Ramsey Number of Wheels Versus Cycles and Trees

Ghaffar Raeisi and Ali Zaghian

Abstract

Let $G_{1}, G_{2}, \ldots, G_{t}$ be arbitrary graphs. The Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the smallest positive integer n such that if the edges of the complete graph K_{n} are partitioned into t disjoint color classes giving t graphs $H_{1}, H_{2}, \ldots, H_{t}$, then at least one H_{i} has a subgraph isomorphic to G_{i}. In this paper, we provide the exact value of the $R\left(T_{n}, W_{m}\right)$ for odd $m, n \geq m-1$, where T_{n} is either a caterpillar, a tree with diameter at most four, or a tree with a vertex adjacent to at least $\left\lceil\frac{n}{2}\right\rceil-2$ leaves, and W_{n} is the wheel on $n+1$ vertices. Also, we determine $R\left(C_{n}, W_{m}\right)$ for even integers n and $m, n \geq m+500$, which improves a result of Shi and confirms a conjecture of Surahmat et al. In addition, the multicolor Ramsey number of trees versus an odd wheel is discussed in this paper.

1 Introduction

In this paper, we are only concerned with undirected simple finite graphs, and we follow [1] for terminology and notations not defined here. For a graph G, we denote its vertex set, edge set, minimum degree, and chromatic number by $V(G), E(G)$, $\delta(G)$, and $\chi(G)$, respectively. If $v \in V(G)$, we use $\operatorname{deg}_{G}(v)$ (or simply $\operatorname{deg}(v)$) and $N(v)$ to denote the degree and neighbors of v in G, respectively. The complement graph of a graph G is denoted by \bar{G}, and as usual, a complete graph, cycle, path, and a star on n vertices are denoted by K_{n}, C_{n}, P_{n}, and $K_{1, n-1}$, respectively. We also use T_{n} to denote an arbitrary tree on n vertices. The wheel W_{m} is the graph on $m+1$ vertices obtained from the cycle C_{m} by adding one vertex x, called the hub of the wheel, and making x adjacent to all vertices of C_{m}, called the rim of the wheel. The wheel W_{m} is called even (odd) if m is even (odd).

For given graphs $G_{1}, G_{2}, \ldots, G_{t}$, the Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is the smallest integer n such that if the edges of a complete graph K_{n} are partitioned into t disjoint color classes giving t graphs $H_{1}, H_{2}, \ldots, H_{t}$, then at least one H_{i} has a subgraph isomorphic to G_{i}. The existence of such a positive integer is guaranteed by Ramsey's classical result [13]. Since the 1970's, Ramsey theory has grown into one of the most active areas of research within combinatorics, overlapping variously with graph theory, number theory, geometry and logic. For a summary, we refer the reader to the regularly updated survey by Radziszowski [12].

In this paper, we study the Ramsey numbers of odd wheels versus trees and also the Ramsey number of even wheels versus even cycles. Recently, the Ramsey numbers

[^0]of wheels versus trees and cycles have been investigated by several authors. It was shown [2] that $R\left(T_{n}, W_{5}\right)=3 n-2$ for $n \geq 4$ and any tree T_{n} that is not an star. In [5] it was proved that $R\left(P_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$ and for the Ramsey number of a star versus a wheel, Chen et al. proved that $R\left(K_{1, n-1}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$. Furthermore, Baskoro et al. [2] posed the following conjecture.

Conjecture 1.1 If m is odd and $n \geq m-1 \geq 6$, then $R\left(T_{n}, W_{m}\right)=3 n-2$.
Also Surahmat et al. [15-17] showed that $R\left(C_{n}, W_{4}\right)=2 n-1$ and $R\left(C_{n}, W_{5}\right)=$ $3 n-2$ for $n \geq 5$, and in general, $R\left(C_{n}, W_{m}\right)=2 n-1$ for even m and $n \geq \frac{5 m}{2}-1$. In view of these results, Surahmat et al. [16,17] posed the following conjecture.

Conjecture 1.2 If m is even and $n \geq m \geq 5$, then $R\left(C_{n}, W_{m}\right)=2 n-1$.
In [14], the author improved the result of Surahmat et al. [16,17] by reducing the lower bound of n from $\frac{5 m}{2}-1$ to $\frac{3 m}{2}+1$, i.e., it is proved that $R\left(C_{n}, W_{m}\right)=2 n-1$ for m even and $n \geq \frac{3 m}{2}+1$.

The aim of this paper is to improve the result of Shi [14] for the Ramsey numbers of even wheels versus even cycles by reducing the lower bound of n from $\frac{3 m}{2}+1$ to $m+500$, which confirms Conjecture 1.2 for even wheel W_{m} and even cycle $C_{n}, n \geq m+500$. In addition, we provide the exact value of the $R\left(T_{n}, W_{m}\right)$ for m odd and $n \geq m-1$, where either T_{n} has diameter at most four or has a vertex with at least $\left\lceil\frac{n}{2}\right\rceil-2$ leaf neighbors. In Section 3, we will consider the multicolored Ramsey number of trees versus an odd wheel and determine $R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, W_{m}\right)$ for odd m and $m \leq$ $\sum_{i=1}^{t}\left(n_{i}-1\right)+2$.

2 Main Results

We begin with some notation and definitions. A graph G is called H-free if it does not contains H as a subgraph. The notation $e x(p, H)$ is defined as the maximum number of edges in a H-free graph on p vertices. The exact value of the $e x\left(p, C_{n}\right)$ is known in some cases. The following theorem can be found in the [1, appendix IV].

Theorem 2.1 ([1]) If n and p are positive integers such that $n \leq \frac{1}{2}(p+3)$, then $\operatorname{ex}\left(p, C_{n}\right)=\left\lfloor\frac{p^{2}}{4}\right\rfloor$.

In 1959, Erdős and Gallai [8] proved that every graph G on p vertices and at least $\frac{(n-2)}{2} p+1$ edges contains a path of order n, i.e., ex $\left(p, P_{n}\right) \leq \frac{(n-2)}{2} p$. Motivated by this result, Erdős and Sós conjectured that if G is a graph on p vertices and more than $\frac{(n-2)}{2} p$ edges, then G contains every tree T on n vertices. In other words, ex $\left(p, T_{n}\right) \leq$ $\frac{(n-2)}{2} p$. Various specific cases of this conjecture have already been proved. Let \mathcal{F} denote the set of all trees satisfying this conjecture. It is proved in $[7,10,11]$ that trees with diameter at most four, caterpillars and trees containing a vertex with at least $\left\lceil\frac{n}{2}\right\rceil-$ 2 leaf neighbors are all in \mathcal{F}. Now, we begin with the following theorem. Before that, we note that any graph G with $\delta(G) \geq n-1$ contains every tree T_{n} as a subgraph [1].

Theorem 2.2 If $n \geq m-1, m$ odd and $T_{n} \in \mathcal{F}$, then $R\left(T_{n}, W_{m}\right)=3 n-2$.
Proof To see that $R\left(T_{n}, W_{m}\right) \geq 3 n-2$, let $G=3 K_{n-1}$. Clearly G contains no copy of T_{n}, and \bar{G} contains no copy of W_{m}, since $\chi\left(W_{m}\right)=4$ and $\chi(\bar{G})=3$.

To see the reverse inequality, we first prove that $R\left(T_{n}, C_{m}\right) \leq 2 n-1$. For this purpose, assume that $H=K_{2 n-1}$ is edge-colored red and blue and H^{r} and H^{b} are the subgraphs of G induced by the red and blue edges, respectively. We prove that $T_{n} \subseteq H^{r}$ or $C_{m} \subseteq H^{b}$. Since $T_{n} \in \mathcal{F}$, thus we may assume that

$$
\left|E\left(H^{r}\right)\right| \leq \frac{(n-2)}{2}(2 n-1)
$$

otherwise $T_{n} \subseteq H^{r}$. Also, by Theorem 2.1, we may assume that $\left|E\left(H^{b}\right)\right| \leq \frac{(2 n-1)^{2}}{4}$. One can easily check that

$$
\left|E\left(H^{r}\right)\right|+\left|E\left(H^{b}\right)\right|<|E(H)|=(2 n-1)(n-1)
$$

which means that $R\left(T_{n}, C_{m}\right) \leq 2 n-1$.
To prove $R\left(T_{n}, W_{m}\right) \leq 3 n-2$, let $G=K_{3 n-2}$ be edge-colored red and blue and let G^{r} and G^{b} be subgraphs of G induced by the edges of colors red and blue, respectively. We claim that $T_{n} \subseteq G^{r}$ or $W_{m} \subseteq G^{b}$. If there exists a vertex $v \in V(G)$ such that $\operatorname{deg}_{G^{b}}(v) \geq 2 n-1$, then $G[N(v)]$ contains a red copy of T_{n} or a blue copy of C_{m}, since $R\left(T_{n}, C_{m}\right) \leq 2 n-1$. This yields a red copy of T_{n} or a blue copy of W_{m} with hub v in G. Thus, we may assume that $\operatorname{deg}_{G^{b}}(v)<2 n-1$, for each vertex $v \in V(G)$. This means that $\operatorname{deg}_{G^{r}} \geq n-1$, and hence we obtain that G^{r} contains a copy of T_{n}. This observation completes the proof.

The following corollary follows from Theorem 2.2, which gives some classes of trees satisfying Conjecture 1.1.

Corollary 2.3 If m is odd and $n \geq m-1$, then $R\left(T_{n}, W_{m}\right)=3 n-2$, where T_{n} is either a caterpillar, a star, a tree with diameter at most four, or a tree with a vertex adjacent to t leaves where $t \geq\left\lceil\frac{n}{2}\right\rceil-2$.

For a graph G, the circumference of G, denoted by $c(G)$, is the length of its longest cycle, and the girth of G, denoted by $g(G)$, is the length of its shortest cycle. A graph on n vertices is Hamiltonian if the circumference of G is n. A graph is called weakly pancyclic if it contains cycles of every length between the girth and the circumference. A graph is pancyclic if it is weakly pancyclic with girth 3 and circumference n. A graph G of order n is called panconnected if every pair of vertices in G is joined by a path of length k for all $1<k<n$.

In the rest of this section, we prove that $R\left(C_{n}, W_{m}\right)=2 n-1$, for even integers n, m with $n \geq m+500$. The following results will be used in the proof.

Theorem 2.4 (Brandt et al. [3]) Let G be a 2-connected non-bipartite graph of order n with minimum degree $\delta(G) \geq \frac{n}{4}+250$. Then G is weakly pancyclic unless G has odd girth 7, in which case it has cycles of every length from 4 up to its circumference except the pentagon.

Theorem 2.5 (Dirac [6]) Let G be a 2-connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.

Theorem 2.6 (Faudree and Schelp [9]) $\quad R\left(C_{n}, C_{m}\right)=n+\frac{m}{2}-1, n$ and m even, and $n \geq m \geq 6$.

Theorem 2.7 (Faudree and Schelp [9]) If G is a graph of order n with $\delta(G) \geq n / 2+1$, then G is panconnected

Now, we are ready to determine $R\left(C_{n}, W_{m}\right)$ when m and n are even integers with $n \geq m+500$.

Theorem 2.8 If m and n are even and $n \geq m+500$, then $R\left(C_{n}, W_{m}\right)=2 n-1$.
Proof To see that $R\left(C_{n}, W_{m}\right) \geq 2 n-1$, let $G=2 K_{n-1}$. Clearly, G contains no copy of C_{n}, and \bar{G} contains no copy of W_{m}, since $\chi\left(W_{m}\right)=3$ and $\chi(\bar{G})=2$. To see the reverse inequality, assume that $G=K_{2 n-1}$ is 2-edge colored red and blue and G^{r} and G^{b} are subgraphs of G induced by the red and blue edges, respectively. We prove that $C_{n} \subseteq G^{r}$ or $W_{m} \subseteq G^{b}$. Note that if G^{r} is bipartite, then one partite set has at least $n \geq m+1$ vertices which implies that $W_{m} \subseteq G^{b}$. Thus, we may assume that G^{r} is a nonbipartite graph. Also if there exists a vertex $v \in V(G)$ such that $\operatorname{deg}_{G^{b}}(v) \geq n+\frac{m}{2}-1$, then $G[N(v)]$ contains a red copy of C_{n} or a blue copy of C_{m}, since by Theorem 2.6, $R\left(C_{n}, C_{m}\right)=n+\frac{m}{2}-1$. This yields a red copy of C_{n} or a blue copy of W_{m} with hub v in G.

Therefore, we may assume that $\operatorname{deg}_{G^{b}}(v)<n+\frac{m}{2}-1$ for each vertex $v \in V(G)$. This implies that $\delta\left(G^{r}\right) \geq n-\frac{m}{2}$. If G^{r} is 2-connected, then by Theorem 2.5, $c\left(G^{r}\right) \geq$ $2 n-m \geq n$. Since $\delta\left(G^{r}\right) \geq n-\frac{m}{2} \geq(2 n-1) / 4+250$, by Theorem 2.4 we have $C_{n} \subseteq G^{r}$. Thus, we may assume that G^{r} is not 2 -connected. Note that if B is a block of G^{r} with at least three vertices, then $|V(B)| \geq \frac{m}{2}+500$, since $\delta\left(G^{r}\right) \geq n-\frac{m}{2}$ and $n \geq m+500$. Now, we consider the following cases.

Case 1. G^{r} contains exactly two blocks. Let B_{1}, B_{2} be blocks of G^{r} with $B_{1} \cap B_{2}=\{x\}$. Since $\delta\left(G^{r}\right) \geq n-\frac{m}{2}$, we conclude that each of B_{1}, B_{2} contains at least three vertices. Let each $B_{i}, i=1,2$, have b_{i} vertices and without lose of generality, let $b_{1}>b_{2}$. Since G contains $2 n-1$ vertices, thus $b_{1} \geq n$. If $\delta\left(B_{1} \backslash\{x\}\right) \geq\left(b_{1}-1\right) / 2+1$, then by Theorem 2.7, $B_{1} \backslash\{x\}$ is panconnected, and so there exists a path of length $n-2$, say P, between any two vertices $u, w \in N(x) \cap B_{1}$. Clearly, $x u P w$ form a copy of C_{n} in G^{r}, i.e., $C_{n} \subseteq B_{1} \subseteq G^{r}$. Thus, we may assume that $B_{1} \backslash\{x\}$ contains a vertex v such that $\operatorname{deg}_{B_{1} \backslash\{x\}}(v) \leq\left(b_{1}-1\right) / 2$. Let X be the set of non-neighbors of v in $B_{1} \backslash\{x\}$. Clearly, any $m / 2$ vertices of $B_{2} \backslash\{x\}$ and any $m / 2$ vertices of X together with v form a blue copy of W_{m} with hub vertex v. This means that $W_{m} \subseteq G^{b}$.
Case 2. G^{r} contains at least three blocks. If G^{r} contains at least three blocks B_{1}, B_{2}, B_{3} with $\left|V\left(B_{i}\right)\right| \geq 3, i=1,2,3$, then any $m / 2$ vertices of B_{1} and B_{2} and a vertex $v \in B_{3}$ form a blue copy of W_{m} with the hub vertex v. Thus, we have a copy of W_{m} in G^{b} unless $G^{r}=B_{1} \cup B_{2} \cup B_{3}$, where B_{1} and B_{3} are blocks with $\left|V\left(B_{1}\right)\right| \geq\left|V\left(B_{2}\right)\right| \geq 3$ and B_{3} is an edge $e=x y$ joining B_{1} and B_{3}. Let $x \in B_{1} \cap B_{3}$ and each $B_{i}, i=1,2$, has b_{i} vertices and
$b_{1}>b_{2}$. Thus, $b_{1} \geq n$, since G contains $2 n-1$ vertices. If $\delta\left(B_{1} \backslash\{x\}\right) \geq\left(b_{1}-1\right) / 2+1$, then by Theorem 2.7, $B_{1} \backslash\{x\}$ is panconnected, and so there exists a path of length $n-2$, say P, between any two vertices $u, w \in N(x) \cap B_{1}$. Clearly, $x u P w$ is a copy of C_{n} in G^{r}, i.e., $C_{n} \subseteq B_{1} \subseteq G^{r}$. Thus, we may assume that $B_{1} \backslash\{x\}$ contains a vertex v such that $\operatorname{deg}_{B_{1} \backslash\{x\}}(v) \leq\left(b_{1}-1\right) / 2$. Let X be the set of non-neighbors of v in $B_{1} \backslash\{x\}$. Clearly, any $m / 2$ vertices of $B_{2} \backslash\{x\}$ and any $m / 2$ vertices of X together with v form a blue copy of W_{m} with hub vertex v. This means that $W_{m} \subseteq G^{b}$, which completes that proof.

3 Multicolored Version

In this section, we will consider the multicolor Ramsey number of trees versus an odd wheel, and we determine $R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, W_{m}\right)$ where m is odd and $m \leq$ $\sum_{i=1}^{t}\left(n_{i}-1\right)+2$. The exact value of the multicolor Ramsey number for stars is calculated in [4], which is given in the following theorem.

Theorem 3.1 ([4]) If $R=R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}\right)$ and $\Sigma=\Sigma_{i=1}^{t}\left(n_{i}-1\right)$, then
(i) $R=\Sigma+2$ if either Σ is odd or Σ is even and all n_{i} 's are odd;
(ii) $R=\Sigma+1$ if Σ is even and at least one n_{i} is even.

Hereafter, for given positive integers $n_{1}, n_{2}, \ldots, n_{t}$ we use Σ to denote $\Sigma_{i=1}^{t}\left(n_{i}-1\right)$. In the following theorem, we determine $R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, C_{m}\right)$ for odd $m, m \leq$ $\Sigma+2$.

Theorem 3.2 Let m be odd, $\Sigma \geq m-2$ and $r=R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}\right)$. Then

$$
R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, C_{m}\right)=2 r-1
$$

Proof By the definition, there exists a t-edge coloring, say c, of K_{r-1} such that the i-th color class, $1 \leq i \leq t$, contains no copy of $K_{1, n_{i}}$. Let A and B be two disjoint copies of K_{r-1} whose edges are colored by t colors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ according to c. Now, color the remaining edges of $2 K_{r-1}$ (edges between A and B) by an additional color α_{t+1}. Clearly, the induced graph on edges with color α_{t+1} is a bipartite graph and so cannot contain C_{m}, because m is odd. This observation shows that $R \geq 2 r-1$.

Now, assume that $K_{2 r-1}$ is edge-colored by colors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t+1}$ and let $H_{i}, 1 \leq$ $i \leq t+1$, denote the subgraph of $K_{2 r-1}$ induced by edges with color α_{i}. Using Theorem 2.1 and the fact that $K_{1, n_{i}} \in \mathcal{F}, 1 \leq i \leq t$, we may assume that

$$
\left|E\left(H_{i}\right)\right| \leq \frac{n_{i}-1}{2}(2 r-1), \quad\left|E\left(H_{t+1}\right)\right| \leq\left\lfloor\frac{(2 r-1)^{2}}{4}\right\rfloor .
$$

Using Theorem 3.1, one can easily check that $\sum_{i=1}^{t+1}\left|E\left(H_{i}\right)\right|<\left|E\left(K_{2 r-1}\right)\right|$, which means that $R \leq 2 r-1$. This observation completes that proof.

Finally, using Theorem 3.2, we have the following theorem, which determines the exact value of the $R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, W_{m}\right)$ for odd $m, m \leq \Sigma+2$.

Theorem 3.3 If m is odd, $\Sigma \geq m-2$ and $r=R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}\right)$, then

$$
R\left(K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{t}}, W_{m}\right)=3 r-2
$$

Proof By the definition, there exists a t-edge coloring of K_{r-1}, say c, such that the i-th color class, $1 \leq i \leq t$, contains no copy of $K_{1, n_{i}}$. Let A, B, and C be three disjoint copies of K_{r-1} whose edges are colored by t colors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ according to c. Now, color the remaining edges of $3 K_{r-1}$ (edges between A, B, and C) by an additional color α_{t+1}. Clearly, the induced graph on edges with color α_{t+1} is tripartite and so cannot contain W_{m}, because $\chi\left(W_{m}\right)=4$. This observation shows that $R \geq 3 r-2$.

Now, consider an arbitrary $(t+1)$-edge coloring of $G=K_{3 r-2}$ by colors $\alpha_{1}, \alpha_{2}, \ldots$, α_{t+1} and let $H_{i}, 1 \leq i \leq t+1$, be the subgraph of $K_{3 r-2}$ induced by the edges of color α_{i}. We assume that $K_{1, n_{i}} \nsubseteq H_{i}, 1 \leq i \leq t$, and we prove that $W_{m} \subseteq H_{t+1}$. Let H be the subgraph of $K_{3 r-2}$ induced by the edges with colors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$.
Claim. $\delta(H) \leq r-2$.
On the contrary, let $\delta(H) \geq r-1$. If either Σ is odd or Σ is even and all n_{i} are odd, then by Theorem 3.1, $r=\Sigma+2$ and so $\delta(H) \geq \Sigma+1$, which means that $K_{1, n_{i}} \subseteq H_{i}$ for some $i, 1 \leq i \leq t$, a contradiction. Thus, let Σ be even and at least one n_{i}, say n_{t}, be even. In this case, by Theorem 3.1, $r=\Sigma+1$ and so each vertex of H must have degree precisely Σ and each color appears exactly $n_{i}-1$ times in each vertex of H, because $K_{1, n_{i}} \nsubseteq H_{i}, 1 \leq i \leq t$. Now, H_{t} is a $\left(n_{t}-1\right)$-regular graph on $3 r-2$ vertices. Since Σ and n_{t} are even, we are seeking a regular graph of odd order and degree, a contradiction. This contradiction shows that $\delta(H) \leq r-2$.

Let v be a vertex in H with $\operatorname{deg}_{H}(v) \leq r-2$ and $G^{\prime}=G-(N(v) \cup\{v\})$. Clearly, G^{\prime} has at least $2 r-1$ vertices, and so by Theorem 3.2, we have a copy of C_{m} in color α_{t+1} in G^{\prime} and hence a copy of W_{m} in H_{t+1} with the hub v. This observation shows that $R \leq 3 r-2$, which completes that proof.

For odd m, one can easily check that if $r=R\left(T_{n_{1}}, T_{n_{2}}, \ldots, T_{n_{k}}\right)$, then

$$
R\left(T_{n_{1}}, T_{n_{2}}, \ldots, T_{n_{k}}, W_{m}\right) \geq 3 r-2 .
$$

It would be interesting to decide whether this natural lower bound is always the true value of this Ramsey number. We end this section by posing the following conjecture.

Conjecture 3.4 Let $T_{n_{1}}, T_{n_{2}}, \ldots, T_{n_{k}}$ be trees and $r=R\left(T_{n_{1}}, T_{n_{2}}, \ldots, T_{n_{k}}\right)$. If m is an odd integer and $m \leq r+1$, then $R\left(T_{n_{1}}, T_{n_{2}}, \ldots, T_{n_{k}}, W_{m}\right)=3 r-2$.

Acknowledgements The authors would like to thank the referee for helpful suggestions which improved the presentation of this paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications. American Elsevier Publishing Co. Inc., New York, 1976.
[2] E. T. Baskoro, Surahmat, S. M. Nababan, and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices. Graphs Combin. 18(2002), 717-721. http://dx.doi.org/10.1007/s003730200056
[3] S. Brandt, R. Faudree, and W. Goddard, Weakly pancyclic graphs. J. Graph Theory 27(1998), 141-176. http://dx.doi.org/10.1002/(SICI)1097-0118(199803)27:3<141::AID-JGT3>3.0.CO;2-O
[4] S. A. Burr and J. A. Roberts, On Ramsey numbers for stars. Util. Math. 4(1973), 217-220.
[5] Y. Chen, Y. Zhang, and K. Zhang, The Ramsey numbers of paths versus wheels. Discrete Math. 290(2005), 85-87. http://dx.doi.org/10.1016/j.disc.2004.10.017
[6] G. A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2(1952), 69-81. http://dx.doi.org/10.1112/plms/s3-2.1.69
[7] N. Eaton and G. Tiner, On the Erdős and Sós conjecture and graphs with large minimum degree. Ars Combin. 95(2010), 373-382.
[8] P. Erdös and T. Gallai, On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10(1959), 337-356. http://dx.doi.org/10.1007/BF02024498
[9] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs. Discrete Math. 8(1974), 313-329. http://dx.doi.org/10.1016/0012-365X(74)90151-4
[10] W. Moser and J. Pach, Recent developments in combinatorial geometry. In: New trends in discrete and computational geometry, Algorithms Combin., 10, Springer, Berlin, 1993.
[11] A. McLennan, The Erdős and Sós conjecture for trees of diameter four. J. Graph Theory 49(2005), 291-301. http://dx.doi.org/10.1002/jgt. 20083
[12] S. P. Radziszowski, Small Ramsey numbers. Electronic J. Combin. 1(1994), Dynamic Surveys, DS1.12 (August 4, 2009).
[13] F. P. Ramsey, On a problem of formal logic. Proc. London Math. Soc. (2) 30(1930), 264-286. http://dx.doi.org/10.1112/plms/s2-30.1.264
[14] L. Shi, Ramsey numbers of long cycles versus books or wheels. European J. Combin. 31(2010), 828-838. http://dx.doi.org/10.1016/j.ejc.2009.07.004
[15] Surahmat, E. T. Baskoro, and H. J. Broersma, The Ramsey numbers of large cycles versus small wheels. Integers 4(2004), A10.
[16] Surahmat, E.T. Baskoro, and I. Tomescu, The Ramsey numbers of large cycles versus odd wheels. Graphs Combin. 24(2008), 53-58. http://dx.doi.org/10.1007/s00373-007-0764-6
[17] \longrightarrow The Ramsey numbers of large cycles versus wheels. Discrete Math. 306(2006), 3334-3337. http://dx.doi.org/10.1016/j.disc.2006.06.006

Department of Mathematical Sciences, Shahrekord University, Shahrekord, P.O. Box 115, Iran
e-mail: g.raeisi@math.iut.ac.ir
Department of Mathematics and Cryptography, Malek-Ashtar University of Technology, Isfahan, P.O. Box 83145/115, Iran
e-mail: a.zaghian@mut-es.ac.ir

[^0]: Received by the editors February 3, 2014; revised May 9, 2015.
 Published electronically December 16, 2015.
 This research was in part supported by grant No. 93050057 from the School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Iran.

 AMS subject classification: 05C15, 05C55, 05C65.
 Keywords: Ramsey number, wheel, tree, cycle.
 190

