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THE SELMER GROUPS AND THE
AMBIGUOUS IDEAL CLASS GROUPS OF CUBIC FIELDS

YEN-MEI J. CHEN

In this paper, we study a family of elliptic curves with CM by Q(y/—3) which also
admits a Q-rational isogeny of degree 3. We find a relation between the Selmer
groups of the elliptic curves and the ambiguous ideal class groups of certain cubic
fields . We also find some bounds for the dimension of the 3-Selmer group over Q,
whose upper bound is also an upper bound of the rank of the elliptic curve.

0. INTRODUCTION

Let D be a cube-free integer. We consider the elliptic curve

E/Q:y2=x3+D2,

which has j -invariant 0 and has complex multiplication n = y/—3. More precisely, n
is the endomorphism

7T : E/Q —> E/Q

, , f x3+4D2 y(x3-8D2)\

We set the following notation.

51 = {p prime : p | D and p = 1 mod 3}

52 = {p odd prime : p \ D and p = 2 mod 3}

h - |5x|

h - |52|

Uk = the group of units of k

UK = the group of units of K

CK = the 3-class group of K

C^ ={aeCK:aT = a},
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where T is a generator of the Galois group of the field extension K/k and Cjp is called
the ambiguous ideal class group of K/k. We first define a map

then we can obtain an upper bound of the rank of the Selmer group S^3\E/Q) by using

the theorem of Gerth [3] which gives an explicit computation of the rank of the group

Cft . On the other hand, we can obtain a lower bound by using the duality theorem

of Cassels [1]. More precisely, we can obtain the following inequalities:

h + £2 - 3 < dimr3 5(3)(£7Q) ^ 2/j + l2 - £ l + 1

where ei and ti, both depending on D, are integers 0, 1, or 2. For the family of curves

E/Q : y2 = x3 -f- D3 , Frey [2] showed that the rank of the Selmer group of a 3-isogeny

is closely related to the class number of the quadratic field Q(\ /DJ. Also Jan Nekevaf

[4] proved some analogous results for the elliptic curve given by Dy2 = 4x3 — 27 which
is isomorphic to the curve given by y2 — x3 — 432D3 . Our result gives explicit bounds
for the dimension of S^-3\E/k) and implies that the dimension can be arbitrarily large.

1. THE SELMER GROUP S^\E/k)

DEFINITION: Let F be a number field and let <£ : E/F —> E'/F be an isogeny

defined over F. Then the <£-Selmer group of E/F is the subgroup of H1 (Gj,F,E[(j>] J

defined by

Observe that the map n : E/Q —> E/Q given as above is defined over A; but, not
over <Q> and that E[TT] is isomorphic to ^ as a Gal (&/fc)-module, and thus we have

H l^I/Jb'^'W) — k*Ik* .

Given an element d £ k*, it corresponds to the homogeneous space of E which can be

given by

Cd:dx3+d2y3 = 2Dz3.

Then such d will be an element of the Selmer group S^\E/k) provided that d admits
a Jfec-rational point for all v G Mk • For any such d, since 2.D is a perfect cube in K
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the principal divisor (d) must be a cube of some divisor in K, say (d) = o3. It is clear

that aT = a, so a G C^ . Thus we can define a homomorphism

by *(d) = a. Then it is clear that k e r * = UK • K*3 n k*/k*3. Note that * induces
two maps

where + and — refer to the action of Gal (k/Q). Observe that all of the groups
mentioned above are F3-vector spaces.

LEMMA 1 . 1 . (Gerth)

(a) dimF3 CP = 2/i + h - ei ;

(b) dimiic£)+=Z1;

(c) dimF3 CP~ = h + h - ei;

where ei (depending on D) is 0, 1 or 2.

PROOF: See [3]. D

LEMMA 1.2 .

(a) dimF3 Sl*\E/k) ^ dimr3 C&+2.

(b) dimF3 &*\E/k)+ ^ dimF3 C ^ ) + + 1.

(c) dimF3 SW(E/k)~ ^ dimF3 C%r + 1.

PROOF: (a) We already see that * is a homomorphism from S^(E/k) to C)p
with ker* = UK • K*3 H k*/k*3. Since UK • K*3 (~l k* = Uk • K*3 ("I Jfe*, we have
UK • K*3 n Jb*/**s = {1,2£>,4£>2} • Uk • k*3/k*3. The Dirichlet Unit Theorem implies
that Uk = PB • Hence dimF3 ker * = 2 and and thus we have

dimij Sw{E/k) ^ dimjv, c£° + 2.

(b) Observe that ker * + is generated by {ID}, and thus dimFa ker * + = 1. There-
fore (b) holds.

(c) Similar to (b) except that ker\P~ is generated by {w}. u

PROPOSITION 1.3.

(a) dimy3 S^\E/k) < h + h ~ d + 2.

(b) dim?3 S^(E/k)+ </i + l.

(c) dimy3 S^\E/k)~ ^ h + h - £1 + 1 •

PROOF: Follows immediately from Lemma 1.1 and Lemma 1.2. U
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2. T H E S E L M E R G R O U P

Recall t ha t n2 = — 3 , so we have the following exact sequence

0 —> E[n] --> E[3] -?-» E[w] —> 0.

Tak ing Galois cohomology as Gj(/k > ^*£/* > a n c^ G ^ , ^ - m o d u l e s respectively, we know

t h a t each row of the following commutat ive diagram is exact except at the end. Since

we can view G-^,K as a subgroup of G-^ ,k , the Inf-Res sequence implies tha t each

co lumn is also exact.

0

i
->H'(GK/k,E[i

i
->Hi(G-k/k,E[,

i
Cl—iTT1(n— E\

i
Q CT2 //~r T

1

0

1
T))-+H'{GKik,E[2,])^Hi

1

I

i
5[TT]) -» 5 2 (C? K / i ,E [7 r ] ) -> 2

1

0

1

1

i

1

1

A 0

By routine computations, we have the following equalities:

Then it is clear that the first row is exact. Note that E[3] is isomorphic to y.3 x ^3 as
a Gal (KIK)-module; thus we have

l {GK/K.

T h e t h i rd row is equivalent to the following exact sequence, and therefore it is exact.

0 —> K*/K*3 —* K*/K*3 x K*/K*3 —> K*/K*3 —> 0
a i—* ( a , 1) ( 0 , 6 ) 1—• 6

Combining all the observations above, we have the following lemma:
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LEMMA 2 . 1 . The F3 -dimension of the cokernel of the map

is less than or equal to 1.

PROPOSITION 2 . 2 . The V3-dimension of the cokernel of the map

is less than or equal to 2.

PROOF: Given arbitrary a 6 S^(E/k) - in other words the corresponding ho-
mogeneous space is locally trivial everywhere — it is easy to check that at least one of
a, 2Da, AD2 a is locally a cube everywhere except at v, v | 3. If a is in the image of
the map 5r : H1 (Gk/k,E[3]\ -> H1 (Gk/k,E[iv}\ and it is locally a cube at v, v | 3,

then (l,a) € S^3\E/k) and 7r((l,a)) = a. It is easy to see that given a finite set
T of indepedent elements in k*/k*3 one can find another set T" such that T and I"
generate the same subgroup in k*/k*3 and every element in T" is a cube at v, v | 3
with at most one exception. Therefore Lemma 2.1 implies that the F3-dimension of the

cokernel of the map 5(3)(^/fc) -̂> S^{E/k) is less than or equal to 2. D

COROLLARY 2 . 3 . Assume that UI(E/k)[3°°] is finite. Assume that either D
is not divisible by 3 or D is divisible by 9. Then the sequence

0 _» E[ir] -» S^\E/k) -» S{3\E/k) A S

is exact.

PROOF: It suffices to show that

SM(E/k) -> 0

is exact. Given arbitrary a £ S^(E/k), the second hypothesis implies that a is
locally a cube at v, v \ 3. Thus (l,o) € S^3'(E/k) and 7r((l,a)) = a. Again according

to Lemma 2.1, we know that F3-dimension of the cokernel of the map S^3\E/k) -̂>

5(ir)(E/ib) is less than or equal to 1. Now the first hypothesis implies that 5(3)(£/fc) ^
S^iE/k) is surjective if and only if dim?3 5

(3)(5/fc) is odd. Therefore we need the
following lemma to complete the proof. D

LEMMA . dimF3 S^iE/k) is odd.

PROOF: 1° There is an exact sequence

0 —» E{k)/3{E(k)) —
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which implies dimr3 S^3\E/k) and dimF3 E(k)/3(E(k)) have the same parity, thus it

suffices to show that dimF3 E(k)/3(E(k)) is odd.

2° Consider the following sequence:

0 —> E{Q) -Z+ E'(k) - ^ E'{Q) —• 0

(a;, y)^P= (-3z, -3</^3y) .-» P + P"

where E' is given by E' /Q : y2 = x3 — 27D2 and is isogeneous to the original curve E.
We claim that the sequence is exact. It is clear that a is injective and that ker j3 = ima.
We show that ft is surjective. Given any point Q = {x,y) € E'(<Q>), then P = (xw, —y)
and P" = (xui2,— j/) are both fc-rational points. By an easy computation, we have
Q = P + P" = f}{P), and so /? is surjective.

Since the group E'(Q) is torsion-free and finitely generated, it is a projective Z-
module, and thus the above sequence splits. By taking tensor products with the group
Z/3Z, we obtain another exact sequence

0 -» E(Q)/3E{Q) -> E'(k)/3E'(k) -> E'{Q)/3E'(Q) -» 0.

Therefore we have

dimF3 E(k)/3{E{k)) = dimF3 E(Q)/3E(Q) + dimFs £'(Q)/3E'(Q)

= 2dimF3 E'(Q)/3E'{Q) + 1.

(Since £tOrs(Q) = Z/3Z and rank(E(Q)) = rank(E'(Q)).) •

3. BOUNDS FOR THE DIMENSION OF THE SELMER GROUP

Now we turn to consider the 3-isogeny

A : E/Q —» £'/Q

and its dual
A : E'/Q —> E/Q

. fx3+4D2 y(x3-2l6D2)( ^ ) H [ i i^ ^
Then we can identify

S(3){E/Q) =

Denote the dimensions of SW(E/Q), s(x)(E'/<Q), S<-3\E/Q) by s, s1, t respectively.
Now we state the duality theorem of Cassels, which will be used latter.
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THEOREM . (Cassels [l])

T T Cp J B ' ( E ) I "'min loo

| S(*)(E'/Q)| ~ I Eion{Q) I V" Cp -W) I w»» U '

LEMMA 3 . 1 . s — s' = —I2 — £2 where £2 depending on D is -2, -1, 0 or 1.

PROOF: 1° By elementary calculation,

JE'(M) ''''minloo 1
' i i <i '

2° By using the Tate's algorithm [5], we can obtain the following equalities :

cp j 3 if p = 2 mod 3,
> P p ' ' ' ' c p | i i f p = l mod 3;

if 3 | D,
e i = | 3 i fDisodd, £ , = l 1 if U = 1,2,4,8 mod 9,

if£> = 5,7 mod 9.

By combining all the above equalities, Lemma 3.1 will follow. D

Finally, we obtain an upper bound and a lower bound for the dimension of the
Selmer group 5(3)(J5/Q).

PROPOSITION 3 . 2 . l2 + £2 - 3 ^ i ^ 2h +l2 - d + l

PROOF: 1° According to Proposition 2.2 we already know that the sequence

0 -> E\K] -» S^\E/k) -» SP\Elk) A S^\E/k)

is exact and dim coker 5r ^ 2. By considering the Galois group Gal(A;/Q) acting on
each group, we obtain another exact sequence

0 -> E[X] -» SW{E/Q) -

with dim coker A ̂  2. Thus

2° By combining Lemma 3.1 and Proposition 1.3, we have

h + £2 - 3 ̂  t ^ 2/j + l2 + £1 + 1.

Thus the proposition holds.
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