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A b s t r a c t . We describe the basic process of coupling between dynamo and density waves in 
galaxies. The growth rate of magnetic field as a result of coupling is derived, applying the method 
of multiple time scales to the marginal state of disk dynamo. It is shown that the lst-order 
resonance in a perturbation of density σ/σο, and thus the linear swing excitation, is possible. 
Moreover, the growth rate of magnetic field is always positive and does not depend on the initial 
phase difference between the magnetic and density waves. Both the numerical and analytical 
calculations show that ω = 2α>ο (ω: density-wave freq., u>o: dynamo freq.) is still the best condition 
for resonance due to the linear effect of swing excitation. 
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1. Introduction 

Galactic dynamos have been developed to explain the magnetic fields in nearby 
galaxies (Parker 1979, Ruzmaikin et al. 1988). However, the standard models have 
some serious problems, especially to explain the existence of bisymmetric magnetic 
field structure (BSS field). Chiba & Tosa (1990) (CT) proposed the role of velocity 
disturbance by spiral density waves; if the density wave disturbs the dynamo in such 
a way that the frequency of disturbance ω is twice of the dynamo frequency ω0, 
the magnetic field grows via parametric resonance, or so called Swing Excitation 
mechanism (see also Hanasz et al. 1991). Recently, however, Schmitt L· Rüdiger 
(1992) (SR) criticized CT suggesting that the case ω = *γωο with 7 = 2 does not 
play a special role in the field evolution. 

In this contribution, we demonstrate that the argument in SR does not work to 
deny our former results (Hanasz & Chiba 1993); the fundamental state of magnetic 
fields adopted in SR (the marginal state of dynamo) is represented as only one 
dynamo wave, which is quite different from that in CT. This is the main reason they 
could not obtain the parametric resonance in their model. We show that considering 
the basic behaviors of disk dynamos, the magnetic field is powered by the density 
wave, especially by the wave with frequency 2ω0. 

2. Analytical approach for the coupling problem 

2 . 1 . MARGINAL STATE OF DISK DYNAMO 

The dynamo equations disturbed by density waves are derived by CT. The phase 
of disturbance χ is given as χ = ut + φο. The basic equations are 
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dB ΒΑ d2B ( n , dA r „ . \ 

where A and Β denote poloidal and toroidal magnetic fields, respectively. Ra and 
D are parameters for α-effect and αω-dynamo, respectively, and ά the vertical 
dependence of α-effect. We have extracted the smallness parameter ε = σ/σο, the 
perturbation of gas density, from f\ and /2 in CT, which are now defined as, 

= «2/2Ω, and /2 = —ω. The analytical solutions of equs.( 1 ) and ( 2 ) for 
ε = 0 are available when α is a step function, ά = 1 for 0 < ζ < 1 and a = —1 for 
— 1 < ζ < 0 (Parker 1979). In this case, the internal solutions within a disk can be 
represented as the superposition of 4 modes; 

Β = Re B„ exp(At) e x p , (3) 

because the dispersion relation derived from equs.( 1 ) and ( 2 ) is 4th order in the 
wavenumber k of magnetic fields, (k2 -f A)2 — iaDk = 0. Parker (1979) obtained the 
phase velocities of 4 modes when the dynamo is marginal (ReA = 0 and ωο = ImA φ 
0). The 4 roots of dispersion relation satisfy J2k n = 0, therefore the components 
propagate with both the positive and negative phase speeds in z-direction. For 
example, in the limit \iu>o/D2f3\ C 1 (or \A\ <C 1 in Parker's notation), components 
of the oscillatory solution propagate in the ^-direction with the phase velocities 
given by 

u 2. ω0 2 w0 ΤΛ 3 _ 1 / 3 __ I D 3 . 
3 ~ 2W° 1 4 4 ~ - 2 ^ · (4> 

Here it is important to notice that due to the boundary conditions this 
marginal state is composed of each of 4 waves, and that in the model 
of SR, there is only one component in marginal state (because another 
component with a different sign of phase velocity is largely damped). As we shall 
show later, this point is very crucial in the question of the coupling between the 
density waves and the marginal state of dynamo. 

2 . 2 . T H E F I R S T - O R D E R RESONANCE 

Now let us turn to the coupling problem between dynamo and density waves. Follow-
ing the above discussion, suppose that the fundamental state of dynamo is simply 
given as exp i(u>0t — kz) + exp — + kz) + c.c, where ω0 and k are assumed to be 
real and positive and c.c denotes complex conjugation of all the preceding terms. 
The first wave propagates in the positive z-direction while the second toward ζ = 0. 
Then under the influence of density waves exp(2ia>otf) + exp(—2ιωοί) (i.e. 7 = 2 in 
SR), the new waves with a form of exp — ifaot + kz) + exp ι(ωοί — kz) -j- c.c are pro-
duced as well as other waves with frequencies 3u>o and — 3u>o. It follows that the first 
component of the fundamental mode (with the positive phase velocity) coupled to 
the density wave powers the second component (with the negative phase velocity) 
and vice versa. In contrast, in the approach of SR, the term exp— i(uot + kz) in 
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the fundamental state and thus the term exp i(uot — kz) in the new waves are ab-
sent, so that their fundamental wave exp i(u>o< — kz) cannot be powered in this first 
coupling. This is the implication of the mentioned fact that their marginal state 
contains only one wave and in this respect does not correspond to the properties of 
the disc dynamo. If one properly considers the marginal state represented as the 
superposition of both the positive and negative phase velocity components, some of 
them are readily powered by density waves with frequency 2ω0 in the first order in 
the density-wave amplitude. Therefore, it suggests the occurrence of the first-order 
resonance, or linear swing excitation when η — 2. 

2 . 3 . M U L T I P L E TIME-SCALE M E T H O D 

We derive the actual solution for this coupling problem by applying the multiple 
time-scale method (see e.g. Nayfeh L· Mook, 1981). In the following, we describe 
only the outline of the formulation. For details, see Hanasz & Chiba (1993). 

We assume that ά is a step function. Firstly, we expand equs. ( 1 ) and ( 2 ) in ε 
introducing A = A0 + εΑχ + . . . , Β = B0 +εΒλ + ..., t0 = ε0*, tx = ε 1 * , . . . , 
and assume the marginal state for ε = 0 as, 

4 4 
= Σ M ^ e " 1 * « + c.c, B0 = Σ K{h)e-iknZe^ + c.c., (5) 

n=1 η—1 
where ωο is real, and kn a complex wavenumber. In order to describe the slow time 
evolution of the amplitudes of Ao and Bo we introduced the dependences on the 
slow time scale t\ in an(ti) and bn(tχ). 

Our present goal is not to derive the solution for A\ and Βχ} but rather to 
find the condition imposed on an(ti) and bn(ti) in order to ensure the solutions 
for A\ and B\ the proper asymptotic behavior. We postulate that the solution is 
to be uniformly valid, what can be formally expressed by the requirement that in 
the limit to —• oo the ratio εΑχ/Αο < oo. In order to obtain the uniformly valid 
solution, we have to postulate that the secular producing terms in equations for A\ 
and Bi (composed of an(ti) and bn(ti) and their derivatives) vanish. 

Let us concentrate on the case 7 = 2 (χ = 2u>0t0) and \iu>0/D2t3\ < 1. In 
this case we obtain Vz2 = —Vz\ in the mentioned approximation, what means 
that the 'new wave' produced via coupling from the component associated to k\ 
posses the same phase speed as the 'existing' fundamental mode associated to 
and vice versa. This fact makes the lst-order resonance possible. Also, the other 
waves associated to £3 and k4 are powered together with these modes through the 
boundary condition at ζ = 1. Then the requirement of vanishing of the secular 
terms leads to the set of equations for an(ti) and 6n(ii), which posses the solutions 
proportional to exp(sn*i), where the growth rate sn is given by 

^ = <
6

> 

Notice that sn is obtained from the lst-order approximation in ε = σ/σο. Thus in 
the order of magnitude, sn depends linearly on (Äa/1 , /2), and the growth rate in 
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the time scale t0 is linear in the density-wave amplitude ( ε# α / ι , £ /2 ) · Therefore, 
when 7 = 2 , the rapid growth of the field is possible. In contrast, the results in SR 
are 2nd order in ε, because their fundamental state of dynamo does not allow the 
waves with the negative phase velocity so that the linear effect of coupling is null. 

Let us turn to the cases 7 = 1 and y = 3. In such a case the density wave do not 
couple the components of our fundamental mode in the 1st order of ε, so that an 
does not depend on t\ but the second time scale In other words, the oscillation 
exp(±27u>o<) with 7 = 1 or 3 produces the terms exp(±iu>ot) after twice couplings 
with the fundamental mode exp(±iu>00· ^ means that the resonances for 7 = 1 
and 7 = 3 are 2nd order in ε, and the resultant growth rates are smaller than that 
for 7 = 2 by a factor ε. 

3. Numerical results 

We have also performed the numerical simulations of the disc dynamo represented 
by equs.( 1 ) and ( 2 ) for a general function of a. As in CT, we first calculate the 
unperturbed state (ε = 0), and obtain the dynamo number D and the frequency ωο 
in a marginal state. For even dynamo mode and ot = sin πζ, we obtain D = 166.05 
and ωο = 13.31. Next, we turn on the disturbance of density wave parametrized by 
( εΛ α / ι , ε/2) with a phase χ = 7cjq^ + Φο· O n the base of each calculation done up 
to t = 5000 in a unit of diffusion time we compute the growth rate Re s of magnetic 
field resulting from the resonant coupling of the marginal mode of magnetic field 
and the density wave. The goal of these simulations is to check qualitatively our 
present and previous analytical results and make the comparison to the results of 
SR. 

We check "first, the suggestion of SR that there is no dependence of resonance 
on the initial phase relation between the dynamo and density waves. We investigate 
two cases with phases φο = 0 and —π/2. We find that even if the case φο = —π/2 
starts to decay for a first moment, it turns to grow, and grows forever as in the 
case φο = 0. The final growth rates for both cases are exactly the same. Thus the 
present phenomenon of resonance does not depend on the initial phase relation as 
shown by SR. However, this property is not related to the beat phenomena as SR 
mentioned, otherwise the initial transient phase lasts and as a result the growth 
rate shall change with time. 

Secondly, we attempt to clarify whether the resonance is of lst-order or 2nd-
order in the amplitude of density wave. For this purpose, we determine the depen-
dence of the growth rate Re s on (ε/2α/ ι , ε/2). Here we redefine (d, e) = ( ε # α / ι , ε/2) 
with the aim of simplifying notation and for making the differences between our 
results and that of SR more apparent. In Fig.l, we plot the numerically derived Re s 
when 7 = 2 . The distribution of each mark strongly suggests the linear dependency 
of Re s on the amplitude (d, e). In fact, we fit a function 

Re s (d,e ;ci ,c2) = | ci(e + c 2 ^ d ) | (7) 

to the discrete set of points, where and c2 are factors. This functional form is 
the same as the analytically derived growth rate in eq.( 6 ) when kn —• 0, and is 
linear in d and e. In Fig.l, each line corresponds to the above function with (ci, C2) 
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Fig. 1. Dependence of Re s on e (a) and d (b) 
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Fig. 2. Dependence of Re 5 on 7 
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obtained from the least square procedure. In both figures, the values of χ for fitting 
are of the order 0(10~3) to 0(10~5), which means the fitting to a straight line is 
good with high accuracy, In contrast, SR showed that Re s is quadratic in d and e 
(see their Fig.3), which disagrees with out present results. 

Furthermore, Fig.2 shows how Re s depends on 7 values. The solid line for 7 = 2 
is the above fitting function with (ci,c2) = (0.185, 0.761), and dotted and dashed 
curves are ones by simply connecting among marks for the cases 7 = 1 (circles) and 
3 (boxes), respectively. This figure clearly indicates that the case 7 = 2 leads to the 
largest growth rate, strongly inconsistent with SR (see their Fig.4). Moreover, we 
observe that the curves for 7 = 1 and 3 are not linear in e but vary more or less in 
a quadratic manner, suggesting the higher-order resonance in d and e. 

To conclude: both analytical and numerical calculations indicate that when 
7 = 2, the resonance in the 1st order of density-wave perturbation, or linear swing 
excitation is possible, and thus such a case gives the largest growth rate of magnetic 
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fields in galaxies. This result confirms qualitatively our previous and present ana-
lytical results, however a small, but noticeable quantitative discrepancy concerning 
the value of c\ is observed. For more details concerning this point see Hanasz & 
Chiba (1993). 
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