STABILITY OF INTERPOLATION ON AN INFINITE INTERVAL
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1. Introduction. In 1958, Egervary and Turdn [3] pro-
posed and solved the problem of finding a stable interpolation
process of minimal degree on a finite interval. Later [4] they
investigated the same problem for an infinite interval with a
suitable modification of the definition of stability. For the inter-
val (-0, ) their definition naturally differs from the one for
the semi-infinite interval. More recently Baldzs [1] considered
the same problem for the open interval (-1, 1) and his defini-
tion of stability differs from that of Egervdry and Turdn [3] by a

factor (1 - xz)a+1, a> -1. In the present work we consider a

definition of stability for the infinite interval which differs from
the corresponding one in [4] by the introduction of a factor

+1 . . .
xa , > -1. We then obtain the "most economical'' interpola-

tion process which is stable in the sense of the definition. In
§ §4,5, we take up the problem of convergence of the interpola-
tory polynomials considered in § 3.

. . . th .
2. Consider a triangular matrix whose n  row is

(2.1) 0<x1n<x2n<...<xnn<co,

n * .n
) i 1 b .
and let {yvn} {yvn} be arbitrary real numbers

*
Let Rn(x) and Rn(x) be polynomials given by

* .
This research has been supported by the National Research
Council (N.R.C.) Grant MCA-41 to the Department of Mathem-
atics, University of Alberta, Edmonton, Alberta.

Canad., Math. Bull. vol. 9, no. 5, 1966

655

https://doi.org/10.4153/CMB-1966-079-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-079-x

n * *
(2.2) R.n(x) = Zi Yvn uv(x), Rn(x) = ? Yvn uv(x),
v: v=

(2.3) uk(xjn) = skj' (Kroneker delta)

where uk(x) are the fundamental polynomials. Then we shall

say that the process of interpolation defined on (2.1) by (2.2),
(2.3) is stable if for some o > -1

- *
(2.4) 0< xc'{-H e * an(x) - Rn (x)l

We shall call the sum of the degrees of the polynomials
u (x) the degree of the process Rn’ so that the "most economical'!
v

process is the process whose degree is smallest. We shall prove
the following theorems.

THEOREM 1. The ""most economical'' interpolation pro-
cess R (x) which is stable in the sense of (2.4) is obtained if
n

and only if the abscissas x n (1< v<n) of (2.1) are the zeros
v fvs

th
of n Laguerre polynomial L(Q)

n (x), @« > -1 and the minimal

degree of Rn(x) is n(2n- 2).

The explicit form of Rn(x) is given by (3.5).

THEOREM 2. If f(x) is continuous in 0 < x < », then
""most economical' interpolatory polynomial R (x) of Theorem 1
n

interpolating f(x) in the nodes (2.1) converges to f(x) uniformly

in 0<e<x<w <™.

If in (2.1) we allow 0< x, and if we replace (2.4) by
= 1n

1 -x * * o*
(2.4a) Oixa e fR (x)-R (x)|<max ]y -y lxa+1e vn’
n n -y vn ’vyn

vn
0<x< o,
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then for the polynomials R.n(x) of Theorem 1, the abscissas are

the zeros of xL(a+1)
n-1

then (n - 1) (2n- 1). For a=-1, we then get the result of
Egervary and Turdn [3].

(x), > -1, and the minimal degree is

For the proof of the Theorem 1, we shall need the following

LEMMA 1. I {x} ?  denote the zeros of Lia)
v v

=1 (x) ’

then for 0 < x< o, we have

(2.5) v(x) 3¢t X

b4 L(a)
n

(@)

n

(x)
> o0.

n
- 2 x ;
v=1 L7 (x Mx-x)
v v

Proof. For x (v =1,2,...,n) we have v(x ) =0,
—_— v v

x x
2 v

-1 -o-
« ev-(a+1)xa e -
v

Vi(x )=x
v v

"

X L(a) (x )
-(Z-'i v n v
x e — = 0,

v ()"
L (=)

owing. to the differential equation

(2.6) xw () +(@+1-% w (x) +nw () =0
n n n

(o)

satisfied by w (x) = L~ (x)
n n

i.e., v(x) has at least 2n real zeros at the x 's. If for a
v

¢ we had v(£)< 0, then owing to v(0) = +w, v(x) had at least
one more real zero. Then according to Rolles theorem

2n
v( ) (x) would have at least one real zero. But this contradicts
the fact, because

X)(Zn) - (x-ar-i o )(Zn) >0,

v(
and this completes the proof of the lemma.
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We shall also make use of the weaker inequality

e * (
1

i{‘)OH-‘1 12(x)< 1, x>0,
Xy v -

My

(2.7)

1]

v

which is obvious from (2.5).

3. Proof of Theorem 1. We shall henceforth write x
v

for x and y for vy , 1<v<n. Wefirstprove the ne-

vn v vn - =
cessity of the condition in Theorem 1. Choosing y =1 for

v
FS
v=k and vy =0, v#k and vy =0, 1<v<n, we obtainfrom
v v - -

(2.3) and (2.4), the inequality

(3.1) 0_<__Fk(x)§1 (x>0, 1<k<n)

where we set

-x
F () = ( —Xx;)"‘“ .

w (%),
whence from (2.1) and (2. 3) we have
(3.2) uk(xv) = u;(xv) =0, v# k.

o
Also from (2. 3) and (3.1), we have Fk(xk) =1, and Fk (xk) = 0.

From the last condition we have owing to (2. 3)

at1

(3.3) uk(xk)=— —;k— +1.

If w_(x) =
n

nas

(X_X))
v

v=1

w (x)

then (3.2) shows that LLk(X) is divisible by ( ) so that

the degree of R is > n(2n - 2). If the process R is "most
n - n
economical, then it is enough to take

w (x)

- n ]2
(3. 4) LG B )WL ()
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From (3.3), we now obtain on differentiating (3. 4)

w"( ) a+ 1 -
nxk = - xk,1<k<n.

) T TR ek

Whence % w;(xk) +{a+1- xk) W;l(xk) =0, 1<k<n

so that x w; (x) + (@ +1 - x) WI'1 (x) = C wn(x) = for some constant

C

T}.ms w (x) = L(a)
n

n

(x}), with C=-n. Hence

(@)

n

L' (x)

(o)

n

2
v, 1v (x), 1V(X) =

(3.5) R (x) =
o 1 (x-xv)L

v

M

(x )
v
and this proves the necessary part.

To prove the sufficiency we show that the interpolatory
polynomials Rn(x) in (3.5) satisfy the stability condition (2. 4).

From the inequality (2.5) proved in lemma 1 we have

n X -X L
+
(3.6) = (-}—;—‘—)“ eV —= <1, x> 0.

1 7y L(a) (x )(x-x)
n v v

14

®
Due to the non negativity of 12 (x) and arbitrary v , vy (v=1,2,..
v v v

we have
n n n X
+ 2 * 2 ¥ ot
o< Flzy 2oz v lmle T (ly -y ey
v v vV Vv - v Vv v
v=1 v=1 v=1
-X
+ 2
(=)t v 1) .

Thus owing to (3. 6) the interpolatory polynomials (3.5) satisfy
the stability condition (2.4). This proves Theorem 1.

4. To prove Theorem 2, we need the following results.
For the Hermite-Fejér interpolation on Laguerre abscissas we
have [Szegd 4]
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n at+1 - x Lia)(x)
(4.1) = 1+ —8 (x-x ) [ : 7 = 1.
v=1 Xy v L(Q)(x x-x )
n v v

Let sz denote the continuity module of f(x) with respect to
the interval [0, 2w ], then for positive \ and § with \§ < 2
the inequality

(4.2) KZu (A&6)< (n +1)K2w(6)

holds. Further we shall need the following lemmas:
LEMMA 2. For e< x<w, we have
n

= |x-x Iiz (x) <
b=t v v

c n-i/4
3

Proof. We write

n
T |x-x | 1 2(x) = +

v v -
v=1 |x-x | < n lx-xvl >n

(4.3)

< wa-l-i n-1/4 .

Because of inequality (2.7),
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S, = Z le-x | 12 (x)
v v

2 [x-x | > n-u4
v

L e 1

= Z S\
]x—xv, > n-i/4 (x- xv) [L(a’)(xv)}2

n 1
-<_ n1/4 [L(Q’) (X)]Z Z _,(, )_ — _____2__

n v=1 [Luf (x )]

Now using the following two formulas

(4.4) Lila)(x) = x-a/z - 1/4 O(na,/2 - 1/4 cn-1

[4] p.175, formula (7.6.8.) and

(4.5) z 2 L@y
v n v

v=1

2 _ TI'n+4)I(m+a+1)
N IT(n+a+1) ’

m a positive integer < 2n - 1, [4]p.343, formula (14.7.5.), we
have

1/4 a-1/2 -q

S <c n 0(n ) 0(n )

(4.6) -1/4
n

<
__C5

Thus (4. 3) and (4.6) complete the proof of lemma 2.

LEMMA 3. For e <x<w , we have

1/4

™My

" ;1— Ix—xvl 15(}{)5 <. a

Proof. We again write
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v=i v
= = +
- -1/4
lx-x | <ot xx |>n
v = v
As before
atl
-x ati -X X _ 12x
e x Sy = = -1 /4 ” IX le v( )
Ix—x |< n
v
n a+1
- - 2
< 1/4 - X X 1v(x)
v=1 v
n
- - + 2
<t s () 11v(x), @>0
v=1 v
n
- - 2
< 1/4 o - x(xx)oz+1 1% (%), a< 0
v=1 v
Hence, if c, = max (ea,wa), we have
n
- - - 2
e an+1 s, <c_n 1/4 = ex(—}i)a 1 1 (x) for o> -1
3— 7 vt Xv v
(4.7)
<c a1/
-7
owing to the inequality (2.7).
1 2
For 5, = = /4 = Ix-xv| 1v(x)
Ix-x I >n
v
662
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-1/4 _(a), 2 T(n+1)I{o+3)
=n Ln (x) T(e+n+1)

(4.8)

n-1/4 na-i/Z) O(n-a)

A

0
C8 (

<< REVEN

Thus (3.7) and (3.8) prove lemma 3.
From Lemma 2 and Lemma 3 we at once have the

LEMMA 4. For e <x<w we have

™ B

2 -1/4
1v(x)-1§c1on .

i

y=1

In fact we have from the Hermite-Fejér interpolation [Szegd 4]

n
5 (1+&i_1_;_’_‘y)(x-x)12(x)=1
x Y
v=1 v
i.e.
n n n
2
Z 1 (x)-1=Z (x—x)iz(x)-(q+1) = —L(x-x)iz(x).
v vV oV X vV v
v=1 v=1 v=4i v
LEMMA 5. We have
= 12(x)_<_c4n-1/2 e <x<w
x >20
v
Proof, Since ¢ < x<w and x > 2w, we have
I v

]x-x [ >w, so that using (4.4) and (4.5)
v
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s 1P(m< [L(“) )]° ;:1 S S
e>20 ¥ G2 ™ et (L (2 )PP
v n \Y]

2 I'(n+1) INat+2)
T(n+a+1)

)

a-1/2

<c 0(n -«

) 0(n )

<c n-i/2
- 11 )

5. Proof of Theorem 2. The proof of this theorem runs

exactly on the lines of the proof given by J. Baldzs and P. Turan

[2]. We sketch its proof simply for the sake of completeness.
Let |f(x)| <M for x> 0. Then

n n
2 2
[R_(£) - £x) | = | = (f(x)-£(x) 17 (x) - £(x) {1 - = 17 ()} |
n v v v
v=1 v=1
(5.1)
i 2 i
<z |fx)- (=) |17 @+ =] [1- = 17 =)].
v=4 vV v=1 Y
Owing to lemma 4, we have for ¢ <x<w,
n
(5.2) i) | [1- = 1%(x)|<c, Mn /4
v - 10
v=1
Again, for ¢ < x<o,
- 2
T |f(x) - £f(x)] 17(x) = = + =
v=1i v v e <x <2w x > 2w
v v
< = KZ (Ix-x ]) 12(x)+c n-il2
e <x <20 W v v 11
v
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(5.3) n
<K (n-1/4) [n-i/4 z |x-x | 12(x)
- 2w v v
v=1
n
+ = 12(x)]+ " n'i/2
v=1 v
-1/4 -1/4 -1/2
SC3K2w (n )+c12K2w(n )+c11n

using lemmas 2, 4, 5 and the remark (4.2) on the modulus of
continuity of £(x). Thus (5.1), (5.2) and (5. 3) complete the
proof of Theorem 2.

6. Results analogous to theorems 1 and 2 can be obtained
if we define stability on (-, ©) by the requirement

2
0 < x|/ e™* R (x)- R (x)]
- n n
max -XZ
<t<ven ly -y | |x | o v®
- - vn vn vn -0 X< ©

It turns out that for a ""most economical' stable interpola-
(k)

tion, the xj's must be the zeros of the polynomials Hn (x)

which form a generalization of Hermite polynomials. The im-
portant properties of these polynomials are given in [6], p.377.
The proofs are analogous to the proofs of Theorem 1 and 2.
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