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We consider linear random coefficient regression models, where the regressors are
allowed to have a finite support. First, we investigate identification, and show that
the means and the variances and covariances of the random coefficients are identified
from the first two conditional moments of the response given the covariates if the
support of the covariates, excluding the intercept, contains a Cartesian product with
at least three points in each coordinate. We also discuss identification of higher-
order mixed moments, as well as partial identification in the presence of a binary
regressor. Next, we show the variable selection consistency of the adaptive LASSO
for the variances and covariances of the random coefficients in finite and moderately
high dimensions. This implies that the estimated covariance matrix will actually
be positive semidefinite and hence a valid covariance matrix, in contrast to the
estimate arising from a simple least squares fit. We illustrate the proposed method
in a simulation study.

1. INTRODUCTION

In various statistical analyses in fields such as medicine and economics, there
is a large extent of individual heterogeneity in the effect of observed covariates,
which is routinely modeled by random coefficients—also called random effects—
models. For example, in contemporary microeconomic data sets with many obser-
vations and potentially a large number of explanatory variables, unobserved
heterogeneity plays an important role (Lewbel, 2005). An important issue then
is to select those coefficients which actually are random if there is a large set of
potential variables which might have individual-specific effects. To this end, in this
paper, we shall consider the following random coefficients regression model:

Y = B0 +W�B, (1.1)

Address correspondence to Hajo Holzmann, Department of Mathematics and Computer Science, Philipps-Universität
Marburg, Marburg, Germany, holzmann@mathematik.uni-marburg.de.

© The Author(s), 2024. Published by Cambridge University Press. 1

https://doi.org/10.1017/S0266466624000070 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466624000070
mailto:holzmann@mathematik.uni-marburg.de
https://doi.org/10.1017/S0266466624000070


2 PHILIPP HERMANN AND HAJO HOLZMANN

where B,W ∈ R
p−1 are independent random vectors, B0 is a random variable, and

W = (W1, . . . ,Wp−1)
� represents the random regressors.

Model (1.1), which is related to random effects models from the literature on
biostatistics (Schelldorfer, Bühlmann, and van de Geer, 2011), was introduced by
Hildreth and Houck (1968) and Swamy (1970). They assumed that B0, . . . ,Bp−1 are
independent, and focused on estimating their means and variances by least squares
in two stages. Arellano and Bonhomme (2012) studied a panel—version of the ran-
dom coefficient model. Beran and Hall (1992) initiated the nonparametric analysis
of the distribution of the random coefficients. For p = 2, Beran, Feuerverger, and
Hall (1996) used Fourier methods to construct an estimator of the joint density of
(B0,B1)

�. Their method was taken up again by Hoderlein, Klemelä, and Mammen
(2010), who put it into the form of a more conventional kernel estimator and
generalized it to arbitrary dimension p. Masten (2018, Lem. 2) provides necessary
and sufficient conditions for identification of the overall distribution of (B0,B)

in terms of moments. Further related literature includes Ichimura and Thompson
(1998) and Gautier and Kitamura (2013), who analyze a binary choice version of
the model, Lewbel and Pendakur (2017) who study a generalization of (1.1) in
which the products B1 W1, . . . ,Bp−1 Wp−1 are related to Y by some arbitrary (possi-
bly nonlinear) unknown function, as well as Hoderlein, Holzmann, and Meister
(2017), Breunig and Hoderlein (2018), Dunker et al. (2019), and Holzmann
and Meister (2020). Recently, Gaillac and Gautier (2022) studied nonparametric
identification and adaptive estimation in a random coefficient regression model,
where covariates have bounded but continuous variation.

The above nonparametric approaches which target the full density of the random
coefficients require a large or at least, as in Gaillac and Gautier (2022), continuous
support of the covariates, which is often an unrealistic assumption in applications.
In this paper, we shall focus on situations in which the covariates have bounded
and in particular finite support. In this latter setting, there is little hope to identify
and estimate the density of the random coefficients nonparametrically. Therefore,
we shall focus on the first and second moments, which are arguably of most
interest in applications. Variable selection techniques for means, variances, and
covariances of the random coefficients then allow to determine which variables
have an effect on average (nonzero mean of the coefficient), which variables
have heterogeneous effects (nonzero variances) and for which covariates the
effects are correlated. In particular, we shall argue that it is important not to
focus exclusively on the variances of the random coefficients, but to take the full
variance–covariance matrix into account. Further, estimating the first and second
moments of the random coefficients then allows to predict the first and second
moments of the response Y conditional on the covariates. Finally, normality of
the random coefficients is a common parametric assumption, under which their
distribution is fully determined by means, variances, and covariances.

Model (1.1) is related to random effects models from the literature on biostatis-
tics (Schelldorfer et al., 2011). These are studied in a longitudinal framework, and
the goal is then to estimate the fixed effects by using a quasi-likelihood approach
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and to predict the random effects. Papers which study these models in a high-
dimensional setting are, among others, Schelldorfer et al. (2011) and Li, Cai, and
Li (2021).

The paper is organized as follows: In Section 2, we clarify under which assump-
tions on the support of the covariates, first and second moments of the random
coefficients are identified. It turns out that identification holds if the support of
the covariate vector contains a Cartesian product with at least three support points
for each covariate. Conversely, identification generally fails if one covariate only
has two support points. In Section 3, we turn to estimation and in particular to
variable selection with a focus on the variances and covariances in model (1.1).
We use the adaptive LASSO originally introduced in Zou (2006), which may
achieve variable selection consistency without additional restrictive assumptions
such as the irrepresentable assumption required for the ordinary LASSO, and show
the variable selection consistency in fixed and moderately high dimensions. The
technical issues are to deal with the residuals when estimating centered second
moments of the random coefficients as well as with the heteroscedasticity of the
model. Section 4 contains some numerical illustrations. Proofs of the main results
are given in Section 5, while some further auxiliary results are deferred to the
Supplementary Material.

We shall use the following notation: For an n × p matrix X and a subset S ⊆
{1, . . . ,p} of the index set, XS denotes the n×|S| matrix containing those columns
of X with indices in S. A similar notation is vS for a vector v ∈R

p. ‖X‖M,2 denotes
the operator norm of X for the Euclidean norm, and ‖X‖F the Frobenius norm, that
is the Euclidean norm of the vectorization of X.

2. IDENTIFICATION OF FIRST AND SECOND MOMENTS

In model (1.1), we also write A = (B0,B�)� ∈ R
p, so that A = (A1, . . . ,Ap)

� and
W are independent. We assume that the first and second moments of the random
coefficients A exist and set

μ∗ := E[A] ∈ R
p , and �∗ := Cov(A) = E

[
(A−μ∗)(A−μ∗)�] ∈ R

p×p .
(2.1)

In this section, we consider the conditions for identification and partial identifica-
tion of the moments μ∗ and �∗ in terms of the support of the covariates W.

While one may argue that means and variances are of main applied interest, the
joint variation of the random coefficients as described by the covariances and the
correlations is also relevant. Further, we shall see that excluding covariances from
the analysis and falsely assuming a diagonal covariance matrix a priori can lead to
wrong conclusions about the (non-)randomness of the coefficients. The proofs of
the results in this section are collected in Section 5.1.

To illustrate, first consider the case of a single regressor, resulting in the model

Y = B0 +W1 B1 . (2.2)

For W1 supported on {0,1}, we have the following result.
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Proposition 2.1. Suppose that in model (2.2), the random variable W1 ∈ {0,1}
is binary, and denote the identified standard deviations by

s1 =√Var(B0), s2 =√Var(B0 +B1) .

Then each value√
Var(B1) ∈ [|s1 − s2|,s1 + s2

]
is consistent with s1 and s2, provided the correlation ρ =Cor(B0,B1) is chosen for√
Var(B1) > 0 as

ρ = s2
2 − s2

1 −Var(B1)

2s1
√
Var(B1)

∈
{

[−1,1], if s2 > s1 ,[−1, −
√

s2
1 − s2

2/s1
]
, if s1 ≥ s2 .

(2.3)

Thus, to conclude from Var(B0) = Var(B0 + B1) that Var(B1) = 0 fully relies
on the assumption of a diagonal covariance matrix, without this assumption, B1

can well be random. On the other hand, the following proposition shows that three
distinct support points of W1 are enough to identify the means E[Bj], the variances
Var(Bj), j = 0,1, and the covariance Cov(B0,B1). From Proposition 2.1 and not
surprisingly, two support points are insufficient for this purpose.

Proposition 2.2. In model (2.2), if W1 has n + 1 support points and
E
[|B0|n
]
,E
[|B1|n
]

< ∞, then all mixed moments E
[
Bj

0 Bk
1

]
, j,k ≥ 0, j + k ≤ n,

are identified.

2.1. Identification of the Covariance Matrix

Now, let us turn to the identification of μ∗ and �∗ in (2.1) in general dimensions.
To this end, consider the half-vectorization of symmetric matrices of dimension
p×p,

vec(M) = (M11, . . . ,Mpp,M12, . . . ,M1p,M23, . . . ,M2p, . . . ,M(p−1)p
)� ∈ R

p(p+1)
2

(2.4)

for M ∈ R
p×p with M� = M, and set

σ ∗ := vec(�∗).

Note that the first p entries of σ ∗ are the variances and the remaining entries are
the covariances. In model (1.1), we have that

Var
(
Y
∣∣W = w) = (1,w�)�∗ (1,w�)�, (2.5)

so that the quadratic form in �∗ is identified over (1,w) with w ranging over the
support of W. Note that (2.5) can be written in vectorized form as

Var
(
Y
∣∣W = w) = (1,(w2)�,2w�,2w1w2, . . . ,2w1wp−1,2w2w3, . . . ,2wp−2wp−1

)
σ∗

= v
(
(1,w�)�

)�
σ∗ , (2.6)
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where we recall that σ ∗ = vec(�∗), and the vector transformation v is defined by

v(x) = (x2
1, . . . ,x

2
p,2x1x2, . . . ,2x1xp,2x2x3, . . . ,2x2xp, . . . ,2xp−1xp

)� ∈ R
p(p+1)

2 , x ∈ R
p.

(2.7)

Based on (2.6), we can establish linear equations for the p(p+1)/2 entries of �∗,
respectively, σ ∗. With the above notation, we may state the following basic result.

Theorem 2.3. In model (1.1), a sufficient condition for identification of the
mean vector μ∗ and the covariance matrix �∗ is the existence of p(p+1)/2 points
w1, . . . ,wp(p+1)/2 ∈ R

p−1 in the support of W, for which the matrix

S =
[

v
(
(1,w�

1 )�
)
, . . . ,v
(
(1,w�

p(p+1)/2)
�
)]�

(2.8)

of dimension p(p + 1)/2 × p(p + 1)/2 is of full rank. This condition is also
necessary for identification in the subset of full-rank covariance matrices.

The theorem remains valid if one can show that for m ≥ p(p + 1)/2 support
points, the resulting matrix Sm has full rank p(p+1)/2.

In the following example, we show that the condition of the previous theorem
can never be satisfied if one of the regressors only has two support points.

Example 2.1. Suppose that W1 has only two support points a and b and that
the joint support of W is finite. Then the matrix Sm, where m is the total number
of support points, has rank at most p(p+1)/2−1. Thus, from Theorem 2.3, full-
rank covariance matrices �∗ are not identified. Indeed, the matrix S�

m contains the
submatrix⎡⎣ 1 . . . 1 1 . . . 1

a2 . . . a2 b2 . . . b2

2a . . . 2a 2b . . . 2b

⎤⎦ ∈ R
3×m .

Evidently, this matrix is of column rank at most 2, since there are only two
distinct columns. Thus, its row rank is also at most two, which implies that the
corresponding three columns in Sm are linearly dependent.

In contrast, if each covariate has at least three support points and the joint support
contains the corresponding Cartesian product, then we retain identification of �∗.

Theorem 2.4. Consider model (1.1). Suppose that the support of W =
(W1, . . . ,Wp−1)

� contains the Cartesian product of three points in each coordinate.
Then there exist p(p + 1)/2 support points such that the matrix S in (2.8) has full
rank p(p + 1)/2 and consequently, the means and (co-)variances of the random
coefficients A are identified. Conversely, if there is a Wj having only two support
points, then in the full-rank covariance matrices identification fails.
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2.2. Partial Identification

What can be said about the covariance matrix of the random coefficients if there are
binary regressors? Assume a single binary regressor Z, and additional regressors
W ∈ R

p−2 (slightly modifying the notation in this section) for which the support
contains a Cartesian product with at least three points in each coordinate. Our
model is then written as

Y = B0 +Z B1 +W�B2 .

The set of covariance matrices of A = (B0,B1,B�
2 )� ∈ R

p consistent with the
conditional second moments of Y is

S :={� ∈ R
p×p
∣∣� positive semi-definite and

(1,z,w�)� (1,z,w�)� = Var(Y |Z = z,W = w) ∀ (z,w) ∈ supp(Z,W)
}

.
(2.9)

Suppose that the support of (Z,W�)� ∈ R
p−1 has a product structure. From

Theorem 2.4, using Z = 0 and Z = 1, we identify the covariance matrices

Cov
(
(B0,B�

2 )�
)

and Cov
(
(B0 +B1,B�

2 )�
)
,

or equivalently

Cov
(
(B0,B�

2 )�
)
, Cov

(
B1;B2
)
, Var(B0 +B1) . (2.10)

Here, for random vectors C and D, Cov(C) is the covariance matrix of C, whereas
Cov(C;D) contains the cross-covariances of C and D.

Sharp bounds for Var(B1) are given by

inf
�∈S

�22 ≤ Var(B1) ≤ sup
�∈S

�22 , (2.11)

where the set S in (2.9) is characterized by the restrictions given by the identified
parts (2.10) of the matrix �∗. These bounds can be obtained numerically by
semi-definite programming. An interesting particular question is the potential
randomness of B1, which is addressed in the following proposition, which relies
on the identified quantities in (2.10).

Proposition 2.5. Suppose that the support of (Z,W�)� has a product structure,
and that only Z is binary.

1. If Var(B0) �= Var(B0 + B1), or if Cov(B1;B2) is not the zero vector, then
Var(B1) > 0.

2. Conversely, suppose thatVar(B0) =Var(B0 +B1) and thatCov(B1;B2) = 0p−2.
(a) If Cov

(
(B0,B�

2 )�
)

is degenerate, and its kernel contains a vector with
nonzero first coordinate, then necessarily Var(B1) = 0.

(b) On the other hand, if Cov
(
(B0,B�

2 )�
)

has full rank, then the upper bound
in (2.11) for Var(B1) is strictly positive.
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2.3. Identification of Higher-Order Moments

The kth-order mixed moments of the random vector A, k ∈ N, are given by

m(k1, . . . ,kp) = E
[
Ak1

1 . . . A
kp
p
]
, kj ∈ N0, k1 +·· ·+ kp = k,

of which there are
(p+k−1

k

)
many. Information on the mixed moments in the

linear random coefficient model Y = A1 + A2 W1 +·· ·+ Ap Wp−1 comes from the
identified conditional kth moments of Y given W,

E[Yk|W = w] = E
[(

(1,w�)A
)k]

. (2.12)

These can be represented as an inner product of
(p+k−1

k

)
-dimensional vectors, one

consisting of the mixed moments m(k1, . . . ,kp), the other with corresponding entry(
k

k1 . . . kp

)
wk2

1 ·. . . ·w
kp
p−1, (2.13)

where w = (w1, . . . ,wp−1). Hence, we have analogously to the result in Theorem
2.3 that if there are

(p+k−1
k

)
support points wj of W such that if we form the matrix

with rows as in (2.13) for the coordinates of the wj, the resulting quadratic matrix
has full rank, then the kth -order mixed moments of A are identified.

While we were not able to obtain a sufficient condition along the lines of
Theorem 2.4, we have the following result which guarantees identification.

Theorem 2.6. If in model (1.1), the support of W = (W1, . . . ,Wp−1)
� contains

p points w1, . . . ,wp in general position, for which for each j ∈ {1, . . . ,k} and
i1, . . . ,ij ∈ {1, . . . ,p}, the vector (wi1 + ·· · + wij)/j is also in the support of W.
Then the mixed moments of A up to order k are identified.

3. SIGN-CONSISTENCY OF THE ADAPTIVE LASSO ESTIMATOR

In this section, we derive the asymptotic variable selection properties of the
adaptive LASSO in the linear random coefficient regression model (1.1), where
we focus on estimating and selecting the variances and covariances of the random
coefficients. First, in Section 3.1, we consider an asymptotic regime with a fixed
number p of regressors, before turning to the moderately high-dimensional setting
in which p → ∞ but at a slower rate than the sample size n.

The adaptive LASSO and its variable selection properties, originally introduced
in Zou (2006), have already been investigated intensively in the literature. For
example, Zou and Zhang (2009) consider the adaptive LASSO and an adaptive
version of the elastic net in moderately high dimensions, while Huang, Ma, and
Zhang (2008) investigate the high-dimensional situation with strong assumptions
on the first-stage estimator, and Wagener and Dette (2013) extend their approach to
a heteroscedastic framework. Here, our contributions mainly are to deal with the
residuals when estimating centered second moments of the random coefficients,
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and to extend the analysis of Zou and Zhang (2009) to our setting with random
coefficients.

We observe independent random vectors (Y1,W�
1 )�, . . . ,(Yn,W�

n )� distributed
according to the random coefficient regression model (1.1), and write

Yi = Bi,0 +W�
i Bi = X�

i Ai , i = 1, . . . ,n,

where Xi = (1,W�
i )� ∈ R

p with Wi ∼ W and Ai = (Bi,0,B�
i )� ∼ A are indepen-

dent random vectors. Here, Xi = (Xi,1, . . . ,Xi,p)
� represents the observed covari-

ates and Ai = (Ai,1, . . . ,Ai,p)
� the unobserved individual regression coefficients.

In the following, we denote by

Sσ := supp
(
σ ∗)= {k ∈ {1, . . . ,p(p+1)/2

}∣∣σ ∗
k �= 0
}
, sσ := |Sσ |,

the support of the half-vectorization σ ∗ of the covariance matrix �∗. Sc
σ :={

1, . . . ,p(p + 1)/2
} \ Sσ will denote the relative complement of this set. For an

estimator μ̂n of μ∗, we define the regression residuals Ỹi := Yi −X�
i μ̂n, and write

the squared residuals as

Yσ
i := Ỹ2

i = X�
i

(
Di −�∗ +En +Fn,i

)
Xi ,

where we set

Di := (Ai −μ∗)(Ai −μ∗)�, En := (μ∗ − μ̂n
)(

μ∗ − μ̂n
)�

, (3.1)

Fn,i := (Ai −μ∗)(μ∗ − μ̂n
)� + (μ∗ − μ̂n

)(
Ai −μ∗)�. (3.2)

Applying the half-vectorization vec for symmetric matrices in (2.4) and the
corresponding vector transformation v in (2.7), we obtain in vector-matrix form

Y
σ
n = X

σ
n σ ∗ + εσ

n = X
σ
n,Sσ

σ ∗
Sσ

+ εσ
n ,

where

Y
σ
n :=
((

Y1 −X�
1 μ̂n
)2

, . . . ,
(
Yn −X�

n μ̂n
)2)�

, X
σ
n :=
[
v
(
X1
)
, . . . ,v
(
Xn
)]�

,

εσ
n :=
(

v
(
X1
)�vec
(
D1 −�∗ +En +Fn,1

)
, . . . ,v
(
Xn
)�vec
(
Dn −�∗ +En +Fn,n

))�
.

(3.3)

Then the adaptive LASSO estimator with regularization parameter λσ
n > 0 is given

by

σ̂ AL
n ∈ ρ AL

σ,n,λσ
n

:= argmin
β∈Rp(p+1)/2

(
1

n

∥∥Yσ
n −X

σ
n β
∥∥2

2 +2λσ
n

p(p+1)/2∑
k=1

|βk|∣∣̂σ init
n,k

∣∣
)

, (3.4)

where σ̂ init
n ∈R

p(p+1)/2 is an initial estimator of σ ∗. Note that if σ̂ init
n,k = 0, we require

βk = 0.

https://doi.org/10.1017/S0266466624000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000070


BOUNDED SUPPORT IN LINEAR RANDOM COEFFICIENT MODELS 9

3.1. Asymptotics for Fixed Dimension p

The proofs of the results in this section are deferred to Section 6 of the Supple-
mentary Material.

Assumption 1 (Fixed p). We assume that
(
X�

i ,A�
i

)�
, i = 1, . . . ,n, are identi-

cally distributed, and that:

(A1) the random coefficients A have finite forth moments,
(A2) the covariates X = (1,W�)� (or rather W) have finite eighth moments,
(A3) the symmetric matrix

Cσ := E

[
v
(
X
)

v
(
X
)�]

,

which contains the fourth moments of the covariates, is positive definite.

In the following proposition, we show that the critical third part of the assumptions
follows from our identification results in Section 2.

Proposition 3.1. Under the assumption of Theorem 2.4, that the support of
the covariate vector W contains a Cartesian product with three points in each
coordinate, Assumption 1, (A3), is satisfied, that is, Cσ is positive definite.

To formulate an asymptotic result on variable selection consistency and asymp-
totic normality in fixed dimensions, set

Bσ := E

[(
v
(
X
)�

�∗ v
(
X
))

v
(
X
)

v
(
X
)�]

, (3.5)

where

�∗ :=
[
vec
(
M11), . . . ,vec

(
Mpp
)
,vec
(
M12), . . . ,vec

(
M1p
)
,

vec
(
M23), . . . ,vec

(
M2p
)
, . . . ,vec

(
M(p−1)p

)]�
with Mkl ∈ R

p×p and(
Mkl
)

uv
:= Cov

((
Ak −μ∗

k

)(
Al −μ∗

l

)
,
(
Au −μ∗

u

)(
Av −μ∗

v

))
. (3.6)

Theorem 3.2 (Variable selection and asymptotic normality for fixed p). Sup-
pose that the estimator μ̂n of μ∗ used in the residuals Ỹi is

√
n-consistent, that is,√

n
(
μ̂n −μ∗)= OP (1).

Further, let Assumption 1 be satisfied, and assume that for the initial estimator
σ̂ init

n in the adaptive LASSO σ̂ AL
n in (3.4), we also have that

√
n
(
σ̂ init

n − σ ∗) =
OP (1). If the regularization parameter is chosen as λσ

n → 0,
√

nλσ
n → 0 and

nλσ
n → ∞, then it follows that σ̂ AL

n is sign-consistent,

P

(
sign
(
σ̂ AL

n

)= sign
(
σ ∗))→ 1, (3.7)
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and satisfies

√
n
(
σ̂ AL

n,Sσ
−σ ∗

Sσ

) d−→ Nsσ

(
0sσ ,
(
Cσ

Sσ Sσ

)−1
Bσ

Sσ Sσ

(
Cσ

Sσ Sσ

)−1
)

. (3.8)

We defer the proof of the theorem to the Section 6 of the Supplementary
Material.

Remark 3.3 (Guaranteeing a positive semi-definite matrix). Consider the pos-
itive semi-definite cone

S
+
p := {M ∈ R

p×p | M is symmetric and positive semi-definite
} ⊂ R

p×p ,

and its image under the vectorization operator

V
+
p := {vec(M) | M ∈ S

+
p

} ⊂ R
p(p+1)

2 .

It would be of interest to directly restrict the estimate of σ ∗ to V
+
p , resulting in

σ̂ AL
n,pos ∈ argmin

β∈V+
p

(
1

n

∥∥Yσ
n −X

σ
n β
∥∥2

2 +2λσ
n

p(p+1)/2∑
k=1

|βk|∣∣̂σ init
n,k

∣∣
)

, (3.9)

an actual covariance matrix. Computationally, this estimate is feasible in principle
by using methods from semidefinite programming as discussed, for example,
in Vandenberghe and Boyd (1996), or by reparameterizing positive semidefinite
matrices in terms of Cholesky factors and maximizing over these Cholesky
factors. However, technically, it is hard to extend the primal-dual witness approach
underlying the proof of Theorem 3.2 to this setting. Indeed, the primal-dual
witness approach amounts to showing that a vector with the correct sparsity
pattern asymptotically satisfies the necessary and sufficient KKT—conditions for
a minimizer of (3.4). However, these KKT conditions become intractable for the
semidefinite problem in (3.9).

Remark 3.4 (Post selection inference). The main result in Theorem 3.2 is the
sign consistency (3.7), as application of asymptotic normality (3.8) suffers from
issues of post selection inference (see, e.g., Leeb and Pötscher, 2003).

Fortunately, we have the following result, in which some coefficients are
nonrandom, while those which actually are random have a non-singular covariance
matrix.

Corollary 3.5. Under the conditions of Theorem 3.2, suppose that the covari-
ance matrix of the random coefficients in (2.1) has the form

�∗ =
[

�∗
1 0d×(p−d)

0(p−d)×d 0(p−d)×(p−d)

]
for a positive definite d ×d-matrix �∗

1 . Then P(̂σ AL
n,pos = σ̂ AL

n ) → 1, n → ∞.
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This follows from Theorem 3.2 since the blocks of zeros in �∗ are estimated
as zero with probability tending to one, and the estimate for �∗

1 will be positive
definite asymptotically with full probability, since the positive definite matrices
are open in R

d×d. Hence, the unconstrained estimator σ̂ AL
n will correspond with

probability tending to 1 to a positive semi-definite matrix, which proves the
corollary. Note that the corresponding statement would not be true for the ordinary
least squares estimator.

3.2. Diverging Number p of Parameters

Again, we shall focus on the covariance matrix, for a discussion of estimating the
means, see the Section 8 of the Supplementary Material. Recall Cσ and Bσ which
are given in (A3) and (3.5).

Assumption 2 (Growing p). We assume that
(
X�

i ,A�
i

)�
, i = 1, . . . ,n, are

identically distributed, and that:

(A4) the random coefficients A have finite fourth moments,
(A5) the vector transformation v(X) of the covariates X is sub-Gaussian after

centering,
(A6) cCσ ,l ≤ λmin

(
Cσ
)≤ λmax

(
Cσ
)≤ cCσ ,u for some positive constants 0 < cCσ ,l ≤

cCσ ,u < ∞, where λmin(A) and λmax(A) denote the minimal and maximal
eigenvalues of a symmetric matrix A,

(A7) λmax
(
Bσ
)≤ cBσ ,u for some positive constant cBσ ,u > 0,

(A8) limn→∞ p4/n = 0.

The proof of the following result is provided in Section 5.2.

Theorem 3.6 (Variable selection for diverging p). Suppose that the estimator
μ̂n of μ∗ used in the residuals Ỹi is

√
n/p-consistent, that is,

√
n/p‖μ̂n −μ∗‖2 =

OP (1). Further, let Assumption 2 be satisfied, and assume that for the initial esti-
mator σ̂ init

n in the adaptive LASSO σ̂ AL
n in (3.4), we have also

√
n/p
∥∥σ̂ init

n −σ ∗∥∥
2 =

OP (1). Moreover, if the regularization parameter is chosen as λσ
n → 0,

√
sσ nλσ

n /(σ ∗
min p) → 0, p/(σ ∗

min

√
n) → 0, nλσ

n /p2 → ∞
with σ ∗

min := mink∈Sσ |σ ∗
k |, then it follows that σ̂ AL

n is sign-consistent,

P

(
sign
(
σ̂ AL

n

)= sign
(
σ ∗))→ 1. (3.10)

Remark 3.7. Additional technical issues in the proof of Theorem 3.6, as
compared to the analysis in Zou (2006), are to deal with the residuals when
estimating centered second moments of the random coefficients as well as with the
heteroscedasticity of the model. Let us also point out that under the assumptions
of the theorem, the least squares estimator satisfies the requirements made on the
initial estimator.
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Remark 3.8. For fixed p (and Sσ ), we obtain the same conditions for the choice
of the regularization parameter as in Theorem 3.2. Moreover, if only Sσ is fixed,
but the number of coefficients grows, the first condition on the regularization
parameter in Theorem 3.6 simplifies to

√
nλσ

n /p → 0 and the second one is
satisfied by (A8).

Remark 3.9. Assumption (A5) is satisfied for bounded covariates which we
mainly focus on in this paper. If we merely assume a sub-Gaussian distribution for
the regressor vector X instead of its vector transformation v(X), we would require
a result for the rate of concentration of the sample fourth moment matrix of sub-
Gaussian random vectors in the spectral norm.

Remark 3.10. Assumption (A8) can be relaxed to limn→∞ p2/n = 0, which
is the minimal condition so that the assumptions of Theorem 3.6 can be
satisfied, if the centered coefficients A − μ∗ are sub-Gaussian as well and
limn→∞ nexp(−Cp p) = 0 holds for some positive constant Cp > 0. See Remark
5.9 after the proof of Lemma 5.8.

Remark 3.11 (Elastic net). Our results in Theorem 3.6 should extend to the
adaptive elastic net estimator, see Zou and Zhang (2009) for an analysis of the
adaptive elastic net in moderately high dimensions. The asymptotic properties
should be similar to those of the adaptive LASSO, but its numerical performance
may be better since the covariates in the design matrixXσ

n may be highly correlated.

4. SIMULATIONS

In this section, we investigate numerically the performance of the adaptive LASSO
with respect to variable selection of the variances and covariances of the random
coefficients in two settings. Moreover, we consider various combinations for the
sample size n and the number p of coefficients to study the performance for
growing p.

We consider the linear random coefficient regression model (1.1) where the
first four coefficients

(
B0,B1,B2,B3

)� ∼N4
(
μ∗

1,�
∗
1

)
are normally distributed with

mean vector μ∗
1 = (40,15,0, −10

)�
and covariance matrix

�∗
1 =

⎡⎢⎢⎣
10 15.65 −5.20 0

15.65 50 0 12.65
−5.20 0 30 −12.25

0 12.65 −12.25 20

⎤⎥⎥⎦ .

The exact correlations of the coefficients are ρ01 =Cor(B0,B1) = 0.7, ρ02 = −0.3,
ρ13 = 0.4, ρ23 = −0.5 and evidently ρ03 = ρ12 = 0. Furthermore, we set the fifth
coefficient B4 equal to 20 and add deterministic zeros for the remaining p − 5
coefficients in model (1.1). Hence, we obtain in total the mean vector

μ∗ =
((

μ∗
1

)�
,20,0�

(p−5)

)�
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and the covariance matrix

�∗ =
[

�∗
1 04×(p−4)

0(p−4)×4 0(p−4)×(p−4)

]
(which equals the setting in Corollary 3.5) for the random coefficient vector A.
Obviously, the number sσ of nonzero elements in the half-vectorization σ ∗ of the
covariance matrix �∗ is always equal to 8 for each p ≥ 5. Moreover, the covariates
W1, . . . ,Wp−1 in model (1.1) are assumed to be independent and identically uniform
distributed on the interval [−1,1] (U [−1,1]) or on the set {−1,0,1} (U{−1,0,1}).

In our numerical study, we simulate n pairs (Y1,W�
1 )�, . . . ,(Yn,W�

n )� of data
according to one of the above specified models and use them for variable selection
of the second central moments of the random coefficients. For that purpose, we
apply the adaptive LASSO σ̂ AL

n , which is given in (3.4), with the ordinary LASSO
estimator as well as the least squares estimator as initial estimators σ̂ init

n . To
determine the residuals of the first stage mean regression, we use the ordinary
least squares estimator μ̂LS

n . The adaptive LASSO is computed in our simulation
by using the function glmnet of the eponymous package. Note that the intercept
of the regression model is not penalized by this function, which means that the
variance of the random intercept B0 is not penalized in our setting. This is plausible
since the coefficient B0 includes the deterministic intercept as well as a random
error which is not affected by the covariates.

In each of the following scenarios, we perform a Monte Carlo simulation with
m = 10,000 iterations to illustrate the sign-consistency of the adaptive LASSO σ̂ AL

n
for various sample sizes, numbers of coefficients and supports for the regressors.
Its regularization parameter λ is always chosen such that the sign-recovery rate is
as high as possible. For this purpose, we use 1,000 independent repetitions in each
scenario, run through a grid for λ in each data set and determine the regularization
parameters with a correct number of degrees of freedom.

The average percentage of correct sign-recoveries are displayed in the subse-
quent Figure 1 for n = 5,000 and Figure 4 for n = 10,000 for both the least squares
estimator as well as the ordinary LASSO as initial estimators, and for both choices
of covariates. As the LASSO as initial estimator leads to much better selection
performance, we concentrate on it in the following, where we consider in more
detail, the number of false positives and false negatives.

(a) Findings for sample size n = 5,000.
Let us discuss the findings from Figures 1–3. Evidently, for both kinds of
regressors, the sign-recovery rate decreases if the number of coefficients
increases. Note that the number of parameters which are estimated grows
quadratically with the number p of random coefficients since the half-
vectorization σ ∗ of the covariance matrix �∗ has dimension p(p + 1)/2. In
particular, if we consider p = 60 coefficients in our model, we obtain 1,830
variances and covariances. Hence, the results look quite satisfying, however,
if the support of the regressors consists only of the three points {−1,0,1}, the
sign-recovery rate is somewhat lower and decreases also slightly faster, as seen
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Figure 1. Left chart shows the sign-recovery rate for U [−1,1] distributed regressors, right one for
U{−1,0,1} distributed regressors. The sample size is always n = 5,000.
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Figure 2. Relative frequency of false positives and false negatives for adaptive LASSO with LASSO
as initial estimator, U [−1,1] distributed regressors and sample size n = 5,000.

in Figure 1. Second, there are rarely false positives, so that discoveries actually
correspond to signals. The error in the sign recovery mainly stems from false
negatives, of which there are rarely more than one, as seen in Figures 2 and 3.

(b) Sample size n = 10,000.
In this setting, the sign-recovery rate is in all scenarios much higher than in

the first one with n = 5,000. See Figures 5 and 6.

For comparison, we also present a figure for the sign-recovery rate for the mean
in Figure 7. Here, even with the simple least squares estimator as initial estimator,
the sign-recovery rate is already very high for sample size n = 5,000.
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Figure 3. Relative frequency of false positives and false negatives for adaptive LASSO with LASSO
as initial estimator, U{−1,0,1} distributed regressors and sample size n = 5,000.
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Figure 4. Left chart shows the sign-recovery rate for U [−1,1] distributed regressors, right one for
U{−1,0,1} distributed regressors. The sample size is always n = 10,000.

5. PROOFS OF THE MAIN RESULTS

5.1. Proofs for Section 2

5.1.1. Proofs of Propositions 2.1 and 2.2.

Proof of Proposition 2.1. Set u = √
Var(B1). From s2

2 = s2
1 +u2 +2ρ s1 u and

|ρ| ≤ 1, we obtain the inequalities

(u− s1)
2 ≤ s2

2 ≤ (u+ s1)
2.

By equating s2
2 = (u + s1)

2, we obtain the solutions ±s2 − s1 for u, which yields
u ≥ s2 −s1 if s2 > s1. If s2 ≤ s1, we obviously have only the bound u ≥ 0. Equating
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Figure 5. Relative frequency of false positives and false negatives for adaptive LASSO with LASSO
as initial estimator, U [−1,1] distributed regressors and sample size n = 10,000.
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Figure 6. Relative frequency of false positives and false negatives for adaptive LASSO with LASSO
as initial estimator, U{−1,0,1} distributed regressors and sample size n = 10,000.

s2
2 = (u− s1)

2 gives the solutions ±s2 + s1 for u, which yields the bounds

u ∈ [|s1 − s2|,s1 + s2
]

for the standard deviation u = √
Var(B1). Solving the equation at the beginning

for the correlation gives ρ = (s2
2 − s2

1 − u2)/(2s1u), which ranges over the whole
interval [−1,1] if s2 > s1. If s1 ≥ s2, the correlation must be negative, and

maximizing the above expression for ρ over u yields u =
√

s2
1 − s2

2, and finally
the upper bound in (2.3). �

Proof of Proposition 2.2. It is enough to show that all mixed moments of order
n are identified from n + 1 support points, the claim then follows by induction.
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Figure 7. Left chart shows the sign-recovery rate for U [−1,1] distributed regressors, right one for
U{−1,0,1} distributed regressors. The sample size is always n = 5,000.

By model (2.2), we obtain

E
[
Yn
∣∣W1 = w

]= E
[
(B0 +wB1)

n
]= n∑

k=0

(
n

k

)
wk

E
[
Bn−k

0 Bk
1

]
.

If W has distinct support points w1, . . . ,wn+1, we obtain a linear system for the
moments E

[
Bn−k

0 Bk
1

]
, k = 0, . . . ,n. Its design matrix satisfies

det

((
n

k −1

)
wk−1

j

)
j,k∈{1,...,n+1}

=
n∏

l=0

(
n

l

)
det
(

wk−1
j

)
j,k∈{1,...,n+1}

=
n∏

l=0

(
n

l

) ∏
1≤j<k≤n+1

(wk −wj) �= 0,

so that the solution is unique. In the last equation, we used the determinant of the
Vandermonde matrix. �

5.1.2. Proof of Theorem 2.3. The proof needs some preparations. Recall that
points w1, . . . ,wd ∈ R

d−1 are said to be in general position if
∑d

k=1 αkwk = 0d−1

for αk ∈ R,
∑d

k=1 αk = 0, implies that α1 = ·· · = αd = 0. The following result is
well-known.

Lemma 5.1. Points w1, . . . ,wd ∈ R
d−1 are in general position if and only if one

of the following conditions holds.

(1). w2 −w1, . . . ,wd −w1 are linearly independent.
(2). For each j ∈ {1, . . . ,d}, the point wj is not contained in

{∑d
k=1,k �=j αkwk |∑d

k=1,k �=j αk = 1
}
, the hyperplane generated by wk,k �= j.
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Lemma 5.2. If the support of W contains p points w1, . . . ,wp ∈ R
p−1 in general

position, then the means μ∗ = E[A] are identified.

Proof of Lemma 5.2. The design matrix of the linear system E[Y |W = wj] =
E[B0]+w�

j E[B], j = 1, . . . ,p, has the same rank as the matrix⎡⎢⎢⎢⎣
1 w�

1
0 w�

2 −w�
1

...
...

0 w�
p −w�

1

⎤⎥⎥⎥⎦ ,

which is invertible by Lemma 5.1. �

Proof of Theorem 2.3. Suppose that S is of full rank. Since S contains the
matrix⎡⎢⎣1 2w�

1
...

...
1 2w�

p(p+1)/2

⎤⎥⎦ ∈ R
p(p+1)

2 ×p

as a submatrix, in order for S to have full rank, it is necessary that this subma-
trix has rank p. This implies that there are p points among the support points
w1, . . . ,wp(p+1)/2 in general position, thus identifying the means by Lemma 5.2.
Then, the linear system which determines Var(Y |W = wj) in terms of the entries
of �∗ has full-rank design matrix S, see (2.6), thus identifying �∗ from the
conditional variances.

Conversely, let m = p(p+1)/2. Suppose that the condition is not satisfied, then
all support points w of W are such that the vectors v

(
(1,w�)�

)
are contained in

an (m − 1)-dimensional linear subspace V of Rm. The p × p-dimensional positive
semi-definite matrices form a convex cone with interior consisting of positive
definite matrices in the space of all p × p-dimensional symmetric matrices. The
image under the map vec is thus a convex cone C ⊂ R

m with non-empty interior
in R

m.
Let z be a unit vector orthogonal to V, and let Z be the p × p-dimensional

symmetric matrix for which vec(Z) = z. Since the positive definite matrices
are open in the space of all p × p-dimensional symmetric matrices, given a
positive definite matrix �∗, for small ε > 0 the matrix �1 = �∗ + ε Z will still
be positive definite, and hence a covariance matrix. Moreover, it is vec(�1) =
vec(�∗)+ ε vec(Z) = vec(�∗)+ ε z and (1,w�)Z (1,w�)� = v

(
(1,w�)�

)�
z = 0

for w in the support of W by construction. Hence, the conditional variances
(1,w�)�∗ (1,w�)� and (1,w�)�1 (1,w�)� will be the same over the support
of W. Thus, for normally distributed A ∼ Np(0p,�

∗) or A ∼ Np(0p,�1), the
conditional normal distributions of Y |W = w will coincide, showing nonidenti-
fiability. �
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5.1.3. Proof of Theorem 2.4. For the proof of the theorem, we require the
following lemma.

Lemma 5.3. Suppose that the support of W in (1.1) contains points satisfying
the following properties.

(1). The p points w1, . . . ,wp ∈ R
p−1 are in general position.

(2). For each j ∈ {1, . . . ,p}, there exist points wj,1, . . . ,wj,p−1 ∈ R
p−1, possibly

equal to those in 1, such that:
• wj,wj,1, . . . ,wj,p−1 are in general position,
• for each j ∈ {1, . . . ,p}, k ∈ {1, . . . ,p − 1}, there is a zj,k ∈ R

p−1 for which
wj,wj,k,zj,k are all distinct but generate only a one-dimensional affine
space, that is, are all contained in a line.

Then the design matrix S in (2.8) formed from all the points wj,wj,k,zj,k has full
rank p(p + 1)/2 and hence, the mean vector μ∗ and the covariance matrix �∗ of
the random coefficients A are identified.

The minimal number of support points required in this lemma is p + p(p −
1)/2 = p(p + 1)/2, which corresponds to the number of free parameters in �∗.
For the proof of Lemma 5.3, we first need the following two preliminary lemmas.

Lemma 5.4. Suppose that � is a p × p-dimensional symmetric matrix and
v1, . . . ,vp ∈R

p is a known basis of Rp. If v ∈R
p and v�� vj, 1 ≤ j ≤ p, is identified,

then v�� u is identified for any vector u ∈ R
p. In particular, � is identified from

the values v�
j � vk, 1 ≤ j ≤ k ≤ p.

Proof of Lemma 5.4. Given u ∈ R
p, we may write u = ∑p

j=1 λjvj with
λ1, . . . ,λp ∈ R. Then

v�� u =
p∑

j=1

λjv�� vj ,

showing the first claim. For the second, let ek = (0, . . . ,0,1,0, . . . ,0)� denote the
kth unit vector in R

p. By assumption, one may write ek =∑p
j=1 λk,jvj, where λk,j ∈

R and 1 ≤ k ≤ p. Then

�kl = e�
k � el =

p∑
j1,j2=1

λk,j1λl,j2 v�
j1
� vj2 .

The result follows from the assumptions and the symmetry of �. �

Lemma 5.5. Let v1,v2,v3 ∈ R
p be such that each pair is linearly independent,

but all three are linearly dependent, so that v3 = λ1v1 +λ2v2, where λ1,λ2 �= 0.
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Then for a p×p-dimensional symmetric matrix �, it holds that

v�
1 � v2 = 1

2λ1λ2

(
v�

3 � v3 −λ2
1 v�

1 � v1 −λ2
2 v�

2 � v2

)
.

Proof of Lemma 5.5. Plug in the expression for v3 and compute the right side
of the equation. �

Proof of Lemma 5.3. By Lemma 5.2 and the first assumption, the means μ∗
are identified. Hence, we obtain the equations (2.5) or equivalently (2.6) with
w ranging over the support points mentioned in the statement of the lemma. To
show that the design matrix S in (2.8) has full rank p(p+1)/2, it suffices to show
that from these equations one can uniquely solve for σ ∗. To this end, from the
second assumption, for j ∈ {1, . . . ,p} and k ∈ {1, . . . ,p−1}, letting v1 = (1,w�

j )�,
v2 = (1,w�

j,k)
�, and v3 = (1,z�

j,k)
� in Lemma 5.5, we identify (1,w�

j )�∗ (1,w�
j,k)

�.
Since (1,w�

j )�∗ (1,w�
j )� are also identified, from the first part in Lemma 5.4, we

identify (1,w�
j )�∗ (1,w�

l )�, j,l ∈ {1, . . . ,p}. Hence, from the second part of that
lemma and the first assumption �∗ itself is identified. �

Proof of Theorem 2.4. For the sufficiency, suppose that the support of Wj

contains {wj,k, k = 1,2,3}, j = 1, . . . ,p−1. We apply Lemma 5.3 with:

• wj = (w1,1, . . . ,wj−1,1,wj,2,wj+1,1, . . . ,wp−1,1)
�, j = 1, . . . ,p − 1, and wp =

(w1,1, . . . ,wp−1,1)
�,

• for j ∈ {1, . . . ,p − 1}, let wj,k, k ∈ {1, . . . ,p − 1}, k �= j, enumerate the points
having kth coordinate wk,2 and jth coordinate wj,2, otherwise coordinates wi,1,
the corresponding zj,k having kth coordinate wk,3, jth coordinate wj,2, otherwise
coordinates wi,1. Furthermore, let wj,j = wp, and let zj,j have jth coordinate wj,3,
otherwise wi,1,

• let wp,k = wk, k ∈ {1, . . . ,p − 1}, and zp,k = (w1,1, . . . ,wk−1,1,wk,3,wk+1,1, . . . ,

wp−1,1)
�.

The requirements of the lemma are then easily checked by applying Lemma 5.1(1).
The necessity of at least three support points in each coordinate, if �∗ has full rank,
is clear from Example 2.1. �

5.1.4. Proofs for Section 2.2.

Proof of Proposition 2.5. The claims in (1) are clear. For (2), in both cases,
from Var(B0) = Var(B0 +B1), we get that

Var(B1) = −2Cov(B0,B1) .

Since the covariance matrix Cov
(
(B0,B1,B�

2 )�
)

is positive semi-definite, setting
s = Var(B1), we hence require

s(z2 − zv1)+v�
Cov
(
(B0,B�

2 )�
)

v ≥ 0 (5.1)

for any z ∈ R, v = (v1, . . . ,vp−1)
� ∈ R

p−1.
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(a) Choose v ∈ R
p−1 in the kernel of Cov

(
(B0,B�

2 )�
)

for which v1 > 0. If we
assume s > 0, then for 0 < z < v1 the form in (5.1) would be negative. Hence
s = 0 in this case.

(b) If Cov
(
(B0,B�

2 )�
)

has full rank, then for the minimal eigenvalue λmin > 0 of
Cov
(
(B0,B�

2 )�
)
, we have that

v�
Cov
(
(B0,B�

2 )�
)

v ≥ λmin ‖v‖2
2 .

Therefore, the form in (5.1) is positive definite for 0 ≤ s ≤ 4λmin. �

Proof of Theorem 2.6. By (2.12), the symmetric multilinear form

u(v1, . . . ,vk) = E
[
(A�v1) ·. . . · (A�vk)

]
, vj ∈ R

p, j = 1, . . . ,k,

is identified over the diagonal

ũ(v) = u(v, . . . ,v)

for v� = (1,w�) with w in the support of W. We shall show that the symmetric
multilinear form u is identified. Then, inserting unit vectors (0, . . . ,0,1,0, . . . ,0)

yields the kth-order mixed moments.
By multilinearity, it suffices to show that u is identified over a basis of Rp, that

is, there exists a basis v1, . . . ,vp of Rp such that u(vi1, . . . ,vik) is identified for all
choices ij ∈ {1, . . . ,p}. To this end, we use the polarization formula for symmetric
multilinear forms (Thomas, 2014, Formula (7)), which we write as

u(v1, . . . ,vk) = 1

k!

k∑
j=1

(−1)k−j
∑

{i1,...ij}⊆{1,...,k}
jk ũ
(
(vi1 +·· ·+vij)/j

)
. (5.2)

Now for w1, . . . ,wp as in the assumption of the theorem, the vectors (1,w�
i ), i =

1, . . . ,p are linearly independent by the proof of Lemma 5.2, and for j ∈ {1, . . . ,k}
and i1, . . . ,ij ∈ {1, . . . ,p}, we have(
(1,w�

i1
)+·· ·+ (1,w�

ij
)
)
/j = (1,(wi1 +·· ·+wij)

�/j
)

with (wi1 + ·· · + wij)
�/j in the support of W. Hence, the terms on the right of

(5.2) are identified for k (not necessarily distinct) vectors (1,w�
i ), thus also the

form u. �

5.2. Proofs for Section 3.2

5.2.1. Proof of Theorem 3.6. Consider the following decomposition of the
error term (3.3):

εσ
n = δn + ζn + ξn (5.3)
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with

δn :=
(

v
(
X1
)�

vec
(
D1 −�∗), . . . ,v(Xn

)�
vec
(
Dn −�∗))� , (5.4)

ζn :=
(

v
(
X1
)�

vec
(
En
)
, . . . ,v
(
Xn
)�

vec
(
En
))�

,

ξn :=
(

v
(
X1
)�

vec
(
Fn,1
)
, . . . ,v
(
Xn
)�

vec
(
Fn,n
))�

.

The matrices D1, . . . ,Dn,En,Fn,1, . . . ,Fn,n are defined in (3.1) and (3.2). For the
proof of Theorem 3.6, we need the following auxiliary lemmas.

Lemma 5.6. Set Zσ,1
n = 1

n

(
X

σ
n

)�
δn, then

∥∥Zσ,1
n

∥∥
2 = OP

(
p/

√
n
)
.

Proof of Lemma 5.6. It is

E

[∥∥∥Zσ,1
n

∥∥∥2
2

]
= 1

n2
E

[
δ�

n X
σ
n (Xσ

n )�δn

]
= 1

n2
E

[
trace
(
(Xσ

n )�δn δ�
n X

σ
n
)]

= 1

n2
E

[
trace
(
(Xσ

n )�E
[
δn δ�

n
∣∣Xσ

n
]
X

σ
n
)]= 1

n
trace

(
E

[
1

n
(Xσ

n )��σ
n X

σ
n

])
,

where �σ
n = Cov

(
δn

∣∣Xσ
n

)
is a diagonal matrix with entries v(X1)

��∗ v(X1), . . . ,

v(Xn)
��∗ v(Xn) (see Lemma 6.2 in the Supplementary Material). It is obvious

that

E

[
1

n
(Xσ

n )��σ
n X

σ
n

]
= Bσ ,

and hence, we obtain by Assumption (A7), the estimate

E

[∥∥Zσ,1
n

∥∥2
2

]
= trace

(
Bσ
)

n
≤ λmax

(
Bσ
)

p(p+1)

2n
≤ cBσ ,u p(p+1)

2n
.

Markov’s inequality implies the assertion. �

Lemma 5.7. Set Zσ,2
n = 1

n

(
X

σ
n

)�
ζn, then

∥∥Zσ,2
n

∥∥
2 = OP (p/n).

Proof of Lemma 5.7. It is∥∥Zσ,2
n

∥∥
2 =
∥∥∥∥∥1

n

n∑
i=1

(
e�

i ζn
)
v
(
Xi
)∥∥∥∥∥

2

=
∥∥∥∥∥1

n

n∑
i=1

(
v
(
Xi
)�

vec
(
En
))

v
(
Xi
)∥∥∥∥∥

2

≤
∥∥∥∥∥1

n

n∑
i=1

v
(
Xi
)

v
(
Xi
)�∥∥∥∥∥

M,2

∥∥vec
(
En
)∥∥

2 .

We multiply each entry of En, which is not on the diagonal, with
√

2 and denote
the resulting matrix by Ẽn. Then it is clear that

∥∥vec
(
En
)∥∥

2 ≤ ∥∥vec
(
Ẽn
)∥∥

2 and∥∥vec
(
Ẽn
)∥∥

2 = ‖En‖F. Moreover, recall that En = (μ∗ − μ̂n
)(

μ∗ − μ̂n
)�

is a
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rank-one matrix; and hence ‖En‖F ≤ ‖μ̂n −μ∗‖2
2. Hence, we obtain

n

p

∥∥Zσ,2
n

∥∥
2 ≤
∥∥∥∥1

n

(
X

σ
n

)�
X

σ
n

∥∥∥∥
M,2

n

p

∥∥μ̂n −μ∗∥∥2
2 = OP (1)OP (1) = OP (1)

since
√

n/p‖μ̂n −μ∗‖2 = OP (1). �

Lemma 5.8. Set Zσ,3
n = 1

n

(
X

σ
n

)�
ξn, then

∥∥Zσ,3
n

∥∥
2 = OP

(
p3/2/n5/8 +p2/n3/4

)
.

In particular, we obtain by Assumption (A8), the convergence
√

n/p
∥∥Zσ,3

n

∥∥
2 =

OP

(
p1/2/n1/8 +p/n1/4

)= oP (1).

Proof of Lemma 5.8. It is∥∥∥Zσ,3
n

∥∥∥
2
=
∥∥∥∥∥1

n

n∑
i=1

(
e�

i ξn
)
v
(
Xi
)∥∥∥∥∥

2

= 2

∥∥∥∥∥1

n

n∑
i=1

(
X�

i
(
Ai −μ∗)X�

i
(
μ∗ − μ̂n

))
v
(
Xi
)∥∥∥∥∥

2

≤ 2

∥∥∥∥∥1

n

n∑
i=1

(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i

∥∥∥∥∥
M,2

∥∥μ∗ − μ̂n
∥∥

2 , (5.5)

and we have again
√

n/p‖μ̂n −μ∗‖2 = OP (1). Moreover, let

Tn(τn) =
n⋂

i=1

{∥∥Ai −μ∗∥∥
2 ≤ τn

}
with τn > 0, then we obtain∥∥∥∥ 1

n

n∑
i=1

(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i

∥∥∥∥
M,2

≤
∥∥∥∥ 1

n

n∑
i=1

(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

∥∥∥∥
M,2

+
∥∥∥∥ 1

n

n∑
i=1

(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1T c
n (τn)

∥∥∥∥
M,2

≤
∥∥∥∥ 1

n

n∑
i=1

((
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn) −E

[(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

])∥∥∥∥
M,2

+
∥∥∥∥ 1

n

n∑
i=1

E

[(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

]∥∥∥∥
M,2

+
∥∥∥∥ 1

n

n∑
i=1

(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1T c
n (τn)

∥∥∥∥
M,2

.

(5.6)

For the first term of the sum, we get∥∥∥∥1

n

n∑
i=1

((
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn) −E

[(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

])∥∥∥∥
M,2

= sup
u1∈Rp(p+1)/2,u2∈Rp,

‖u1‖2,‖u2‖2≤1

1

n

n∑
i=1

(
u�

1 v
(
Xi
)(

X�
i
(
Ai −μ∗)X�

i u2

)
1Tn(τn)

−E

[
u�

1 v
(
Xi
)(

X�
i
(
Ai −μ∗)X�

i u2

)
1Tn(τn)

])
.

(5.7)
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For the second factors in brackets, we obtain by the definition of the half-
vectorization vec in (2.4) and the vector transformation v in (2.7), the equation

X�
i
(
Ai −μ∗)X�

i u2 = X�
i
(
Ai −μ∗)u�

2 Xi = 1

2
X�

i

((
Ai −μ∗)u�

2 +u2
(
Ai −μ∗)�)Xi

= 1

2
v
(
Xi
)�vec
((

Ai −μ∗)u�
2 +u2

(
Ai −μ∗)�).

For the half-vectorization we can argue analogously as in Lemma 5.7 and bound
its Euclidean norm by

1

2

∥∥∥vec
((

Ai −μ∗)u�
2 +u2

(
Ai −μ∗)�)∥∥∥

2
≤ 1

2

∥∥∥(Ai −μ∗)u�
2 +u2

(
Ai −μ∗)�∥∥∥

F

≤
∥∥∥(Ai −μ∗)u�

2

∥∥∥
F

≤ ∥∥Ai −μ∗∥∥
2 ‖u2‖2 .

Suppose that v(X) is sub-Gaussian with variance proxy τ 2
v(X), then conditionally on

the coefficients A1, . . . ,An, which are independent of the regressors X1, . . . ,Xn, we
obtain in (5.7) for each u1,u2, a sum of centered and independent products consist-
ing of two sub-Gaussian random variables with variance proxies τ 2

v(X)‖u1‖2
2 ≤ τ 2

v(X)

and τ 2
v(X)‖Ai −μ∗‖2

2 ‖u2‖2
2 ≤ τ 2

v(X) τ
2
n . Hence, in particular, the products are sub-

exponential with parameter bounded by C1 τ 2
v(X) τn for a universal constant C1 > 0

(see Vershynin (2018, Lem. 2.7.7)). Following the covering argument and applying
the tail bound of sub-exponential random variables as in Wainwright (2019, Thm.
6.5) leads to

P

(∥∥∥∥1

n

n∑
i=1

((
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

−E

[(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

])∥∥∥∥
M,2

≥ C2 τn
p√
n

)
≤ C3 exp

(−C4 p2)
for universal constants C2,C3,C4 > 0. Furthermore, we obtain for the third term
in the sum in (5.6), the estimate

P

(∥∥∥∥1

n

n∑
i=1

(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i 1T c
n (τn)

∥∥∥∥
M,2

≥ t

)
≤ P
(
T c

n (τn)
)≤ C5

p2 n

τ 4
n

for t > 0, since

P
(
T c

n (τn)
)= P

( n⋃
i=1

{∥∥Ai −μ∗∥∥
2 > τn

})
≤

n∑
i=1

P

(∥∥Ai −μ∗∥∥
2 > τn

)
= nP
(∥∥A−μ∗∥∥

2 > τn

)
≤ nE
[‖A−μ∗‖4

2

]
τ 4

n

= n

τ 4
n

p∑
k,l=1

E

[(
Ak −μ∗

k

)2(
Al −μ∗

l

)2]≤ C5
p2 n

τ 4
n

(5.8)
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holds for a positive constant C5 > 0 by Assumption (A4). Moreover, we obtain

E

[(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

]
= E

[(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i

(−1T c
n (τn)

)]
because

E

[(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i

]
= E

[(
X�

i E
[
Ai −μ∗ ∣∣Xi

])
v
(
Xi
)

X�
i

]
= 0 p(p+1)

2 ×p

is satisfied by the independence of Xi and Ai. Hence, the Cauchy–Schwarz
inequality implies for the second term in (5.6), the estimate∥∥∥∥1

n

n∑
i=1

E

[(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

]∥∥∥∥
M,2

= sup
u1∈Rp(p+1)/2,u2∈Rp,

‖u1‖2,‖u2‖2≤1

1

n

n∑
i=1

E

[(
X�

i

(
Ai −μ∗))u�

1 v
(
Xi
)

X�
i u2
(−1T c

n (τn)

)]

≤ sup
u1∈Rp(p+1)/2,u2∈Rp,

‖u1‖2,‖u2‖2≤1

(
E

[(
X�(A−μ∗))2(

u�
1 v
(
X
))2(

X�u2
)2]

P
(
T c

n (τn)
)) 1

2

.

Further,

sup
u1∈Rp(p+1)/2,u2∈Rp,

‖u1‖2,‖u2‖2≤1

E

[(
X�(A−μ∗))2(u�

1 v
(
X
))2(

X�u2
)2] 1

2

≤ sup
u1∈Rp(p+1)/2,u2∈Rp,

‖u1‖2,‖u2‖2≤1

E

[(
X�(A−μ∗))4] 1

4

E

[(
u�

1 v
(
X
))8] 1

8

E

[(
X�u2
)8] 1

8

≤ C6E

[
E

[(
X�(A−μ∗))4 ∣∣∣∣A]]

1
4

≤ C7E

[∥∥A−μ∗∥∥4
2

] 1
4 ≤ C8

√
p,

where C6,C7,C8 > 0 are positive constants, since v
(
X
)

and X are sub-Gaussian
and hence their moments exist (see Wainwright (2019, Thm. 2.6)). This implies
together with (5.8), the upper bound∥∥∥∥1

n

n∑
i=1

E

[(
X�

i
(
Ai −μ∗))v(Xi

)
X�

i 1Tn(τn)

]∥∥∥∥
M,2

≤ C8
√

p
(
P
(
T c

n (τn)
)) 1

2 ≤ C8

√
C5

p3/2 √
n

τ 2
n

.

So all in all collecting, the terms leads to

P

(∥∥∥∥1

n

n∑
i=1

(
X�

i

(
Ai −μ∗))v(Xi

)
X�

i

∥∥∥∥
M,2

≥ 2C2
τn p√

n
+2C8

√
C5

p3/2 √
n

τ 2
n

)

≤ C5
p2 n

τ 4
n

+C3 exp
(−C4 p2

)
.
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If p2n/τ 4
n → 0 is satisfied, we obtain by (5.5), the rate

∥∥Zσ,3
n

∥∥
2 = OP

(
τn p3/2

n
+ p2

τ 2
n

)
.

Let τn = n3/8, then p2n/τ 4
n = p2/

√
n → 0 by Assumption (A8), and

∥∥Zσ,3
n

∥∥
2 = OP

(
p3/2

n5/8
+ p2

n3/4

)
.

�

Remark 5.9. Suppose that the vector A − μ∗ is sub-Gaussian with variance
proxy τ 2

A, then we can use in the proof of Lemma 5.8, the estimate

P

(∥∥A−μ∗∥∥
2 > τn

)
=
(

sup
v∈Rp,‖v‖2≤1

v�(A−μ∗)> τn

)
≤ 6p exp

(
− τ 2

n

8τ 2
A

)
,

(see Rigollet and Hütter (2019, Thm. 1.19)). Let τn =
√

(Cp + log(6))8τ 2
A p with

Cp > 0, then

nP
(∥∥A−μ∗∥∥

2 > τn

)
≤ n exp

(
− (Cp + log(6))8τ 2

A p

8τ 2
A

+p log(6)

)
= n exp

(−Cp p
) → 0.

Hence
∥∥Zσ,3

n

∥∥
2 = OP

(
p2/n
)

and, in particular,
√

n/p
∥∥Zσ,3

n

∥∥
2 = OP

(
p/

√
n
) =

oP (1).

Proof of Theorem 3.6. We shall use the primal-dual witness characterization
of the adaptive LASSO in Lemma 7.1 in the Section 7 of the Supplementary
Material, to prove the sign-consistency (3.10). We obtain by Assumption (A5) and
Wainwright (2019, Thm. 6.5) that∥∥∥∥1

n
(Xσ

n )�Xσ
n −Cσ

∥∥∥∥
M,2

= OP

(√
p(p+1)/n

)
= OP

(
p/

√
n
)
,

which implies together with the Assumptions (A6) and (A8), the invertibility of
the Gram matrix for large n, and hence by Loh and Wainwright (2017, Lem. 11),
we get also∥∥∥∥∥
(

1

n
(Xσ

n )�Xσ
n

)−1

− (Cσ
)−1

∥∥∥∥∥
M,2

= OP

(
p/

√
n
)

.

Furthermore, basic properties of the �2 operator norm and Assumption (A6) lead
to∥∥∥∥(Xσ

n,Sc
σ

)�
X

σ
n,Sσ

((
X

σ
n,Sσ

)�
X

σ
n,Sσ

)−1 −Cσ
Sc
σ Sσ

(
Cσ

Sσ Sσ

)−1
∥∥∥∥

M,2

=
∥∥∥∥∥1

n

(
X

σ
n,Sc

σ

)�
X

σ
n,Sσ

(
1

n

(
X

σ
n,Sσ

)�
X

σ
n,Sσ

)−1

−Cσ
Sc
σ Sσ

(
Cσ

Sσ Sσ

)−1
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(5.9)
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by Lemmas 5.6–5.8 and (5.9), where
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Hence, it follows by (5.11) that the first condition (7.1) of Lemma 7.1 in the
Supplementary Material is satisfied with high probability for a sufficient large
sample size n. Furthermore, let

σ̃n,Sσ = σ ∗
Sσ

+
(

1

n

(
X

σ
n,Sσ

)�
X

σ
n,Sσ

)−1(1

n

(
X

σ
n,Sσ

)�
εσ

n −λσ
n

(
1

|̂σ init
n,Sσ

| � sign
(
σ ∗

Sσ

)))
.

Then, we obtain
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by Assumption (A8), and hence the second condition, sign
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Lemma 7.1 in the Supplementary Material is also satisfied with high probability
for large sample sizes n. Sign-consistency of the adaptive LASSO and σ̂ AL

n,Sσ
= σ̃n,Sσ

is the consequence. �
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