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Abstract
Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is
challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised
semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-
level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised
semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered
and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose
a weakly supervised semantic segmentation method, continuous gradient class activation mapping (CAM) and its
nonlinear multiscale fusion (continuous gradient fusion CAM). The method redesigns backpropagating gradients and
nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate
activation degree for different damage site sizes. Experiments on our dataset show that the proposed method can achieve
segmentation performance comparable to that of fully supervised algorithms.
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1. Introduction

Inertial confinement fusion (ICF)[1] experiments have made
astonishing progress, historically achieving a net energy
gain[2]. High-energy laser irradiation at the megajoule level
can cause laser-induced damage (LID)[3] on the surface of
the final optics assembly (FOA)[4,5], limiting the long-term
high-power operation of laser facilities. Online detection of
the damage status of optics is essential for the safe and
efficient operation of ICF facilities. The National Ignition
Facility (NIF)[6,7], the Laser Megajoule (LMJ) in France[8,9]

and the laser facility at the China Academy of Engineer-
ing Physics (CAEP)[10,11] have developed their final optics
damage inspection (FODI) systems[12–14] to capture damage
images of optics online. After the ICF experiments, the
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imaging system is fed into the center of the target chamber
by the support positioning system and captures images of
the optics using dark-field imaging with edge illumination.
Figure 1 shows the methodology.

Dark-field imaging of damage with edge illumination
appears as bright spots on a dark background. The damage
status of the optics can be assessed by locating and segment-
ing these bright spots. Complex factors such as large differ-
ences in damage size, uneven illumination and stray light
interference[15] make accurate damage image segmentation
more challenging, as shown in Figure 2.

The Lawrence Livermore National Laboratory (LLNL)
proposed a classical local area signal-to-noise ratio
(LASNR) algorithm[16]. This algorithm highlights weak
damage signals from its local neighborhood and has a
high detection recall. However, its detection accuracy and
robustness are largely limited by factors such as changing
illumination conditions, stray light interference and noise.

Semantic segmentation algorithms based on deep
convolutional neural networks do not require custom-built
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Figure 1. Schematic diagram of the methodology for online capturing images of optics (FODI images) by the FODI system.

Figure 2. An example of the FODI image. (a)–(c) Images of stray light interference. (d), (e) Images of large damage sites. (f), (g) Images of weak damage
sites.

parameters for the above multifactor interference scenes
and can automatically extract effective damage features
and robustly segment damage sites. Chu et al.[17] of CAEP
constructed a fully convolutional network with a U-shaped
architecture (U-Net). Through fully supervised training,
this model achieves higher damage detection accuracy than
conventional methods. However, producing large quantities
of pixel-level labels requires specialist knowledge and a great
deal of time and effort.

Weakly supervised learning methods can reduce the cost
of manual annotation. Currently, state-of-the-art weakly
supervised semantic segmentation algorithms are based on
class activation maps, and the general procedures of these
methods are shown in Figure 3. Relying on only image-
level labels, deep learning models can generate pixel-level
segmentation results. Zhou et al.[18] first proposed class

activation mapping (CAM) to achieve target segmentation
by visualizing feature points that play an important role in
target classification. However, it is inconvenient to modify
the network structure and retrain the model in practical
applications. Later, gradient-weighted class activation
mapping (Grad-CAM) and its variants[19–21] were proposed.
They generate class activation maps using the average
gradients of the target class score with respect to the feature
maps of the final convolutional layer as class activation
weights (global weight CAM). Limited by the spatial
resolution of the final convolutional layer, Grad-CAM can
only roughly locate the targets. Recently, Jiang et al.[22]

proposed layer class activation mapping (LayerCAM). They
use pixel-level weights to generate reliable class activation
maps for each stage and combine them to obtain fine-grained
segmentation results (pixel-level weight CAM). Figure 4
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Figure 3. The process of class activation mapping.

shows the typical results of Grad-CAM and LayerCAM on
FODI images. LayerCAM has the potential to solve our
segmentation problem.

However, we found two problems with LayerCAM. One
is that the discontinuous pixel-level class activation weights
generate scattered class activation regions, resulting in a
single damage object being segmented into multiple objects.
The other is that large damage sites are underactivated
in the class activation maps from shallow layers, leading
to degradation in segmentation accuracy or even missed
detections, as shown in Figure 4.

Based on the above analysis, we propose continuous gra-
dient fusion CAM (CG-Fusion CAM) to generate more fine-
grained class activation maps with an appropriate activation
degree, enabling efficient and accurate detection and seg-
mentation of damage sites with large size differences.

2. Methodology

Our CG-Fusion CAM method includes four parts: (1) a
classification network, (2) continuous gradient CAM (CG-
CAM), (3) nonlinear multiscale fusion (NM-Fusion) and (4)
post-processing.

The overall pipeline is shown in Figure 5. The classifi-
cation network is used to extract image features and deter-
mine their categories. CG-CAM is used to generate more
fine-grained class activation maps with complete activated
regions. Unlike the gradient-based CAM algorithms above,

we propose a new method for backpropagating gradients. It
distributes the feature point gradient in the low-resolution
layer equally to each feature point (within the same pooling
kernel) in the forward (taking the direction of forward
propagation as positive) high-resolution layer. The scattered
gradients of the high-resolution feature maps restore conti-
nuity, preserving the fine-grained information lost in down-
sampling. NM-Fusion is used to further enhance the effect
of class activation in CG-CAM. We propose an algorithm to
nonlinearly activate multiscale fused heatmaps. On the basis
of improving the fine granularity of class activation maps
through linearly fusing multiscale heatmaps, the original
image is used to compensate for the underactivation of large
targets based on the complementarity of the target gray
values. Subsequently, the high-level semantic information
from deep layers is used to nonlinearly activate the target
regions and suppress the stray light interference introduced
by the original images. Post-processing is used to segment
class activation maps and generate the overall damage seg-
mentation results for large-aperture optics. We choose the
dynamic threshold segmentation algorithm to obtain high-
precision target regions.

2.1. Classification network

The selection of the classification network has an impor-
tant impact on the effectiveness of feature extraction, the
accuracy of the class activation weights and the localization
performance of the class activation maps. Therefore, we
choose the VGG-16 algorithm as our classification network
with excellent classification ability, simple structure, fast
training speed and easy deployment[23]. VGG-16 contains
two parts: a feature extraction layer and a classification
layer. Among them, the feature extraction layer contains five
stages. Each stage consists of several convolutional layers
and a max-pooling layer. Each convolutional layer contains
multiple channel outputs, also known as feature maps.

Figure 4. Examples of class activation maps generated by Grad-CAM and LayerCAM on FODI images. The red arrows point to scattered activated regions.
The yellow arrows point to underactivated regions.
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Figure 5. The pipeline of CG-Fusion CAM.

Figure 6. The class activation maps of LayerCAM from different stages. The red box shows the feature and gradient maps of some channels from Stage 5.

2.2. Continuous gradient CAM

2.2.1. Analysis
Inspired by LayerCAM, we use the class activation maps
with higher spatial resolution generated from the shallow
layers to increase the fine-grained information of targets.
However, the typical phenomenon of scattered class activa-
tion regions is present at each stage of VGG-16, as shown
in Figure 6. We further decompose the class activation map
for each channel of each stage into its feature map and
gradient map and find that the discontinuity of the gradients
associated with the target regions leads to scattered class
activation regions. Figure 6 randomly shows the partial
channel results of Stage 5.

According to the chain rule[24,25], max-pooling layers are
the cause of scattered gradients. This is because, in forward
propagation, max-pooling layers retain only the largest fea-
ture value in each kernel to compress features and reduce
computation. In backpropagation, each max-pooling layer
passes its gradient to the maximum feature value (within the
same pooling kernel) in the forward convolution layer, but
the nonmaximum features have no gradients and are assigned

zero. Figure 7(a) illustrates the method of backpropagating
gradients from the max-pooling layer to the convolution
layer.

The activation maps generated by LayerCAM using scat-
tered gradients (Figure 7(a)) do not contain much more
fine-grained information from high-resolution feature maps.
They are the results of up-sampling the low-resolution class
activation maps by interpolating zeros. To effectively pre-
serve more fine-grained features, the CG-CAM proposed in
this paper reassigns reliable gradients to them, generating
continuous gradients for high-resolution feature maps.

2.2.2. Algorithm
Specifically, in backpropagation, our CG-CAM extracts
the gradients of the last convolutional layer (the forward
layer of the max-pooling layer) at each stage by the hook
operation[26]. Then, the average pooling operation and the
up-sampling operation distribute the gradient equally to each
feature point within the same pooling kernel, restoring the
continuity of the scattered gradients, as shown in Figure 7(b).
CG-CAM uses the modified gradients as pixel-level weights
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Figure 7. The original and CG-CAM methods of backpropagating gradients from the max-pooling layer to the convolution layer.

Figure 8. Comparison of LayerCAM and CG-CAM results from different stages. (a), (d) Feature maps. (b), (e) Class activation gradient maps. (c),
(f) Channel class activation maps.

to activate corresponding feature points. Formally, the
weight wkc

ij of the spatial position (i, j) in the kth channel
feature map of a certain convolutional layer to the target
class c can be written as follows:

wkc
ij = upsample

(
avgpool2d

(
gkc

ij

))
, (1)

where upsample is the up-sampling function, avgpool2d is
the average pooling function and gkc

ij is the gradient of the
predicted score yc (before softmax) of the target class c with
respect to the feature map Ak

ij. Its formula is as follows:

gkc
ij = ∂yc

∂Ak
ij
, (2)

where Ak
ij is the feature value of the spatial position (i, j) in

the kth channel of a certain convolutional layer. The class
activation map Mc of CG-CAM is calculated as follows:

Mc = ReLU

(∑
k

wkc
ij ·Ak

ij

)
= ReLU

(∑
k

Âk

)
, (3)

where Âk is the class activation map of the kth channel.
Linearly summing the Âk of all channels, we obtain the Mc

of a certain convolutional layer. We also apply the rectified
linear unit (ReLU) operation to remove the effect of negative
gradients.

Figure 8 shows the visualization results of the gradients
before and after the application of CG-CAM from randomly
selected channels at each stage. Compared to the original
scattered gradients of LayerCAM, the gradients generated
by CG-CAM are continuous and smooth. This allows
more semantic regions of the targets to be activated.
Comparative experiments demonstrate that CG-CAM
can effectively preserve high-resolution features, solve
the problem of scattered class activation regions caused
by the loss of fine-grained information gradients in
LayerCAM and significantly improve the quality of class
activation maps.

2.3. Nonlinear multiscale fusion algorithm

2.3.1. Analysis
LayerCAM further enhances the activation effect by com-
bining shallow class activation maps, but introduces the
problem of underactivation of large targets. As shown in
Figure 9, small targets are well activated, but large targets are
only activated at the edges in the class activation maps from
shallow layers. The activation differences can be caused by
the characteristics of the network itself. The receptive fields
of the shallow layers are relatively small and tend to capture
some detailed features, such as the edges and corners of the
targets[27]. As the depth increases, the receptive field of the
network gradually expands, eventually capturing the entire
contours of the targets[28].
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Figure 9. Results of LayerCAM from each convolutional layer.

Underactivation degrades location accuracy or even leads
to missed detections, requiring compensation for underac-
tivated regions of large damage sites. Linearly fusing the
overactivated results from deep layers (such as LayerCAM)
can mitigate this underactivation to some extent, but also
masks some of the fine-grained features in shallow layers,
resulting in some loss of segmentation accuracy. We find
that the gray values of the large targets are low in the
class activation maps from the shallow layers but high in
the original images. The opposite is true for small targets.
Therefore, we propose a multiscale fusion method that uses
the original images to compensate for the underactivation of
large targets in CG-CAM.

2.3.2. Algorithm
Specifically, based on the complementary property of gray
values, our NM-Fusion adds the gray values of the original
image I and those of the class activation map MCG−CAM to
generate a new class activation map Mmulti. This operation is
part of multiscale fusion and eliminates the negative impact
of underactivation on segmentation, while high-resolution
original images do not degrade the fine granularity of Mmulti.
In addition, NM-Fusion extracts the foreground information
of the class activation map generated from the final convolu-
tional layer as its mask to filter out the stray light interference
introduced by I. The class activation map of NM-Fusion
Mfusion is calculated as follows:

Mfusion = (I +MCG−CAM)×mask

= Mmulti × ε
(
Mdeep − vthr

)
, (4)

ε (input) =
{

0 input < 0,
1 input ≥ 0,

(5)

where vthr is a reasonable threshold and ε(·) is the step
function for generating the mask. The class activation map
Mdeep of the final convolutional layer has reliable high-level
semantic information with a clean and low-noise background
(Figure 4). Its overactivated foregrounds can nonlinearly
activate high-resolution target regions in Mmulti without los-
ing fine-grained information, selectively filtering out stray

light interference. This reflects the ‘nonlinear’ connotation
of NM-Fusion. Mdeep is calculated as follows:

Mdeep = ReLU

(∑
k

wc
k ·Ak

)

= ReLU

⎛⎝∑
k

⎛⎝ 1
N

∑
i

∑
j

gkc
ij

⎞⎠ ·Ak

⎞⎠, (6)

where N denotes the number of locations in the feature map
Ak. To further optimize the quality of MCG−CAM, we linearly
fuse the multiscale class activation maps from multiple
stages of CG-CAM. Together with the original image, they
form the ‘multiscale fusion’ connotation of NM-Fusion.
MCG−CAM is calculated as follows:

MCG−CAM =
4∑

l=1

MStage l, (7)

where MStage l is the class activation map of CG-CAM
generated from the last convolutional layer at the lth stage.
The results of CG-CAM differ at different stages. As the
stage becomes shallower, the class activation maps tend to
capture more fine-grained features, but the underactivation
problem becomes more severe.

The comparison of the fusion results from different stages
is shown in Figure 10. As the depth of the fusion stage
increases, the fusion of the first four stages reaches the
best state, with clear boundaries of the target activation
regions. However, the addition of the last stage degrades the
activation quality and the target boundaries become blurred.
This is because the last stage is the deep layer of the network
with low-resolution feature maps. Fusing the rough target
position information from Stage 5 cannot improve the fine
granularity. Thus, MCG−CAM is a linear fusion result of the
first four stages.

2.4. Post-processing

Accurate segmentation of the foreground in the class acti-
vation maps is required to achieve precise localization and
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Figure 10. Comparison of the multiscale fusion effect from different stages of CG-CAM. The red arrows point to blurred boundaries.

extraction of damage sites. Simple threshold segmentation
cannot achieve ideal segmentation results, so we use the
local dynamic threshold segmentation algorithm[29] for post-
processing. Using a sliding window to iterate through all
image regions, an appropriate segmentation threshold T (i,j)
is determined based on the contrast of gray values in the local
window. It is calculated as follows:

T (i,j) = μ(i,j)
(

1+ k
(

σ (i,j)
R

−1
))

, (8)

where (i,j) is the pixel position, μ(i,j) is the local mean gray
value within the window, σ (i,j) denotes the corresponding
standard deviation, R is the assumed maximum value of
the standard deviation and k is the sensitivity parameter.
By setting appropriate parameters, the local dynamic thresh-
old segmentation algorithm can adaptively segment damage
sites in Mfusion.

Finally, the damage segmentation regions of all the sub-
images are spliced back according to the corresponding
positions. Then, a union operation is performed to combine
the repeated segmentation results for each damage site in the
overlapping regions into one region. The damage segmen-
tation results for the large-aperture optics are shown in the
following section.

3. Experiments

3.1. FODI damage dataset

We acquired images of large-aperture optics in the CAEP
high-power laser facility online using the FODI system,
and produced the FODI damage dataset through cropping
processing and dataset enhancement.

3.1.1. Cropping processing
The resolution of large-aperture FODI images is 4096×4096,
which is too large for the input of the neural network. We
crop the images using a 128×128 sliding window with a step
size of 64. The 50% window overlap ensures coherence of
information between adjacent windows.

3.1.2. Dataset enhancement
To improve the ability of the classification network to extract
effective features that distinguish between stray light inter-
ference and damage sites, we need to enhance the dataset.
The limited occurrence of some stray light interference and
large damage sites in ICF experiments make it difficult
to collect large quantities of these samples. We artificially
superimpose the damage image on the stray light interference
image to produce a new damage image. Figure 11 shows the

Figure 11. Examples of typical samples. (a) Background class samples. (b) Damage class samples. (c) Manually produced damage class samples.
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typical damage class samples, background class samples and
manually produced damage class samples.

The FODI damage dataset we produced contains 1155
training samples and 512 test samples. The ratio of damage
class samples to background class samples is approximately
1:1. The training samples include 175 manually produced
damage class images and 118 background class images
with various stray light interference selected for dataset
enhancement. To objectively reflect the performance of the
classification network, the test samples cover all types of
stray light interference and damage sites.

3.2. Evaluation metrics

In the classification task, the accuracy, precision, recall,
F1 and false positive rate (FPR) are used to evaluate the
classification performance of the network (calculated from
the damage class, excluding the background class). The
statistical objects are images.

In the semantic segmentation task, we provide pixel recall
(p-R), pixel precision (p-P), pixel F1 (p-F1) and pixel inter-
section over union (IoU) to evaluate the performance of the
algorithms. The statistical objects are pixels. The IoU is
defined as follows:

IoU = ground-truth pixels ∩ predicted pixels
ground-truth pixels ∪ predicted pixels

. (9)

In addition, when faced with multiple targets, pixel-level
evaluation metrics can mask the negative impact of incor-
rectly detecting small targets, resulting in a large number
of false positive regions in the results. Therefore, we addi-
tionally provide a target-level metric, the false detection rate
(FDR), to evaluate the target detection performance of the
algorithm. It is defined as follows:

FDR = FP
TP+FP

, (10)

where TP is the number of objects correctly detected as
damage sites and FP is the number of objects incorrectly
detected as damage sites. Referring to the definition of
evaluation metrics in the object localization task[30], we use
the pixel IoU to determine whether each detected connected
domain is a real damage site or not. The determining formula
is as follows:{

Predicted target region = 1, if(IoU ≥ δ),

Predicted target region = 0, if(IoU < δ) .
(11)

In this paper, δ is set to 0 (usually set to 0.5) to compare the
false detection performance of the algorithms. Otherwise,
Grad-CAM cannot reasonably calculate this metric due to
the low IoU scores caused by the rough segmentation results.

3.3. Classification experiment

In the experiments, only image-level labels are used to train
the VGG-16 classification network. Each sample is flipped
horizontally and vertically with a 50% probability before
being fed into the network to increase the generalization
ability of the network. The initial parameters are loaded with
weights pretrained on ImageNet to avoid local optima or
saddle points and to allow the network to converge quickly.
The initial learning rate is set to 10−3, and a decay strategy
is implemented. The batch size is set to 32 and the training
epoch is set to 30 for iterative training. The optimizer in this
paper uses the SGD (stochastic gradient descent) optimizer
to update the network weights.

In Table 1, we report the classification performance of the
VGG-16 model trained on the enhanced dataset. The F1 of
the classification network reaches 97.75%, with the ability to
effectively identify damage sites.

3.4. Weakly supervised segmentation and target detection

To illustrate the semantic segmentation and target detection
performance of the algorithms, we selected 338 damage
class images containing typical stray light interference as
the test set and manually produced their pixel-level labels
(ground-truth). We compare the semantic segmentation
and target detection results of five baseline algorithms, as
shown in Table 2 and Figure 12. Among them, the LASNR
belongs to the conventional methods. VGG16-Unet and
DeepLabv3 (Resnet50 as the backbone) are fully supervised
semantic segmentation methods. Grad-CAM and LayerCAM
are weakly supervised semantic segmentation methods.
Figure 13 shows the overall damage segmentation results
of a large-aperture optic.

The experimental results show that the LASNR has a
strong segmentation capability with a pixel recall of 99.27%,

Table 1. The classification performance of the VGG-16 model on
our dataset.
Model Accuracy Precision Recall FPR F1
VGG-16 97.54% 97.13% 98.39% 3.49% 97.75%

Table 2. Comparison of baselines and our method under various
evaluation metrics.
Methods p-P (%) p-R (%) p-F1 (%) FDR (%) IoU (%)
LASNR 63.39 99.27 70.18 41.49 37.21
VGG16-Unet 76.34 86.53 81.11 3.05 63.87
DeepLabv3 81.34 86.50 83.84 3.20 68.32
Grad-CAM 7.12 97.95 12.78 5.51 7.10
LayerCAM 61.90 89.73 70.89 19.57 41.82
Ours 84.24 93.55 87.32 0.90 63.78
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Figure 12. Comparison of the class activation maps and segmentation results between the baselines and our method. The green areas are the false positive
segmentation results. The red areas are the segmentation results containing true damage sites.

Figure 13. The overall damage segmentation results of a large-aperture optic. (a)–(d) Enlarged local images.
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Table 3. Comparison of the baseline and our two core algorithms
under various evaluation metrics.
Methods p-P (%) p-R (%) p-F1 (%) FDR (%) IoU (%)
LayerCAM 61.90 89.73 70.89 19.57 41.82
CG-CAM 75.52 94.87 82.53 8.68 52.17
CG-CAM+

84.24 93.55 87.32 0.90 63.78
NM-Fusion

but produces high false detection results. In comparison,
Grad-CAM has a much lower FDR of 5.51%, but has rough
class activation regions that are unable to segment multi-
ple targets into independent individuals. The segmentation
results from LayerCAM are much finer, with an IoU score
of 41.82%, which is better than the results from the two
baselines above. However, the underactivation of LayerCAM
leads to missed detection of large damage sites with a recall
of less than 90%. In addition, its scattered class activation
regions result in a high FDR of 19.57%.

Our method produces more fine-grained class activation
maps, and the class activation regions are activated
appropriately for various sizes of damage sites. Our IoU
score is up to 63.78%, an improvement of 56.68% and
21.96% over Grad-CAM and LayerCAM, respectively, which
is comparable to that of fully supervised segmentation
algorithms. In addition, our method can suppress stray light
interference with the lowest FDR of all algorithms being
only 0.90%.

3.5. Ablation experiment

We successively remove two algorithms from the pipeline,
CG-CAM and NM-Fusion, and test the detection and seg-
mentation performance of the remaining algorithms. This
experiment demonstrates their respective effects on optimiz-
ing class activation maps and improving damage segmen-
tation performance. The results are shown in Table 3 and
Figures 14 and 15.

CG-CAM enables the scattered class activation regions
of LayerCAM to form a whole with semantic meaning
(Figure 14), preserving high-resolution features with rich

detail information. The IoU score of CG-CAM is improved
by 10.35% and the FDR is reduced by 10.89% compared to
LayerCAM.

Based on the CG-CAM results, the effect of each step in
NM-Fusion is shown in Figure 15. Compared to the results
from a single stage, the fusion of multiscale heatmaps from
shallow layers further improves the spatial resolution of class
activation maps. Compensated by the original images, the
underactivation of large damage sites is effectively improved.
Finally, semantic class activation masks generated from the
final convolutional layers nonlinearly activate target regions
in the multiscale fusion images, filter out the stray light inter-
ference and produce more fine-grained class activation maps
with an appropriate activation degree. After the addition of
NM-Fusion, the IoU score is improved by 11.61% compared
to CG-CAM and the FDR of the damage sites is significantly
reduced by 7.78%. NM-Fusion solves the problem of under-
activation of large targets caused by LayerCAM’s simple
linear fusion of class activation maps from shallow layers
to obtain more fine-grained information.

4. Conclusion

In this paper, a weakly supervised semantic segmentation
method with CG-CAM and its NM-Fusion has been pro-
posed for accurate segmentation of LID on large-aperture
optics in ICF facilities in the face of complicated damage
morphology, uneven illumination and stray light interfer-
ence. The classification, detection and segmentation perfor-
mance of our method has been tested on the FODI damage
dataset. Experimental results show that our method can gen-
erate appropriately activated high-resolution class activation
maps for damage targets of various sizes, with better target
detection and segmentation capabilities than current CAM
methods. Relying only on image-level labels and limited
sample training, our method has achieved segmentation per-
formance comparable to that of fully supervised algorithms,
with an IoU score of 63.78%. False detection of damage
sites has also been effectively suppressed, with an FDR of
0.90%. The proposed method has been applied to the large

Figure 14. Comparison of the class activation maps between LayerCAM and CG-CAM from different stages.
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Figure 15. The effect of each step in the nonlinear multiscale fusion algorithm.

laser facility to detect the damage condition of the optics.
In the future, we will delve deeper into the relationship
between feature maps and class activation gradients to fur-
ther improve the performance of weakly supervised semantic
segmentation.
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