holds for p ^ 1. Equality holds if p = 1, or if all 
pairs (aky ak+i) adjacent in {ak} are also adjacent in {ak*}. 

Proof. Write ak = |Aafc*|, so that a2* = #i* — «i, a3* = ai* — a\ — a2, 
and so on. If ak = a*, ak+i = am* where, for instance, m > /, then 

(6.2) |Aafc| = \am* - a?\ = a? - am* = al + a ï + i + . . . + am_i. 

Observe that for c^ > 0, £ ^ 1, we have 

(6.3) ax + aP
l+i + . . . + «£,_! g («j + aî+1 + . . . + am_i)p, 

while if p < 1 the opposite inequality holds [3, Theorem 16]. In the expression 
for 

N N 

(6.4) £ \Aak\*> = £ (alk + alk+1 + . . . + amk^Y 
fc=i fc=i 

^ X) («ft" + <4+l + • • • + <- i ) . ^ i . 

the total number of times each ak appears will be equal to the number of 
intervals (ak, ak+1) that contain (ah*, a*+i), that is, equal to nh*. Consequently, 
the last sum on the right can be written as 

(6.5) £ nh*ah
v 

and on replacing ah by |Aa/ | we obtain the inequality in the theorem for 
p ^ 1. The proof for p < 1 is essentially the same. 

Note that equality holds in (6.3) only if p = 1 or if there is only one ak. 
The presence of two or more ak in a parenthesis on the right in (6.4) indicates 
that there is an adjacent pair (ak, ak+i) in {ak} that are not adjacent in the 
rearranged sequence {ak*}. This completes the proof of the theorem. 

Although this result appears formally less strong than the theorem for 
integrals, it is evidently the best possible of its kind being sharp in the cases 
of equality just mentioned. 

7. The equivariational transform. We now introduce another function 
related to the equimeasurable decreasing rearrangement/* of a given function/ 
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of one real variable x. The variation of this new function F is proportional 
to the multiplicity index n: thus 

(7.1) dF = ndf* = -n\df\. 

The domain of F is identical with the domain of /*. To normalize we set 
F(b) = 0, thus F(x) =jln\df*\. In particular, by (4.11), 

(7.2) F(0) = fn\df\ = fn\df\ = TV(/) . 

Since the total variation TV(F) is thus equal to TV(/ ) , we shall call F the 
equivariational transform of / . Note that F, having in general a wider range, 
is not a rearrangement of / . 

The most immediate property of the equivariational transform is the follow­
ing arc length property. Suppose t h a t / is rectifiable on [0, b]. 

THEOREM 4. The arc length of the curve y = F(x) is less than or equal to the 
arc length of the curve y = f(x). Equality holds in the same cases as in Theorem 1. 

Proof. Denote the n roots of f{x) = y by X j , . . . , Xfit i n decreasing order. 
Then 

(7.3) x* = xi — x2 + xz — xé + . . . 
or 

x* = b — Xi + x2 — x3 + . . . 

and for definiteness we may assume (7.3) without loss of generality. In this 
proof we employ a modified version of a technique used in [4, p. 183]. 

For k = 1, . . . , n we construct the two-component vector 

(7.4) ^ . = ( l , ( - l ) * - 1 ^ ) . 

Then 

(7.5) ^=Sp*-("'êE ( - i r l x*) = (»'f)-
By the triangle property of the Euclidean vector norm we have 

(7.6) k*l=sÈkl. 
k=i 

that is 

(«•+(f)7"4,Mt)r 
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Consequently, the arc length expression for the curve y = F(x) becomes 

-/(-•+(f)r**/so+(t)r* 
This completes the proof of Theorem 4. 

A similar proof will hold for any vector norm, not necessarily Euclidean, 
since the properties assumed for the norm are homogeneity of the first degree 
||cze;|| = \c\ \\w\\y as well as the triangle inequality. Denote by sgn x the 
quantity 

1, x > 0, 
(7-9) sgnx i-i, *<o 

COROLLARY 4.1. Given the vectors 

<™> - ( £ . - £ ) • — (g-0-
we have 

||w*||<foe* g | |w| |*c. 
0 «^ 0 

The proof is omitted. 

A different type of result, involving convex functions of F', can be found by 
adapting a particular case of the reasoning of Theorem 1. Observe that, by (2.3), 

df* 
~W\£I/(*OI/ ' 

(7.12) \F'{x)\ = nHx 

The expression on the right will be majorized by K YHl=i \f (%k)\ provided that 

{(m-4'(EvkfT} K = n • max 

From the case p = 2 of Lemma 2, we find that K = 1/n. Together with (7.12) 
this implies 

1 n 

(7.i3) m*)i ̂ £ E ir(*.)i. 
Now let ^ (s ) be an increasing, convex function. Then, using these two 

properties in succession, we find 

(7.14) *(|**(*)|) Ik vfe t l/'(**)|) ^ I > (!/'(**) I). 
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Multiplying by \dF\ = n\df\, we obtain 

(7.i5) *(\F(x)\)\dF\ ^ £ mnxt)\)w\. 

Integrating this inequality over the appropriate ranges for each side, we find 
an inequality that can be written 

(7.16) J*(|F'(*)|)|F'(*)| dx Û J*(|/'(*)|)!/'(*)| dx. 
Thus we have established the following result. 

THEOREM 5. Let ^'(s) ^ 0, \F"(s) ^ 0, and let ${s) = s^(s), where s > 0. 
Then 

(7.17) fH\F'(x)\)dx^ /$(|f (x)\)dx. 

Note that Corollary 1.2 for p ^ 2 can be obtained from Theorem 5 by the 
particular choice ^(s) = sp_1. The arc length function of Theorem 4, however, 
does not satisfy the conditions of Theorem 5. 

A generalization to convex functions of Theorem 4, or rather of Corollary 4.1, 
can be established by the following argument. Assuming again (7.4), (7.5), 
and (7.10), and letting V (s) > 0, *" (s) > 0, we have 

(7.18) J lKI I* (-™*~) dx = J\1*;*||* ( ~ ) dy 

^J(tjwi)(ti*(iwi))^ 
Setting \\vk\\ = ak, SF(||»j||) = fih we see that the integrand is of the form 

(7.19) ;- £ atf,. 
n k,i=i 

Since ^ is an increasing function, the ordering of the ak and 0Z in decreasing 
order is the same, and without loss of generality wre may suppose that 
«i ^ «2 ^ . . . ^ otn, and 0i ̂  02 ^ . . . ^ Pn. Write 

^ akpt = «i0i + a2(32 + . . . + a A 
+ «102 + «203 + . . . + «njSi 

+ «103 + «204 + . . . + «„02 

+ «10rc + «201 + . . • + « A - l 

and observe that, by [3, p. 261, Theorem 368], each group of n terms in one of 
the above rows is less than or equal to the group in the first row. Hence 

1 w n 

(7.20) - £ a*?, S E «*&• 
1îk,l=l k=l 
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The integrals in (7.18) therefore do not exceed 

(7.2i) fziHI*(lkl l)^ = fèlWI*(IMI)<&*= flMI*(IMI)<fc. 
We have thus proved the following result. 

THEOREM 6. If v, v*, w, w* are as defined by (7.4), (7.5), and (7.10), and if 
*'(s) > 0, *"(s) > 0, then 

(7.22) J l l ^ l l ^ f - ^ ) ^ ^ j\\w\\*(\\v\\)dx. 

In a similar way we can establish under the same conditions the following 
related inequality: 

(7.23) j||w*||¥(||fl*||) dx g / I H I ^ W M I ) dx. 

8. Equivariational transforms of functions of several variables. Let 
/ = f(xu • • • , Xm) be defined on a domain D as in § 5, and suppose that 
/ £ Cl(D). Our definition of the equivariational transform F = F{r) of / 
will be based on preservation of the total variation 

(8.1) TV(/) = J"i>|V/| dV, dV = dxi... dxmi 

introduced in (5.29). 
Assuming spherical symmetry in Em for F, we set 

(8.2) œmr™-idF(r) = S(f)\df\, 

where S(y) denotes the total surface area of the section f(x\, . . . , xm) = yf 

as in (5.16). We normalize the additive constant in F by setting F(R) = 0, 
where 

UmR™-1 = f dV= V(D). 

By (5.6) we have 

(8.3) J |V/| dV = J JW\ dSdn = j J\df\ dS. 
Since / is constant on each level surface, this integral may in view of (8.2) 
be expressed as 

(8-4) j\df\ JdS = J S (J) \df\ = - £ F'(r)umrm-Xdr. 

As F is spherically symmetric and decreasing in r, we have —F'(r) = \VF\, 
so that the expression becomes 

(8.5) f |VF| dVr, dVT = œ^-'dr. 
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Thus the total variations of / and F are equal, as suggested by the term 
equivariational transform. 

THEOREM 7. / / 2 is the surface area of y = f(xi, . . . . xm) and 2* the surface 
area of y* = F(r) in Em X E1, then 

(8.6) 2* ^ 2. 

Proof. We have, since F — F(r), 

(8.7) 2* = f (1 + (F(r))2)1 / 2 a w ^ d r = wm ( " V " 1 ^ 2 + (dj>*)2)1/2. 
«Jo «Jo 

Observe that 

(8.8) dV = dSdn 

and from the equivariational property of F note that 

(8.9) 03mrm~Hy* = S(y)\dy\. 

At a typical point P on a level surface consider the vector 

(8.10) vv = (dy,dn) 

and its vector integral over the level surface, namely 

J *s(v) ps(v) 

vv> dSv> = (dy, dn) dSv> 
o «Jo a S(y) nS(y) \ 

dydSp; J dndSp>) = (5(y)dy, AV). 
Note that in the first component dy is constant along the level surface, and 
that AV denotes the integral over the level surface of the volume elements 
dn dSv> = dV as in (8.8). Observe that from the definition (5.1) of fi we have 

(8.12) AV = umrm-ldr. 

Hence 

(8.13) V(y) = (S(y)dy, aw*- 1 dr) 

and from (8.9) we now find 

(8.14) V(y) = c o ^ ! ^ - 1 ^ * , ^ ) . 

Since with the Euclidean vector norm we have 

(8.15) |V(y)| = I J v < ^ | ^ J l v l ^ 

it follows that 

(8.16) 2* = J V(y) ^ J J |vl ^ = J J l ( ^ , *0 | dSp>. 
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But the magnitude of (dy, dn) is ds, the hypotenuse of the infinitesimal 
right triangle that forms a cross-section of the level surface diagram in 
Em X E1, and which lies on the surface y = f{x\, . . . , xm). Assuming smooth­
ness, we now observe that the surface element dl, may be expressed as 

(8.17) d^ = dsdSP>. 

Thus, finally, from (8.16) and (8.17) we find 

(8.18) 2* S J J ds dSv, = / / d2 = 2. 

This completes the proof of the theorem. Note that the one-dimensional case 
would yield a two-sided or symmetrical rearrangement version of Theorem 4. 

A corresponding inequality for the surface area of y = /* (r) is given by 
Pôlya and Szegô in [4, p. 194]. The two results are not directly dependent one 
upon the other, since the level surface areas S(y) may be large or small. 
Thus Pôlya and Szegô consider an annular domain in order that a lower 
bound should be placed on S(y). 

We shall conclude by establishing a many-variable version of Theorem 5. 

THEOREM 8. Let ¥'(5) è 0, ^"(s) ^ 0 and let $(s) = sStr(s), where s > 0. 
Then 

(8.19) J$(|F'(r)!) dVr è J*(|V/|) dV. 

Proof. Since dp = dV = umrm~ldr, we have, by (8.2), 

\dfm*\ (8.20) mo i «w 
TO—-1 

= SOO 14» | 
\dF{r)\ 

Here fm denotes the w-dimensional rearrangement, as described at the 
beginning of § 5. Introducing / i* we see that 

(8.21) I TO I = S(y) dfi 
dx* 

= S(y) 
( rSM dsY1 

Uo IV/I/ 
by Lemma 3. 

Applying the procedure following (7.12) that was used in the proof of 
Theorem 5 we find, in analogy to (7.13), that 

(8.22) \F'(r)\ g 
S(y) 

f lv/1 dS. 

Since ^ is assumed increasing and convex, we have 

(8.23) n\F'(r)\) Ï * ( ^ J ' |V/| ds) ^ - J - J%(|V/|) <ZS; 

this last step is the continuous generalization of the usual finite formulation 
of the convexity property [3, p. 72]. 
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Applying (8.2) once again we find, by (5.6), 

(8.24) ^mrm~^{\F{r)\) \dF{r)\ g J % ( | V / | ) dS^&dn 

-r 
\dr, 

*(\Vf\)\Vf\dSdn. 

As integration over r on the left corresponds to integration over all level 
surfaces on the right, and since dV = dSdn, we find 

(8.25) j\mrm-^(\F'(r)\) \F'(r)\ dr ^ j J* ( |V/ | ) |V/ | dV. 

Denoting by dV7 = umrm~l dr the volume element in the rearranged domain, 
we obtain (8.19). This concludes the proof of Theorem 8. 

If the inequalities for SF' and ty" in Theorems 5 and 8 are strict, then 
equality will hold in these theorems under the same circumstances as in 
Theorems 1 and 2, respectively. 

Acknowledgement. I wish to acknowledge with thanks the helpful comments 
and suggestions of W. A. J. Luxemburg and P. Scherk. 

REFERENCES 

1. S. Banach, Sur les lignes rectifiables et les surfaces dont l'aire est fini, Fund. Math. 7 (1925), 
224-236. 

2. G. F . D. Duff, Differences, derivatives, and decreasing rearrangements, Can. J. Math. 19 
(1967), 1153-1178. 

3 . G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed. (Cambridge, at the 
University Press, 1952). 

4. G. Pôlya and G. Szego, Isoperimetric inequalities in mathematical physics, Annals of Mathe­
matics Studies, no. 27 (Princeton Univ. Press, Princeton, N.J., 1951). 

5. J. V. Ryff, Measure preserving transformations and rearrangements (to appear). 
6. A. Zygmund, Trigonometric series, 2nd éd., Vol. II (Cambridge Univ. Press, New York, 

1959). 

University of Toronto, 
Toronto, Ontario 

https://doi.org/10.4153/CJM-1970-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-050-1

