Vol. 54 (1996) [267-274]

THE SELMER GROUPS AND THE AMBIGUOUS IDEAL CLASS GROUPS OF CUBIC FIELDS
 Yen-Mei J. Chen

In this paper, we study a family of elliptic curves with CM by $\mathbb{Q}(\sqrt{-3})$ which also admits a \mathbb{Q}-rational isogeny of degree 3 . We find a relation between the Selmer groups of the elliptic curves and the ambiguous ideal class groups of certain cubic fields. We also find some bounds for the dimension of the 3 -Selmer group over \mathbb{Q}, whose upper bound is also an upper bound of the rank of the elliptic curve.

0 . Introduction

Let D be a cube-free integer. We consider the elliptic curve

$$
E / \mathbb{Q}: y^{2}=x^{3}+D^{2}
$$

which has j-invariant 0 and has complex multiplication $\pi=\sqrt{-3}$. More precisely, π is the endomorphism

$$
\begin{aligned}
\pi: E / \mathbb{Q} & \longrightarrow E / \mathbb{Q} \\
\quad(x, y) & \mapsto\left(-\frac{x^{3}+4 D^{2}}{3 x^{2}},-\frac{y\left(x^{3}-8 D^{2}\right)}{3 \sqrt{-3} x^{3}}\right) .
\end{aligned}
$$

We set the following notation.

$$
\begin{aligned}
S_{1} & =\{p \text { prime }: p \mid D \text { and } p \equiv 1 \bmod 3\} \\
S_{2} & =\{p \text { odd prime }: p \mid D \text { and } p \equiv 2 \bmod 3\} \\
l_{1} & =\left|S_{1}\right| \\
l_{2} & =\left|S_{2}\right| \\
k & =\mathbb{Q}(\omega), \omega=\frac{1+\sqrt{-3}}{2} \\
K & =k(\sqrt[3]{2 D}) \\
U_{k} & =\text { the group of units of } k \\
U_{K} & =\text { the group of units of } K \\
C_{K} & =\text { the } 3 \text {-class group of } K \\
C_{K}^{(r)} & =\left\{a \in C_{K}: a^{\tau}=a\right\},
\end{aligned}
$$

[^0]where τ is a generator of the Galois group of the field extension K / k and $C_{K}^{(\tau)}$ is called the ambiguous ideal class group of K / k. We first define a map
$$
\Psi: S^{(\pi)}(E / k) \longrightarrow C_{K}^{(\tau)}
$$
then we can obtain an upper bound of the rank of the Selmer group $S^{(3)}(E / \mathbb{Q})$ by using the theorem of Gerth [3] which gives an explicit computation of the rank of the group $C_{K}^{(\tau)}$. On the other hand, we can obtain a lower bound by using the duality theorem of Cassels [1]. More precisely, we can obtain the following inequalities:
$$
l_{2}+\varepsilon_{2}-3 \leqslant \operatorname{dim}_{\mathbb{T}_{3}} S^{(3)}(E / \mathbb{Q}) \leqslant 2 l_{1}+l_{2}-\varepsilon_{1}+1
$$
where ε_{1} and ε_{2}, both depending on D, are integers 0,1 , or 2 . For the family of curves $E / \mathbb{Q}: y^{2}=x^{3}+D^{3}$, Frey [2] showed that the rank of the Selmer group of a 3-isogeny is closely related to the class number of the quadratic field $\mathbb{Q}(\sqrt{D})$. Also Jan Nekevár [4] proved some analogous results for the elliptic curve given by $D y^{2}=4 x^{3}-27$ which is isomorphic to the curve given by $y^{2}=x^{3}-432 D^{3}$. Our result gives explicit bounds for the dimension of $S^{(3)}(E / k)$ and implies that the dimension can be arbitrarily large.

1. The Selmer Group $S^{(\pi)}(E / k)$

Definition: Let F be a number field and let $\phi: E / F \rightarrow E^{\prime} / F$ be an isogeny defined over F. Then the ϕ-Selmer group of E / F is the subgroup of $H^{1}\left(G_{\bar{F} / F}, E[\phi]\right)$ defined by

$$
S^{(\phi)}(E / F) \stackrel{\text { def }}{=} \operatorname{ker}\left\{H^{1}\left(G_{\bar{F} / F}, E[\phi]\right) \rightarrow \prod_{v \in M_{F}} H^{1}\left(G_{\bar{F}_{v} / F_{v}}, E\right)\right\}
$$

Observe that the map $\pi: E / \mathbb{Q} \longrightarrow E / \mathbb{Q}$ given as above is defined over k but not over \mathbb{Q} and that $E[\pi]$ is isomorphic to μ_{3} as a $\operatorname{Gal}(\bar{k} / k)$-module, and thus we have

$$
H^{1}\left(G_{\bar{k} / k}, E[\pi]\right) \cong k^{*} / k^{* 3}
$$

Given an element $d \in \boldsymbol{k}^{*}$, it corresponds to the homogeneous space of E which can be given by

$$
C_{d}: d x^{3}+d^{2} y^{3}=2 D z^{3}
$$

Then such d will be an element of the Selmer group $S^{(\pi)}(E / k)$ provided that C_{d} admits a k_{v}-rational point for all $v \in M_{k}$. For any such d, since $2 D$ is a perfect cube in K
the principal divisor (d) must be a cube of some divisor in K, say $(d)=\mathfrak{a}^{3}$. It is clear that $\mathfrak{a}^{\tau}=\mathfrak{a}$, so $\mathfrak{a} \in C_{K}^{(\tau)}$. Thus we can define a homomorphism

$$
\Psi: S^{(\pi)}(E / k) \longrightarrow C_{K}^{(\tau)}
$$

by $\Psi(d)=a$. Then it is clear that $\operatorname{ker} \Psi=U_{K} \cdot K^{* 3} \cap k^{*} / k^{* 3}$. Note that Ψ induces two maps

$$
\begin{aligned}
& \Psi^{+}: S^{(\pi)}(E / k)^{+} \longrightarrow C_{K}^{(\tau)^{+}} \\
& \Psi^{-}: S^{(\pi)}(E / k)^{-} \longrightarrow C_{K}^{(\tau)^{-}}
\end{aligned}
$$

where + and - refer to the action of $\operatorname{Gal}(k / \mathbb{Q})$. Observe that all of the groups mentioned above are \mathbb{F}_{3}-vector spaces.

Lemma 1.1. (Gerth)
(a) $\operatorname{dim}_{\mathbb{P}_{3}} C_{K}^{(\tau)}=2 l_{1}+l_{2}-\varepsilon_{1} ;$
(b) $\operatorname{dim}_{\mathbb{F}_{3}} C_{K}^{(\tau)^{+}}=l_{1}$;
(c) $\operatorname{dim}_{\mathbb{F}_{3}} C_{K}^{(\tau)^{-}}=l_{1}+l_{2}-\varepsilon_{1}$;
where ε_{1} (depending on D) is 0,1 or 2 .
Proof: See [3].
Lemma 1.2.
(a) $\operatorname{dim}_{\mathbb{R}_{3}} S^{(\pi)}(E / k) \leqslant \operatorname{dim}_{\mathbb{F}_{3}} C_{K}^{(\tau)}+2$.
(b) $\operatorname{dim}_{\mathbb{\mathbb { T }}_{3}} S^{(\pi)}(E / k)^{+} \leqslant \operatorname{dim}_{\mathbb{R}_{3}} C_{K}^{(\tau)}+1$.
(c) $\operatorname{dim}_{\mathbb{F}_{3}} S^{(\pi)}(E / k)^{-} \leqslant \operatorname{dim}_{\mathbb{F}_{3}} C_{K}^{(\tau)^{-}}+1$.

Proof: (a) We already see that Ψ is a homomorphism from $S^{(\pi)}(E / k)$ to $C_{K}^{(r)}$ with $\operatorname{ker} \Psi=U_{K} \cdot K^{* 3} \cap k^{*} / k^{* 3}$. Since $U_{K} \cdot K^{* 3} \cap k^{*}=U_{k} \cdot K^{* 3} \cap k^{*}$, we have $U_{K} \cdot K^{* 3} \cap k^{*} / k^{* 3}=\left\{1,2 D, 4 D^{2}\right\} \cdot U_{k} \cdot k^{* 3} / k^{* 3}$. The Dirichlet Unit Theorem implies that $U_{k}=\mu_{6}$. Hence $\operatorname{dim}_{\mathbb{F}_{3}} \operatorname{ker} \Psi=2$ and and thus we have

$$
\operatorname{dim}_{\mathbb{P}_{3}} S^{(\pi)}(E / k) \leqslant \operatorname{dim}_{\mathbb{T}_{3}} C_{K}^{(\tau)}+2 .
$$

(b) Observe that $\operatorname{ker} \Psi^{+}$is generated by $\{2 D\}$, and thus $\operatorname{dim}_{\mathbb{F}_{3}} \operatorname{ker} \Psi^{+}=1$. Therefore (b) holds.
(c) Similar to (b) except that $\operatorname{ker} \Psi^{-}$is generated by $\{\omega\}$.

Proposition 1.3.
(a) $\operatorname{dim}_{\bar{T}_{3}} S^{(\pi)}(E / k) \leqslant l_{1}+l_{2}-\varepsilon_{1}+2$.
(b) $\operatorname{dim}_{r_{3}} S^{(\pi)}(E / k)^{+} \leqslant l_{1}+1$.
(c) $\operatorname{dim}_{\mathbf{r}_{3}} S^{(\pi)}(E / k) \leqslant l_{1}+l_{2}-\varepsilon_{1}+1$.

Proof: Follows immediately from Lemma 1.1 and Lemma 1.2.

2. The Selmer Group $S^{(3)}(E / k)$

Recall that $\pi^{2}=-3$, so we have the following exact sequence

$$
0 \longrightarrow E[\pi] \hookrightarrow E[3] \xrightarrow{\pi} E[\pi] \longrightarrow 0 .
$$

Taking Galois cohomology as $G_{K / k}, G_{\bar{k} / k}$, and $G_{\bar{K} / K^{\prime}}$-modules respectively, we know that each row of the following commutative diagram is exact except at the end. Since we can view $G_{\bar{K} / K}$ as a subgroup of $G_{\bar{k} / k}$, the Inf-Res sequence implies that each column is also exact.

$$
\begin{aligned}
& \begin{array}{lll}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& 0 \rightarrow E[\pi] \rightarrow H^{1}\left(G_{K / k}, E[\pi]\right) \rightarrow H^{1}\left(G_{K / k}, E[3]\right) \xrightarrow{\tilde{\pi}} H^{1}\left(G_{K / k}, E[\pi]\right) \xrightarrow{\xrightarrow{\rightarrow}} 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(G_{\bar{K} / K}, E[\pi]\right)^{G_{K / k}} \rightarrow H^{1}\left(G_{\bar{K} / K}, E[3]\right)^{G_{K / k}} \stackrel{\tilde{\pi}}{\rightarrow} H^{1}\left(G_{\bar{K} / K}, E[\pi]\right)^{G_{K / k}} \xrightarrow{\xrightarrow[?]{\rightarrow}} 0 \\
& \downarrow \downarrow \\
& 0 \rightarrow H^{2}\left(G_{K / k}, E[\pi]\right) \rightarrow H^{2}\left(G_{K / k}, E[\pi]\right) \rightarrow H^{2}\left(G_{K / k}, E[\pi]\right) \rightarrow \cdots \\
& \begin{array}{ccc}
\downarrow & \downarrow & \downarrow \\
\vdots & \vdots & \vdots
\end{array}
\end{aligned}
$$

By routine computations, we have the following equalities:

$$
\begin{aligned}
& H^{1}\left(G_{K / k}, E[\pi]\right) \cong H^{2}\left(G_{K / k}, E[\pi]\right) \\
& H^{1}\left(G_{K / k}, E[3]\right) \cong H^{2}\left(G_{K / k}, E[3]\right) \cong \mathbb{Z} \\
& \cong \mathbb{Z} / 3 \mathbb{Z}
\end{aligned}
$$

Then it is clear that the first row is exact. Note that $E[3]$ is isomorphic to $\mu_{3} \times \mu_{3}$ as a Gal (\bar{K} / K)-module; thus we have

$$
H^{1}\left(G_{\bar{K} / K}, E[3]\right) \cong K^{*} / K^{* 3} \times K^{*} / K^{* 3}
$$

The third row is equivalent to the following exact sequence, and therefore it is exact.

$$
\begin{aligned}
0 \longrightarrow K^{*} / K^{* 3} & \longrightarrow K^{*} / K^{* 3} \times K^{*} / K^{* 3} \\
a & \longrightarrow(a, 1)
\end{aligned}
$$

Combining all the observations above, we have the following lemma:

Lemma 2.1. The \mathbb{F}_{3}-dimension of the cokernel of the map

$$
\tilde{\pi}: H^{1}\left(G_{\bar{k} / k}, E[3]\right) \rightarrow H^{1}\left(G_{\bar{k} / k}, E[\pi]\right)
$$

is less than or equal to 1 .
Proposition 2.2. The \mathbb{F}_{3}-dimension of the cokernel of the map

$$
\widetilde{\pi}: S^{(3)}(E / k) \longrightarrow S^{(\pi)}(E / k)
$$

is less than or equal to 2 .
Proof: Given arbitrary $a \in S^{(\pi)}(E / k)$ - in other words the corresponding homogeneous space is locally trivial everywhere - it is easy to check that at least one of $a, 2 D a, 4 D^{2} a$ is locally a cube everywhere except at $v, v \mid 3$. If a is in the image of the map $\widetilde{\pi}: H^{1}\left(G_{\bar{k} / k}, E[3]\right) \rightarrow H^{1}\left(G_{\bar{k} / k}, E[\pi]\right)$ and it is locally a cube at $v, v \mid 3$, then $(1, a) \in S^{(3)}(E / k)$ and $\tilde{\pi}((1, a))=a$. It is easy to see that given a finite set T of indepedent elements in $k^{*} / k^{* 3}$ one can find another set T^{\prime} such that T and T^{\prime} generate the same subgroup in $k^{*} / k^{* 3}$ and every element in T^{\prime} is a cube at $v, v \mid 3$ with at most one exception. Therefore Lemma 2.1 implies that the \mathbb{F}_{3}-dimension of the cokernel of the map $S^{(3)}(E / k) \xrightarrow{\tilde{\pi}} S^{(\pi)}(E / k)$ is less than or equal to 2.

Corollary 2.3. Assume that $\amalg(E / k)\left[3^{\infty}\right]$ is finite. Assume that either D is not divisible by 3 or D is divisible by 9 . Then the sequence

$$
0 \rightarrow E[\pi] \rightarrow S^{(\pi)}(E / k) \rightarrow S^{(3)}(E / k) \xrightarrow{\widetilde{\pi}} S^{(\pi)}(E / k) \rightarrow 0
$$

is exact.
Proof: It suffices to show that

$$
S^{(3)}(E / k) \xrightarrow{\tilde{\pi}} S^{(\pi)}(E / k) \rightarrow 0
$$

is exact. Given arbitrary $a \in S^{(\pi)}(E / k)$, the second hypothesis implies that a is locally a cube at $v, v \mid 3$. Thus $(1, a) \in S^{(3)}(E / k)$ and $\widetilde{\pi}((1, a))=a$. Again according to Lemma 2.1, we know that \mathbb{F}_{3}-dimension of the cokernel of the map $S^{(3)}(E / k) \xrightarrow{\widetilde{\pi}}$ $S^{(\pi)}(E / k)$ is less than or equal to 1 . Now the first hypothesis implies that $S^{(3)}(E / k) \xrightarrow{\tilde{\pi}}$ $S^{(\pi)}(E / k)$ is surjective if and only if $\operatorname{dim}_{\Omega_{3}} S^{(3)}(E / k)$ is odd. Therefore we need the following lemma to complete the proof.

LEMMA. $\operatorname{dim}_{\bar{r}_{3}} S^{(3)}(E / k)$ is odd.
Proof: 1^{0} There is an exact sequence

$$
0 \longrightarrow E(k) / 3(E(k)) \longrightarrow S^{(3)}(E / k) \longrightarrow \amalg(E / k)[3] \longrightarrow 0
$$

which implies $\operatorname{dim}_{\mathbb{T}_{3}} S^{(3)}(E / k)$ and $\operatorname{dim}_{\mathbb{I}_{3}} E(k) / 3(E(k))$ have the same parity, thus it suffices to show that $\operatorname{dim}_{\mathbb{E}_{3}} E(k) / 3(E(k))$ is odd.
2^{0} Consider the following sequence:

$$
\begin{gathered}
0 \longrightarrow E(\mathbb{Q}) \xrightarrow{\alpha} E^{\prime}(k) \xrightarrow{\beta} E^{\prime}(\mathbb{Q}) \longrightarrow 0 \\
(x, y) \mapsto P=(-3 x,-3 \sqrt{-3 y}) \mapsto P+P^{\sigma}
\end{gathered}
$$

where E^{\prime} is given by $E^{\prime} / \mathbb{Q}: y^{2}=x^{3}-27 D^{2}$ and is isogeneous to the original curve E. We claim that the sequence is exact. It is clear that α is injective and that $\operatorname{ker} \beta=\operatorname{im} \alpha$. We show that β is surjective. Given any point $Q=(x, y) \in E^{\prime}(\mathbb{Q})$, then $P=(x \omega,-y)$ and $P^{\sigma}=\left(x \omega^{2},-y\right)$ are both k-rational points. By an easy computation, we have $Q=P+P^{\sigma}=\beta(P)$, and so β is surjective.

Since the group $E^{\prime}(\mathbb{Q})$ is torsion-free and finitely generated, it is a projective \mathbb{Z} module, and thus the above sequence splits. By taking tensor products with the group $\mathbb{Z} / 3 \mathbb{Z}$, we obtain another exact sequence

$$
0 \rightarrow E(\mathbb{Q}) / 3 E(\mathbb{Q}) \rightarrow E^{\prime}(k) / 3 E^{\prime}(k) \rightarrow E^{\prime}(\mathbb{Q}) / 3 E^{\prime}(\mathbb{Q}) \rightarrow 0
$$

Therefore we have

$$
\begin{align*}
\operatorname{dim}_{\mathbb{F}_{3}} E(k) / 3(E(k)) & =\operatorname{dim}_{\mathbb{F}_{3}} E(\mathbb{Q}) / 3 E(\mathbb{Q})+\operatorname{dim}_{\mathbb{F}_{3}} E^{\prime}(\mathbb{Q}) / 3 E^{\prime}(\mathbb{Q}) \\
& =2 \operatorname{dim}_{\mathbb{F}_{3}} E^{\prime}(\mathbb{Q}) / 3 E^{\prime}(\mathbb{Q})+1
\end{align*}
$$

(Since $E_{\text {tors }}(\mathbb{Q}) \cong \mathbb{Z} / 3 \mathbb{Z}$ and $\operatorname{rank}(E(\mathbb{Q}))=\operatorname{rank}\left(E^{\prime}(\mathbb{Q})\right)$.)

3. Bounds for The Dimension of The Selmer Group $S^{(3)}(E / \mathbb{Q})$

Now we turn to consider the 3 -isogeny

$$
\begin{aligned}
\lambda: E / \mathbb{Q} & \longrightarrow E^{\prime} / \mathbb{Q} \\
(x, y) & \mapsto\left(\frac{x^{3}+4 D^{2}}{x^{2}}, \frac{y\left(x^{3}-8 D^{2}\right)}{x^{3}}\right)
\end{aligned}
$$

and its dual

$$
\begin{aligned}
\hat{\lambda}: E^{\prime} / \mathbb{Q} & \longrightarrow E / \mathbb{Q} \\
\quad(x, y) & \mapsto\left(\frac{x^{3}+4 D^{2}}{81 x^{2}}, \frac{y\left(x^{3}-216 D^{2}\right)}{729 x^{3}}\right)
\end{aligned}
$$

Then we can identify

$$
\begin{aligned}
& S^{(\lambda)}(E / \mathbb{Q})=S^{(\pi)}(E / k)^{+}, S^{(\hat{\lambda})}\left(E^{\prime} / \mathbb{Q}\right)=S^{(\pi)}(E / k)^{-} \\
& S^{(3)}(E / \mathbb{Q})=S^{(3)}(E / k)^{+}
\end{aligned}
$$

Denote the dimensions of $S^{(\lambda)}(E / \mathbb{Q}), S^{(\hat{\lambda})}\left(E^{\prime} / \mathbb{Q}\right), S^{(3)}(E / \mathbb{Q})$ by s, s^{\prime}, t respectively. Now we state the duality theorem of Cassels, which will be used latter.

Theorem. (Cassels [1])

$$
\frac{\left|S^{(\lambda)}(E / \mathbb{Q})\right|}{\left|S^{(\lambda)}\left(E^{\prime} / \mathbb{Q}\right)\right|}=\frac{\left|E_{\text {tors }}(\mathbb{Q})\right|}{\left|E_{\mathrm{tors}}^{\prime}(\mathbb{Q})\right|} \cdot \prod_{p} \frac{c_{p}^{\prime}}{c_{p}} \cdot \frac{\int_{E^{\prime}(\mathbb{R})}\left|\omega_{\min }^{\prime}\right|_{\infty}}{\int_{E(\mathbb{Q})}\left|\omega_{\min }\right|_{\infty}} .
$$

Lemma 3.1. $s-s^{\prime}=-l_{2}-\varepsilon_{2}$ where ε_{2} depending on D is $-2,-1,0$ or 1 .
Proof: 1^{0} By elementary calculation,

$$
\frac{\int_{E^{\prime}(\mathbb{R})}\left|\omega_{\min }^{\prime}\right|_{\infty}}{\int_{E(\mathbb{R})}\left|\omega_{\min }\right|_{\infty}}=\frac{1}{3} .
$$

2^{0} By using the Tate's algorithm [5], we can obtain the following equalities :

$$
\text { if } p \nmid 6 D, c_{p}=c_{p}^{\prime}=1 ; \quad \text { if } p \mid D, p \neq 2,3, \quad \frac{c_{p}}{c_{p}^{\prime}}= \begin{cases}3 & \text { if } p \equiv 2 \bmod 3, \\ 1 & \text { if } p \equiv 1 \bmod 3 ;\end{cases}
$$

$$
\frac{c_{2}}{c_{2}^{\prime}}=\left\{\begin{array}{ll}
3 & \text { if } D \text { is odd }, \\
1 & \text { if } D \text { is even ; }
\end{array} \quad \frac{c_{3}}{c_{3}^{\prime}}= \begin{cases}3 & \text { if } 3 \mid D, \\
1 & \text { if } D \equiv 1,2,4,8 \bmod 9 \\
\frac{1}{3} & \text { if } D \equiv 5,7 \bmod 9\end{cases}\right.
$$

By combining all the above equalities, Lemma 3.1 will follow.
Finally, we obtain an upper bound and a lower bound for the dimension of the Selmer group $S^{(3)}(E / \mathbb{Q})$.

Proposition 3.2. $l_{2}+\varepsilon_{2}-3 \leqslant t \leqslant 2 l_{1}+l_{2}-\varepsilon_{1}+1$
Proof: 1^{0} According to Proposition 2.2 we already know that the sequence

$$
0 \rightarrow E[\pi] \rightarrow S^{(\pi)}(E / k) \rightarrow S^{(3)}(E / k) \stackrel{\tilde{\pi}}{\rightarrow} S^{(\pi)}(E / k)
$$

is exact and dim coker $\tilde{\pi} \leqslant 2$. By considering the $\operatorname{Galois} \operatorname{group} \operatorname{Gal}(k / \mathbb{Q})$ acting on each group, we obtain another exact sequence

$$
0 \rightarrow E[\lambda] \rightarrow S^{(\lambda)}(E / \mathbb{Q}) \rightarrow S^{(3)}(E / \mathbb{Q}) \xrightarrow{\widetilde{\lambda}} S^{(\tilde{\lambda})}\left(E^{\prime} / \mathbb{Q}\right)
$$

with $\operatorname{dim} \operatorname{coker} \tilde{\lambda} \leqslant 2$. Thus

$$
s+s^{\prime}-3 \leqslant t \leqslant s+s^{\prime}-1 .
$$

2^{0} By combining Lemma 3.1 and Proposition 1.3, we have

$$
l_{2}+\varepsilon_{2}-3 \leqslant t \leqslant 2 l_{1}+l_{2}+\varepsilon_{1}+1 .
$$

Thus the proposition holds.

References

[1] J.W.S. Cassels, 'Arithmetic on Curves of Genus 1', J. Reine Angew. Math. 217 (1965), 180-199.
[2] G. Frey, 'Die Klassgruppe Quadratischer und Kubischer Zahlkörper und die Selmer Gruppen Gewisser Elliptische Kurven', Manuscripta Math. 16 (1975), 333-362.
[3] F. Gerth, 'On 3-class groups of pure cubic fields', J. Reine Angew. Math. 278/279 (1975), 52-62.
[4] J. Nekevář, 'Class number of quadratic fields and Shimura's correspondence', Math. Ann. 287 (1990), 577-594.
[5] J. Tate, 'Algorithm for determining the type of a singular fiber in an elliptic pencil', in Lecture Notes Mathematics 476 (Springer-Verlag, Berlin, Heidelberg, New York, 1975), pp. 33-52.

Department of Mathematics
Tamkang University
Tamshui, Taipei 25137
Taiwan
Republic of China
e-mail: ymjchen@mail.tku.edu.tw

[^0]: Received 1st November, 1995.

