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THE CHAMBER GRAPH OF THE M24 MAXIMAL

2-LOCAL GEOMETRY

PETER ROWLEY

Abstract

The chamber graph of the maximal 2-local geometry for M24,
the Mathieu group of degree 24, is analysed extensively. In
addition to determining the discs around a fixed chamber of
the chamber graph, the geodesic closure of an opposite pair of
chambers is investigated.

1. Introduction

By a geometry (over the set I) we mean a triple (Γ, τ, ∗) where Γ is a set, τ an
onto map from Γ to I and ∗ is a symmetric relation on Γ with the property that for
x, y ∈ Γ, x ∗ y implies τ(x) 6= τ(y). We refer to ∗ as the incidence relation and τ as
the type map of the geometry; x ∈ Γ is said to have type i if τ(x) = i. For brevity,
we write Γ to stand for (Γ, τ, ∗). A flag F is a set of pairwise incident elements of
Γ. The rank of Γ is |I | and the rank of F is |{τ(x) | x ∈ F}|. Let C denote the set
of maximal flags (or chambers) of Γ – a flag F is maximal provided its rank is |I |.
The chamber graph of Γ has C as its vertex set and two (distinct) chambers F1 and
F2 are adjacent whenever the rank of F1 ∩F2 is |I |−1. We will denote the chamber
graph of Γ by C.

For further discussion on chamber systems see [7, 9] and for background on
geometries consult [1].

Here we will be solely concerned with elucidating the combinatorial structure
and uncovering interesting properties of the chamber graph of the M24 maximal
2-local geometry. This geometry first saw the light of day in [6], accompanied by
the following diagram.

j j j
0 1 2

octads trios sextets

The square box is sometimes called a ghost node. There are no ghouls in this
paper – we shall regard this as a rank 3-geometry, henceforth denoted Γ. The
elements of Γ are the octads, trios and sextets of the Steiner system S(24, 8, 5), with
octads, trios and sextets having, respectively, type 0, 1 and 2, where I = {0, 1, 2}.
An octad is deemed to be incident with a trio if it is one of the three octads of the
trio, and to be incident with a sextet if it may be obtained as the union of two of
the tetrads of the sextet. A trio and a sextet are incident if the three octads of the
trio are unions of the tetrads of the sextet.
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The chamber graph of the M24 maximal 2-local geometry

So, at a more down to earth level, an element (chamber) of C consists of an octad,
trio and sextet such that the trio may be obtained from the sextet by a suitable
pairing of the tetrads and the octad is one of the octads of the trio. Throughout
this paper G denotes the copy of M24 preserving the Steiner system determined by
Curtis’s standard MOG array [4]. We recall that G is a subgroup of Aut Γ which
acts transitively on the chambers of Γ (that is the vertices of C).

Apart from anything to do with M24 being of intrinsic interest, it is the geo-
metric context that motivates much of our investigations. In the geometric world
Γ occupies an exalted position by virtue of its appearance as a residue geometry
in other geometries associated with ·1, M,Fi24 and J4 (see [6] again). The class of
buildings is also much revered in the geometry world. In fact, the chamber graph
of a building encodes many of the building axioms and concepts (such as galleries,
thin subgeometries – see [7, 8] for more on this). This then leads us to compare
and contrast the chamber graph of other geometries with those of buildings.

We use d( , ) to denote the distance function on the chamber graph C and, for
c ∈ C, define the jth disc of c to be

Dj(c) := {c′ ∈ C | d(c, c′) = j}.

Observing that Γ has 1771 · 15 · 3 = 79, 695 chambers, we come to our first result.

Theorem 1. Let c0 be a fixed chamber in C. Then the sizes of Dj(c0) are as follows.

j 0 1 2 3 4 5 6 7 8 9 10
|Dj(c0)| 1 10 44 184 544 1536 4800 10368 22272 38400 1536

Theorem 1 is a consequence of a much more detailed picture of C which is unveiled
in Section 3. Various other properties of C also emerge; concerning the last disc
D10(c0) we mention

Theorem 2. Let c0 be a fixed chamber in C. Then Gc0
is transitive on D10(c0)

and, furthermore, D10(c0) is a coclique.

Theorem 2 leads us to view pairs of chambers which are distance 10 apart (in C)
with some interest. We shall call such a pair of chambers in C an opposite pair of
chambers.

For c, c′ ∈ C a geodesic (or minimal gallery) from c to c′ is a shortest path in the
graph C, starting with c and ending with c′. Let X be a subset of C. The geodesic
closure of X , denoted by X̄ , consists of all the chambers in C which lie on a geodesic
between c and c′ where c, c′ ∈ X . The geodesic closure of two chambers that are
maximal distance apart in the chamber graph of a building of spherical type yields
(the chambers of) an apartment and every apartment of the building appears in
this way (see [6; 2.15 Theorem and 3.8 Theorem]). This leads us to the subject of
our next result.

Theorem 3. Suppose {c0, c10} is an opposite pair of chambers in C, and set ∆j =

{c0, c10} ∩ Dj(c0). Then the sizes of ∆j are as follows.

j 0 1 2 3 4 5 6 7 8 9 10
|∆j | 1 10 12 14 15 14 15 14 12 10 1

In Section 4 we scrutinize {c0, c10} in some detail; indeed in an appendix we
give a listing of all 118 chambers in {c0, c10} for a specific c0 and c10 since we
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believe/hope this set of chambers will repay further study. We note that the
‘symmetry’ of the sizes in Theorem 3 is a consequence of G being transitive on
C and D10(c0) being a Gc0

-orbit. Further properties and a discussion of this graph
may be found in [8].

Briefly, this paper is arranged as follows. In the next section, we review properties
of the Steiner system S(24, 8, 5) with, as might be expected, particular emphasis
on the octads, trios and sextets. We employ Curtis’s MOG [4] both as our main
descriptive device and also as an essential tool in our calculations. Accordingly, in
Section 2, we spruce up MOG ready for action in Section 3 where we determine the
discs Dj(c0) for a fixed c0 ∈ C. As mentioned above, Section 4 examines the geodesic
closure of a pair of opposite chambers in C, as well as airing some questions about
C, with further details given in Appendix A and Appendix B. Finally, Appendix C
gives some Magma code (supplied by the referee who we thank) which calculates
the lengths of the Gc0

-orbits on C. This is to act as a check for some of the data in
(3.2).

2. Notation and CHAMBERMOG

Let Ω be a 24-element set which we assume comes equipped with the Steiner
system S(24, 8, 5). We denote the set of all octads, trios and sextets of Ω by,
respectively, O, T and S.

For c ∈ C, we use, respectively, O(c), T (c) and S(c) to denote the octad, trio
and sextet of c. So T (c) is obtained via a suitable partition of the tetrads of S(c)
and O(c) is one of the three octads of T (c). The three heavy blocks of the MOG
are labelled thus

Ω =
O1 O2 O3

.

By the terms standard trio and standard sextet we mean the following trio and
sextet.

T0 :=

+ + − − ◦ ◦
+ + − − ◦ ◦
+ + − − ◦ ◦
+ + − − ◦ ◦

S0 :=

+ − × ∗ ◦ ♦
+ − × ∗ ◦ ♦
+ − × ∗ ◦ ♦
+ − × ∗ ◦ ♦

Throughout this paper, c0 denotes the chamber of C for which O(c0) = O1,
T (c0) = T0 and S(c0) = S0. Let B denote the stabilizer in G ∼= M24 of c0. Then
B = GO1

∩ GT0
∩ GS0

has shape 26 : (3 × D8) : 2 and B = MNB(〈ρ〉) where

ρ =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

? ? ? ? ? ?
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and M = 〈gi | 1 6 i 6 6〉 and NB(〈ρ〉) = 〈ρ, g7, g8, g9, g10〉 with

g1 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

, g2 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

,

g3 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

, g4 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

,

g5 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

, g6 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

,

g7 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

, g8 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

�
�
@

@

,

g9 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

�
�
@

@

, g10 =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

�
�
@

@

.

We note that B = NG(〈ρ〉) is the stabilizer of the top row of the MOG and is
isomorphic to the triple cover 3 ·S6. Further, M is an elementary abelian group
of order 26 whose elements may also be labelled by the words of the hexacode. If
{0, 1, ω, ω̄} are the elements of the Galois field GF (4), then 0 corresponds to the
identity (on a column), 1 corresponds to interchanging the 1st and 2nd, 3rd and 4th
entries, ω corresponds to interchanging the 1st and 3rd, 2nd and 4th entries and ω̄

corresponds to interchanging the 1st and 4th, 2nd and 3rd entries. So g4 corresponds
to the hexacode word (1, ω, ω̄, 0, 0, ω̄). See the M24 page in [2] for further details.

For distinct sextets X1 and X2, we have the following three possibilities for their
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intersection matrix. (The (i, j)th entry is the number of elements in the intersection
of the ith tetrad of X1 with the jth tetrad of X2, given a labelling of the tetrads
of X1 and X2.)

S0 =

















2 1 1
2 1 1

2 1 1
2 1 1

1 1 1 1
1 1 1 1

















S1 =

















3 1
1 3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

















S3 =

















2 2
2 2

2 2
2 2

2 2
2 2

















For a fixed sextet X let σi(X) denote the set of sextets which have an Si inter-
section matrix with X, i = 0, 1, 3. (So S = {X} ∪ σ0(X) ∪ σ1(X) ∪ σ3(X).) When
X = S0 we will write σi in place of σi(X). Note that for X1 ∈ σi(X), X1 and X

have precisely i octads in common.

(2.1) Let X be a fixed sextet. Then

(i) |σ0(X)| = 1440, |σ1(X)| = 240, |σ3(X)| = 90; and

(ii) the GX -orbits on the set of sextets are X, σ0(X), σ1(X), σ3(X).

Proof. See [3, Chapter 1, Section 2].

Next we consider trios. Let Y1 and Y2 be distinct trios. Then there are four
possible ways their octads can intersect. Here the (i, j)th entry is the size of the
intersection of the ith octad of Y1 with the jth octad of Y2, assuming a labelling of
the octads of Y1 and Y2.

T0 =





4 2 2
2 4 2
2 2 4



 T1 =





2 2 4
2 2 4
4 4 0





T2 =





8 0 0
0 4 4
0 4 4



 T3 =





4 4 0
4 0 4
0 4 4





For a trio Y , τi(Y ) will denote the set of trios whose octad intersection matrix with
Y is Ti, i = 0, 1, 2, 3. In the case when Y = T0, we shorten τi(Y ) to τi.

We usually describe a sextet X in the following manner. For i ∈ {1, . . . , 6} the
4-element subset of the MOG labelled by i defines the tetrads of X . So

S0 :=

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

.
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Also note that, for example,

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

and

5 4 1 1 1 1
4 5 2 2 2 2
4 5 3 3 3 3
4 5 6 6 6 6

describe the same sextet, say X1.

We employ two schemes for describing chambers which we explain with an
example. By

c1 :=

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

or c1 :=

2 1 3+ 3 3 3
1 2 4+ 4 4 4
1 2 5− 5 5 5
1 2 6− 6 6 6

12|34|56

we mean that c1 is a chamber with O(c1) = O1, T (c1) = T0 and S(c1) = X1. The
12|34|56 tells us how to partition the tetrads to obtain the trio and the underlined
partition gives the octad of the chamber. In the alternative notation the + on the
3 and 4 and the − on the 5 and 6 indicate two of the octads of the trio and the
‘unmarked’ octad is the octad of the chamber. Dressed in this way MOG becomes
CHAMBERMOG.

3. B-orbits and disc structure

Our strategy for determining the chambers in a particular Dj(c0) is first to
determine the B-orbits of C. Clearly, if a chamber c is in Dj(c0), then the B-orbit
of c will be contained in Dj(c0). Beginning with c0 we work outwards building up
successive discs of c0. Suppose we have successfully enumerated Di(c0) for i 6 j.
Taking c ∈ Dj(c0) we calculate, using the MOG, the ten chambers of C adjacent
to c. In the light of our knowledge of Di(c0), i 6 j, we discover which of the
ten chambers are in Dj+1(c0), and hence the B-orbits of these chambers will be
in Dj+1(c0). Letting c run through representatives of the B-orbits of Dj(c0), this
procedure delivers Dj+1(c0) as a union of B-orbits. And we repeat this procedure
until we run out of chambers!

We arrive at the orbits of B on the chambers of C in a series of stages. First
we determine the orbits of B upon the sextets of Ω. Then taking a representative
sextet X from each of these we may obtain the 15 trios incident with X whence,
by nominating a particular octad, we then get the 45 chambers which contain X .
Examining the action of BX and combinatorial properties of such chambers in
relation to c0 allows us to compile the B-orbits of C.

In order to describe the B-orbits of S we need some auxiliary notions.

Let X ∈ S, and first we suppose that X ∈ σ0. Then there will be precisely
two columns (of the MOG) and four tetrads of X each of which intersect the two
columns (of the MOG) in one element. We shall refer to either of these two columns
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of the MOG as mixed cols of X . So, for example, if

X =

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

,

then the first and third columns of the MOG are the mixed cols of X . Now consider
the case when X ∈ σ1. Here we have exactly two columns of the MOG for which
two of the tetrads of X intersect these columns in 3 elements. Such columns of the
MOG will be called 3-cols of X . If, say,

X =

3 3 3 3 1 2
4 4 4 4 2 1
5 5 5 5 2 1
6 6 6 6 2 1

,

then the fifth and sixth columns of the MOG are the 3-cols of X . Lastly we look
at X ∈ σ3. In this case the six columns of the MOG are partitioned into three
pairs where each pair of columns is determined by two tetrads of X each of which
intersects both columns of the pair in two elements. Any three of these pairs of
columns we call a col pair of X . If, for example,

X =

5 6 2 3 4 1
6 5 2 3 4 1
6 6 4 1 2 3
5 5 4 1 2 3

,

then the col pairs of X are columns 1 and 2, columns 3 and 5, and columns 4 and 6.
Since B 6 GS0

, we see that σi (i = 0, 1, 3) will be a union of B-orbits. Hence we

label the B-orbits of S by σ
(n)
i to indicate that σ

(n)
i ⊆ σi (i = 0, 1, 3); the n is the

size of that particular B-orbit.

(3.1) B has 12-orbits on S the details of which are tabulated below.

B-ORBIT SIZE DESCRIPTION
{S0} 1 standard sextet

σ
(96)
0 96 both mixed cols in O1

σ
(192)
0 192 both mixed cols either in O2 or in O3

σ
(384)
0 384 one mixed col in O2, one mixed col in O3

σ
(768)
0 768 one mixed col in O1, one mixed col either in O2 or in O3

σ
(16)
1 16 both 3-cols in O1

σ
(32)
1 32 both 3-cols either in O2 or in O3

σ
(64)
1 64 one 3-col in O2, one 3-col in O3

σ
(128)
1 128 one 3-col in O1, one 3-col either in O2 or in O3

σ
(6)
3 6 each col pair contained in one of O1, O2, O3

σ
(12)
3 12 one col pair in O1, no col pairs either in O2 or in O3

σ
(24)
3 24 one col pair in O2, no col pairs either in O1 or in O3 or

one col pair in O3, no col pair either in O1 or in O2

σ
(48)
3 48 no col pairs in any of O1, O2, O3
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Building upon the information in (3.1) we obtain the B-orbits of C and then we
implement the procedure discussed earlier, the results of which, together with the
B-orbits of C, are presented in (3.2). After (3.2) we explain how the MOG helps
us to calculate the adjacent chambers of a given chamber. In columns 2, 3, 4 and
5 of the tables in (3.2) we give, respectively, the sizes of a B-orbit, the j for which
Dj(c0) contains the B-orbit, τi for which T (c) ∈ τi and |O(c) ∩ O1| (where c is a
chamber in the B-orbit).

(3.2)

S(c) = S0:

S(c) =

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 0 τ0 8
12|34|56 2 1 τ0 0
12|35|46 2 1 τ2 8
15|26|34 4 2 τ2 0
12|35|46 4 2 τ2 0
15|26|34 8 3 τ2 4
14|26|35 8 3 τ3 0
13|25|46 16 4 τ3 4

S(c) ∈ σ
(96)
0 :

S(c) =

1 3 5 1 3 5
2 4 6 1 3 6
3 2 2 5 5 4
4 1 2 6 6 4

,

B-orbit
representative size disc τi

O1-
interesetion

12|34|56 1 × 96 5 τ3 0
13|24|56 2 × 96 6 τ1 0
12|34|56 2 × 96 6 τ3 4
13|24|56 4 × 96 7 τ1 4
12|35|46 4 × 96 7 τ1 4
13|25|46 8 × 96 8 τ0 4
15|26|34 8 × 96 8 τ1 2
15|23|46 16 × 96 9 τ0 2

S(c) ∈ σ
(192)
0 :

S(c) =

5 1 1 3 3 5
6 1 2 4 3 6
2 5 3 2 5 4
2 6 4 1 6 4

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 × 192 5 τ3 0
15|34|26 2 × 192 6 τ1 0
12|34|56 1 × 192 6 τ3 4
12|34|56 1 × 192 6 τ3 4
16|25|34 4 × 192 7 τ1 4
12|35|46 2 × 192 7 τ1 4
13|24|56 2 × 192 7 τ1 4
15|23|46 8 × 192 8 τ0 4
12|35|46 4 × 192 8 τ1 2
13|24|56 4 × 192 8 τ1 2
14|26|35 8 × 192 9 τ0 2
13|25|46 8 × 192 9 τ0 2
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S(c) ∈ σ
(384)
0 :

S(c) =

5 3 1 6 3 1
4 5 2 5 4 1
4 3 3 2 2 6
6 6 4 2 1 5

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 × 384 6 τ1 0
12|35|46 2 × 384 6 τ1 0
12|35|46 4 × 384 7 τ1 4
12|34|56 1 × 384 7 τ1 4
12|34|56 1 × 384 7 τ1 4
14|35|26 8 × 384 8 τ0 4
15|26|34 2 × 384 8 τ0 4
14|56|23 2 × 384 8 τ0 4
13|25|46 8 × 384 9 τ0 2
14|25|36 8 × 384 9 τ0 2
16|25|34 4 × 384 9 τ0 2
14|23|56 4 × 384 9 τ0 2

S(c) ∈ σ
(768)
0 :

S(c) =

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

,

B-orbit
representative size disc τi

O1-
intersection

14|23|56 1 × 768 7 τ1 4
15|23|46 2 × 768 7 τ1 4
14|23|56 1 × 768 8 τ1 2
14|23|56 1 × 768 8 τ1 2
15|23|46 4 × 768 8 τ1 2
12|35|46 4 × 768 8 τ0 4
14|26|35 2 × 768 8 τ0 4
13|24|56 2 × 768 9 τ0 4
13|25|46 4 × 768 9 τ0 4
14|25|36 2 × 768 9 τ0 2
12|34|56 2 × 768 9 τ0 2
12|36|45 4 × 768 9 τ0 2
13|26|45 4 × 768 9 τ0 2
12|36|45 4 × 768 9 τ0 2
14|25|36 2 × 768 9 τ0 2
13|25|46 4 × 768 9 τ0 2
12|34|56 2 × 768 10 τ0 2

S(c) ∈ σ
(16)
1 :

S(c) =

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 3 × 16 3 τ2 8
12|34|56 6 × 16 4 τ2 0
15|26|34 12× 16 5 τ1 0
13|24|56 24× 16 6 τ1 4
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S(c) ∈ σ
(32)
1 :

S(c) =

3 3 2 1 3 3
4 4 1 2 4 4
5 5 1 2 5 5
6 6 1 2 6 6

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 3 × 32 4 τ2 0
12|34|56 6 × 32 5 τ2 4
13|24|56 12× 32 6 τ1 4
13|24|56 24× 32 7 τ1 2

S(c) ∈ σ
(64)
1 :

S(c) =

5 4 1 3 1 6
6 5 2 5 1 4
4 6 2 4 1 5
3 3 2 6 2 3

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 3 × 64 5 τ1 0
12|34|56 6 × 64 6 τ1 4
13|24|56 12× 64 7 τ0 4
13|24|56 24× 64 8 τ0 2

S(c) ∈ σ
(128)
1 :

S(c) =

1 4 5 3 1 6
2 5 6 5 1 4
2 6 4 4 1 5
2 3 3 6 2 3

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 3 × 128 6 τ1 4
12|34|56 6 × 128 7 τ1 2
13|24|56 12 × 128 8 τ0 2
13|24|56 12 × 128 9 τ0 2
14|23|56 12 × 128 9 τ0 4

S(c) ∈ σ
(6)
3 :

S(c) =

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 × 6 1 τ0 8
12|34|56 2 × 6 2 τ0 0
12|35|46 2 × 6 2 τ2 8
12|35|46 4 × 6 3 τ2 0
13|24|56 4 × 6 3 τ2 0
13|26|45 8 × 6 4 τ3 0
13|24|56 8 × 6 4 τ2 4
13|25|46 16 × 6 5 τ3 4
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S(c) ∈ σ
(12)
3 :

S(c) =

2 1 3 5 6 4
1 2 3 5 6 4
1 1 6 4 3 5
2 2 6 4 3 5

,

B-orbit
representative size disc τi

O1-
intersection

12|36|45 1 × 12 2 τ2 8
12|34|56 2 × 12 3 τ2 8
12|36|45 2 × 12 3 τ2 0
12|34|56 4 × 12 4 τ2 0
14|25|36 4 × 12 4 τ1 0
15|26|34 8 × 12 5 τ1 0
14|25|36 8 × 12 5 τ1 4
14|23|56 16× 12 6 τ1 4

S(c) ∈ σ
(24)
3 :

S(c) =

1 3 1 3 5 5
1 3 1 3 6 6
2 4 2 4 6 5
2 4 2 4 5 6

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 × 24 3 τ2 0
13|24|56 2 × 24 4 τ2 0
12|34|56 2 × 24 4 τ2 4
13|24|56 4 × 24 5 τ2 4
12|35|46 4 × 24 5 τ1 4
13|25|46 8 × 24 6 τ1 4
15|26|34 8 × 24 6 τ1 2
15|23|46 16× 24 7 τ1 2

S(c) ∈ σ
(48)
3 :

S(c) =

1 4 2 6 3 5
2 3 2 5 3 6
2 4 1 6 4 6
1 3 1 5 4 5

,

B-orbit
representative size disc τi

O1-
intersection

12|34|56 1 × 48 4 τ3 0
13|24|56 2 × 48 5 τ1 0
12|34|56 2 × 48 5 τ3 4
13|24|56 4 × 48 6 τ1 4
12|36|45 4 × 48 6 τ1 4
13|25|46 8 × 48 7 τ0 4
15|26|34 8 × 48 7 τ1 2
15|23|46 16× 48 8 τ0 2

We illustrate the procedure adopted to calculate the neighbours of a chamber in
the chamber graph, selecting

c10 :=

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

12|34|56

for demonstration purposes. Four of the ten neighbours of c10 are readily obtained
where the sextet is kept the same and the varying of the octad and trio is given by
12|34|56, 12|34|56, 12|35|46 and 12|36|45. To locate the remaining six neighbours
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of c10 (which will all have the same octad and trio as c10), MOG comes out to play.
Note that we are hunting for sextets whose tetrads are each contained in one of
the octads of T (c10) as well as hitting two tetrads of S(c10) each in two elements.
Let t1, ..., t6 denote the six tetrads of S(c10) and O(1, 2) = t1 ∪ t2, O(3, 4) =
t3 ∪ t4, O(5, 6) = t5 ∪ t6, the three octads of T (c10).

First we select any 2-element subset of t1, say

D :=
∗
∗

.

Now we look for an octad contained in D ∪ t2 ∪ t3 ∪ t4 and which contains D.
Consulting the MOG gives

Oct1 :=

∗ ∗ ∗
∗

∗ ∗
∗ ∗

.

Then the intersection of Oct1 with O(1, 2) and with O(3, 4) defines a partition of
O(1, 2) and O(3, 4), and gives us four of the tetrads we seek, namely

Oct1 ∩ O(1, 2), O(1, 2)\Oct1, Oct1 ∩ O(3, 4), O(3, 4)\Oct1.

We now repeat the above process, slightly modified, this time with the aim of finding
an octad contained in D∪ (t2 ∩Oct1)∪ t5 ∪ t6 which itself contains D ∪ (t2 ∩Oct1).
Using the MOG again we find

Oct2 :=

∗ ∗
∗ ∗

∗ ∗
∗ ∗

.

Then Oct2 ∩ O(5, 6) and O(5, 6)\Oct2 supplies the remaining two tetrads we need
to define the sextet

Sex1 :=

♦ ∗ ∗ + ◦ ×
∗ × ◦ − ♦ ◦
♦ − − + + ♦
− × ◦ ∗ × +

.

Remark. For each of Oct1 and Oct2 there is one other octad which also fulfils our
requirements – however they will yield the same sextet. Also note that when finding
Oct1 we only needed to look in a certain 14-element subset of Ω and when finding
Oct2 in a certain 12-element subset of Ω. This, of course, makes our task easier.

Having pinpointed one sextet of the desired kind we enact the same procedure
as above but starting with a 2-element subset D1 of a tetrad of S(c10) which is not

contained in a tetrad of Sex1. So we may select D1 to be

∗ ∗
.
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Then, with the aid of the MOG, we find that

Oct3 :=

∗
∗

∗ ∗ ∗
∗ ∗ ∗

is an octad contained in D1 ∪ t1 ∪ t3 ∪ t4 which contains D1. And then

Oct4 :=

∗
∗ ∗

∗ ∗ ∗
∗ ∗

is an octad contained in D1 ∪ (t2 ∩Oct3) ∪ t5 ∪ t6 which contains D1 ∪ (t2 ∩Oct3).
Using Oct3 and Oct4 we obtain the following sextet

Sex2 :=

◦ × ∗ − ♦ ∗
× ∗ ◦ − ◦ ♦
♦ + + + − ♦
− × ◦ ∗ × +

.

A further sextet, Sex3, is obtained by taking the symmetric differences of the tetrads
of Sex1 and Sex2.

Sex3 :=

◦ × ♦ + ◦ ×
× × ∗ − ◦ ◦
∗ + + − + ∗
− ♦ ∗ ♦ ♦ −

By taking the symmetric differences of the tetrads of S(c10) and Sex1, S(c10)
and Sex2, S(c10) and Sex3 we produce the three remaining sextets of the required
types. To summarize, the chambers which are neighbours of c10 are

(3.3)

6 4 3 3 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

12|34|56 12|34|56 12|35|46 12|36|45

5 3 3 2 6 4
3 4 6 1 5 6
5 1 1 2 2 5
1 4 6 3 4 2

5 3 4 1 6 4
3 4 5 1 5 6
6 2 2 2 1 6
1 3 5 4 3 2

5 3 4 2 5 3
3 3 6 1 5 5
6 2 2 1 2 6
1 4 6 4 4 1

5 4 3 2 5 3
3 4 5 2 6 6
6 2 1 2 1 5
1 4 6 4 3 1

12|34|56 12|34|56 12|34|56 12|34|56
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and

6 4 4 1 6 3
3 4 5 2 5 5
6 1 2 2 2 5
1 3 6 3 4 1

5 4 4 2 6 4
3 3 5 2 6 5
5 1 2 1 1 6
1 4 6 3 3 2

12|34|56 12|34|56

Finally we note that by resorting the data in (3.2) we obtain the disc sizes stated
in Theorem 1.

4. Properties of C

Though (3.2) presents C from the viewpoint of c0, it is an easy matter to trans-
late this information to another chamber c′0. Then the first, third and last two
columns would, respectively, give Gc′

0
-orbits, distance between c′0 and c, τi(T (c′0))

and |O(c′0)∩O(c)| (c a chamber of C). So, for example, we may use (3.2) to discover
the distance between two given chambers c′, c′′. Our elimination procedure being
as follows:

(a) find i such that S(c′′) ∈ σi(S(c′));

(b) using the Gc′ -orbits (obtained by suitably modifying (3.1)) find n such that

S(c′′) ∈ σ
(n)
i (S(c′));

(c) narrow down the possibilities in the σ
(n)
i table, using T (c′′) ∈ τk(T (c′)) and

|O(c′) ∩ O(c′′)|; and finally

(d) by examining the remaining options deduce to which Gc′ -orbit c′′ belongs and
thence obtain the distance between c′ and c′′.

We give a ‘real life’ illustration, taking our chambers to be

c′ =

1 2 2 2 1 4
6− 3+ 4 5 5 1
3 4+ 6 5 3 2
5− 3 6 4 6 1

, c′′ =

5− 4+ 3 4 4 2
5 3+ 6 6 3 2
1 5 3 1 2 1
6− 2 1 4 5 6

:

(a) S(c′′) ∈ σ0(S(c′));

(b) (Here, of course, rather than mixed cols we should speak of mixed tetrads,
where the tetrads are those of S(c′).) The mixed tetrads for S(c′′) are

1 1
1

1

and

4
4

4
4

.

Since the first of these tetrads is in

O(c′) =

∗ ∗ ∗ ∗ ∗
∗
∗
∗

and the other is not, we see that S(c′′) ∈ α
(768)
0 (S(c′)).
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(c) Since T (c′′) ∈ τ0(T (c′)) and |O(c′)∩O(c′′)| = 2, one of the last eight possibil-

ities of the σ
(768)
0 table in (3.2) must hold. Noting that O(c′)∩O(c′′) contains

one element each from the two tetrads of O(c′) reduces the list of possibilities
to four: 12|36|45, 13|26|45, 12|36|45, 12|34|56. (Incidentally, at this stage we
know that c′ and c′′ are either distance 9 or 10 apart.)

(d) We scrutinize the finer structure of the intersection of the octads of T (c′′)
with O(c′). The octad of T (c′′),

∗ ∗ ∗ ∗
∗ ∗

∗
∗

,

intersects O(c′) in 4 elements which split 3|1 between the tetrads of O(c′),
and the octad of T (c′′),

∗
∗ ∗ ∗

∗
∗ ∗ ∗

,

intersects O(c′) in two elements which are both contained in one of the
tetrads of O(c′). Consequently, two possibilities remain, namely, 12|34|56 and
13|26|45.

The octad of T (c′), not equal to O(c′), which intersects O(c′′) in two elements is

∗ ∗ ∗
∗ ∗

∗ ∗ ∗

,

and the intersection this octad has with O(c′′) is contained in one of the tetrads
of O(c′′). So this rules out 13|26|45 and therefore 12|34|56 is the only possibility.
Hence d(c′, c′′) = 10.

In fact, c′ and c′′ are both distance 10 from c0 as the reader may verify using
the above scheme.

We recall, from Section 3, that

c10 :=

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

.

12|34|56

By (3.2) c10 ∈ D10(c0), (c10 is the representative of the B-orbit given in the σ
(768)
0

table). Before analysing the geodesic closure of c0 and c10, we note that (3.2) implies
that B = Gc0

is transitive on D10(c10) and, combining (3.2) and (3.3), that c10

has no neighbours in D10(c0). This establishes Theorem 2. Turning to Theorem 3,
the following basic observation enables us, using (3.2), to enumerate the chambers
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in {c0, c10}: for j with 0 6 j 6 10,

{c0, c10} ∩ Dj(c0) = {c0, c10} ∩ D10−j(c10) = Dj(c0) ∩ D10−j(c10).

Set ∆j = {c0, c10} ∩ Dj(c0). Put

x =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

�
�
�
�
�
��

@
@

@
@

@
@

and y =

s s s s s s

s s s s s s

s s s s s s

s s s s s s

�
�

����

A
A
A
A

B
B
B
B
B
BB

����

Then x, y ∈ G (this may be checked using [5]) and x2 = y2 = 1. (We point out
that x may be described by the octad it fixes point-wise and any one of the pairs
of points it interchanges. Whereas y is an example of an involution given by the
recipe: leave invariant the tetrads of a sextet and a dodecad which cuts across the
sextet in 26.) Moreover, x fixes c0 and c10 (so Bc10

= 〈x〉) and y interchanges c0

and c10. Thus y interchanges the sets ∆j and ∆10−j for 0 6 j 6 10. In Appendix A

we list the chambers in {c0, c10}. There we label each chamber by ck
j – j indicates

that ck
j is in the jth disc of c0 (that is ck

j ∈ Dj(c0)) and the k is just a superscript.

Our notation is arranged so as, when j 6= 5, y maps c
j
k to c

10−j
k . The existence of y

means that it is only necessary for us to draw just over ‘half’ of {c0, c10} ; this we
do in Appendix B.

To complete the story of the action of y upon {c0, c10} we have

(4.1) The orbits of y upon ∆5 are {c1
5, c

14
5 }, {c2

5, c
3
5}, {c4

5, c
5
5}, {c6

5, c
9
5}, {c7

5, c
8
5},

{c10
5 , c13

5 }, {c11
5 , c12

5 }.

Remark. y fixes no chambers in {c0, c10}.

We also document the action of x upon {c0, c10}. Since x and y commute, we
only need consider ∆i for 1 6 i 6 5.

(4.2) The orbits of x upon ∆i are as follows:

i = 1 : {c1
1}, {c

6
1}, {c

9
1}, {c

10
1 }, {c2

1, c
4
1}, {c

3
1, c

5
1}, {c

7
1, c

8
1}

i = 2 : {c1
2}, {c

6
2}, {c

7
2}, {c

12
2 }, {c2

2, c
4
2}, {c

3
2, c

5
2}, {c

8
2, c

10
2 }, {c9

2, c
11
2 }

i = 3 : {c1
3}, {c

8
3}, {c

9
3}, {c

10
3 }, {c13

3 }, {c14
3 }, {c2

3, c
5
3}, {c

3
3, c

6
3}, {c

4
3, c

7
3}, {c

11
3 , c12

3 }

i = 4 : {c1
4}, {c

2
4}, {c

9
4}, {c

10
4 }, {c11

4 }, {c12
4 }, {c15

4 }, {c3
4, c

6
4}, {c

4
4, c

7
4}, {c

5
4, c

8
4},

{c13
4 , c14

4 }

i = 5 : {c1
5}, {c

6
5}, {c

7
5}, {c

8
5}, {c

9
5}, {c

14
5 }, {c2

5, c
4
5}, {c

3
5, c

5
5}, {c

10
5 , c12

5 }, {c11
5 , c13

5 }.
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Appendix A. The chambers in {c0, c10}

Each of the sextets listed below are chambers via 12|34|56.

∆0:

c0 =

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

∆1:

c1
1 =

1 1 4 4 6 6
2 2 3 3 5 5
1 1 4 4 6 6
2 2 3 3 5 5

c2
1 =

1 1 3 3 6 6
1 1 3 3 6 6
2 2 4 4 5 5
2 2 4 4 5 5

c3
1 =

1 2 4 3 6 5
1 2 4 3 6 5
2 1 3 4 5 6
2 1 3 4 5 6

c4
1 =

1 2 3 4 5 6
2 1 4 3 6 5
2 1 4 3 6 5
1 2 3 4 5 6

c5
1 =

1 1 4 4 6 6
2 2 3 3 5 5
2 2 3 3 5 5
1 1 4 4 6 6

c6
1 =

1 2 3 4 5 6
2 1 4 3 6 5
1 2 3 4 5 6
2 1 4 3 6 5

c7
1 =

1 2 6 3 4 5
1 2 6 3 4 5
1 2 6 3 4 5
1 2 6 3 4 5

c8
1 =

1 2 5 3 6 4
1 2 5 3 6 4
1 2 5 3 6 4
1 2 5 3 6 4

c9
1 =

5 6 2 1 3 4
5 6 2 1 3 4
5 6 2 1 3 4
5 6 2 1 3 4

c10
1 =

6 5 4 3 1 2
6 5 4 3 1 2
6 5 4 3 1 2
6 5 4 3 1 2

∆2:

c1
2 =

5 5 4 4 1 1
6 6 3 3 2 2
5 5 4 4 1 1
6 6 3 3 2 2

c2
2 =

6 6 1 1 3 3
6 6 1 1 3 3
5 5 2 2 4 4
5 5 2 2 4 4

c3
2 =

1 2 5 3 4 6
1 2 5 3 4 6
2 1 3 5 6 4
2 1 3 5 6 4

c4
2 =

6 5 1 2 3 4
5 6 2 1 4 3
5 6 2 1 4 3
6 5 1 2 3 4

c5
2 =

1 1 6 6 5 5
2 2 3 3 4 4
2 2 3 3 4 4
1 1 6 6 5 5

c6
2 =

1 2 3 5 6 4
2 1 5 3 4 6
1 2 3 5 6 4
2 1 5 3 4 6

c7
2 =

5 6 1 2 3 4
6 5 2 1 4 3
5 6 1 2 3 4
6 5 2 1 4 3

c8
2 =

1 2 5 4 3 6
1 1 6 3 4 5
2 2 6 3 4 5
2 1 5 4 3 6

c9
2 =

6 5 3 1 2 4
6 5 3 1 2 4
6 5 3 1 2 4
6 5 3 1 2 4

c10
2 =

1 1 5 3 5 3
2 2 5 3 5 3
2 1 6 4 6 4
1 2 6 4 6 4

c11
2 =

6 5 4 1 3 2
6 5 4 1 3 2
6 5 4 1 3 2
6 5 4 1 3 2

c12
2 =

5 4 6 3 1 2
5 4 6 3 1 2
5 4 6 3 1 2
5 4 6 3 1 2
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∆3:

c1
3 =

4 4 6 6 1 1
5 5 3 3 2 2
4 4 6 6 1 1
5 5 3 3 2 2

c2
3 =

4 4 1 1 3 3
4 4 1 1 3 3
6 6 2 2 5 5
6 6 2 2 5 5

c3
3 =

1 2 5 4 4 5
2 2 6 3 3 6
1 1 3 6 6 3
1 2 4 5 5 4

c4
3 =

6 5 3 1 2 4
6 5 3 1 2 4
5 6 1 3 4 2
5 6 1 3 4 2

c5
3 =

5 4 1 2 3 6
4 5 2 1 6 3
4 5 2 1 6 3
5 4 1 2 3 6

c6
3 =

1 2 6 5 5 6
2 2 4 3 3 4
1 1 3 4 4 3
1 2 5 6 6 5

c7
3 =

5 5 4 4 3 3
6 6 1 1 2 2
6 6 1 1 2 2
5 5 4 4 3 3

c8
3 =

1 2 4 6 6 4
2 2 5 3 3 5
1 1 3 5 5 3
1 2 6 4 4 6

c9
3 =

5 6 3 2 1 4
6 5 2 3 4 1
5 6 3 2 1 4
6 5 2 3 4 1

c10
3 =

6 4 1 2 3 5
4 6 2 1 5 3
6 4 1 2 3 5
4 6 2 1 5 3

c11
3 =

5 6 3 2 1 4
5 5 4 1 2 3
6 6 4 1 2 3
6 5 3 2 1 4

c12
3 =

6 6 3 1 3 1
5 5 3 1 3 1
5 6 4 2 4 2
6 5 4 2 4 2

c13
3 =

6 3 5 4 1 2
5 4 6 3 1 1
6 3 5 4 2 1
5 4 6 3 2 2

c14
3 =

6 2 5 1 3 4
6 2 5 1 3 4
6 2 5 1 3 4
6 2 5 1 3 4

∆4:

c1
4 =

4 3 6 5 1 2
6 5 4 3 1 1
4 3 6 5 2 1
6 5 4 3 2 2

c2
4 =

4 4 1 1 5 5
2 2 3 3 6 6
4 4 1 1 5 5
2 2 3 3 6 6

c3
4 =

4 3 2 1 3 4
3 4 2 1 4 3
6 5 1 1 5 6
5 6 2 2 6 5

c4
4 =

2 2 3 3 1 1
2 2 3 3 1 1
5 5 4 4 6 6
5 5 4 4 6 6

c5
4 =

6 5 3 2 2 3
5 5 4 1 1 4
6 6 1 4 4 1
6 5 2 3 3 2

c6
4 =

5 3 2 1 3 5
3 5 2 1 5 3
4 6 1 1 6 4
6 4 2 2 4 6

c7
4 =

6 2 3 4 1 5
2 6 4 3 5 1
2 6 4 3 5 1
6 2 3 4 1 5

c8
4 =

6 5 4 3 3 4
5 5 2 1 1 2
6 6 1 2 2 1
6 5 3 4 4 3

c9
4 =

6 5 4 1 1 4
5 5 2 3 3 2
6 6 3 2 2 3
6 5 1 4 4 1

c10
4 =

6 4 3 2 1 5
4 6 2 3 5 1
6 4 3 2 1 5
4 6 2 3 5 1

c11
4 =

6 3 2 1 3 6
3 6 2 1 6 3
5 4 1 1 4 5
4 5 2 2 5 4

c12
4 =

2 5 3 4 6 1
5 2 4 3 1 6
2 5 3 4 6 1
5 2 4 3 1 6

c13
4 =

4 5 3 2 1 6
4 4 6 1 2 3
5 5 6 1 2 3
5 4 3 2 1 6

c14
4 =

5 5 3 1 3 1
4 4 3 1 3 1
4 5 6 2 6 2
5 4 6 2 6 2

c15
4 =

5 1 6 2 3 4
6 2 5 1 3 3
5 1 6 2 4 3
6 2 5 1 4 4
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∆5:

c1
5 =

5 1 3 2 6 4
3 2 5 1 6 6
5 1 3 2 4 6
3 2 5 1 4 4

c2
5 =

6 3 4 2 2 4
3 3 5 1 1 5
6 6 1 5 5 1
6 3 2 4 4 2

c3
5 =

2 1 3 4 1 2
1 2 3 4 2 1
6 5 4 4 5 6
5 6 3 3 6 5

c4
5 =

6 3 4 5 5 4
3 3 2 1 1 2
6 6 1 2 2 1
6 3 5 4 4 5

c5
5 =

3 1 5 6 1 3
1 3 5 6 3 1
2 4 6 6 4 2
4 2 5 5 2 4

c6
5 =

1 3 5 6 3 1
3 1 5 6 1 3
2 4 6 6 4 2
4 2 5 5 2 4

c7
5 =

2 3 4 6 5 1
3 2 6 4 1 5
2 3 4 6 5 1
3 2 6 4 1 5

c8
5 =

5 3 3 2 1 6
3 6 1 4 5 1
5 4 4 2 2 5
4 6 1 3 6 2

c9
5 =

5 3 4 2 2 4
3 3 1 6 6 1
5 5 6 1 1 6
5 3 2 4 4 2

c10
5 =

6 6 2 4 2 4
1 1 2 4 2 4
1 6 5 3 5 3
6 1 5 3 5 3

c11
5 =

6 6 4 2 4 1
3 4 3 2 3 1
4 5 5 2 5 1
5 3 6 1 6 2

c12
5 =

1 5 2 3 4 6
1 1 6 4 3 2
5 5 6 4 3 2
5 1 2 3 4 6

c13
5 =

4 5 4 2 1 5
3 3 5 2 1 4
5 6 6 2 2 3
6 4 3 1 1 6

c14
5 =

6 5 1 2 3 4
1 2 6 5 3 3
6 5 1 2 4 3
1 2 6 5 4 4

∆6:

c1
6 =

2 6 3 5 1 4
3 5 2 6 1 1
2 6 3 5 4 1
3 5 2 6 4 4

c2
6 =

6 1 3 2 6 3
3 1 6 2 5 5
5 2 4 2 4 6
4 1 5 1 3 4

c3
6 =

5 1 2 4 4 2
1 1 6 3 3 6
5 5 3 6 6 3
5 1 4 2 2 4

c4
6 =

6 4 4 2 1 4
3 3 6 2 1 6
6 5 2 5 5 1
5 4 1 3 3 2

c5
6 =

2 1 3 5 1 2
1 2 3 5 2 1
4 6 5 5 6 4
6 4 3 3 4 6

c6
6 =

6 1 2 5 5 2
1 1 4 3 3 4
6 6 3 4 4 3
6 1 5 2 2 5

c7
6 =

5 4 4 6 5 3
3 4 1 2 1 1
5 6 2 2 2 1
6 3 5 3 4 6

c8
6 =

3 1 4 5 1 3
1 3 4 5 3 1
2 6 5 5 6 2
6 2 4 4 2 6

c9
6 =

1 3 4 5 3 1
3 1 4 5 1 3
2 6 5 5 6 2
6 2 4 4 2 6

c10
6 =

1 3 3 6 5 2
3 2 5 4 1 5
1 4 4 6 6 1
4 2 5 3 2 6

c11
6 =

4 1 2 6 6 2
1 1 5 3 3 5
4 4 3 5 5 3
4 1 6 2 2 6

c12
6 =

6 3 3 2 1 4
3 4 1 5 6 1
6 5 5 2 2 6
5 4 1 3 4 2

c13
6 =

6 6 2 4 2 3
1 2 1 4 1 3
2 5 5 4 5 3
5 1 6 3 6 4

c14
6 =

2 6 2 4 3 6
1 1 6 4 3 2
6 5 5 4 4 1
5 2 1 3 3 5

c15
6 =

4 6 1 2 3 5
1 2 4 6 3 3
4 6 1 2 5 3
1 2 4 6 5 5
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∆7:

c1
7 =

2 6 3 5 2 3
3 6 2 5 1 1
1 5 4 5 4 2
4 6 1 6 3 4

c2
7 =

5 2 2 4 3 2
1 1 5 4 3 5
5 6 4 6 6 3
6 2 3 1 1 4

c3
7 =

4 3 5 2 3 4
3 4 5 2 4 3
6 1 2 2 1 6
1 6 5 5 6 1

c4
7 =

2 1 3 5 2 1
1 1 4 6 2 2
4 5 5 6 5 4
6 3 4 3 3 6

c5
7 =

6 2 2 5 6 1
1 2 3 4 3 3
6 5 4 4 4 3
5 1 6 1 2 5

c6
7 =

5 3 6 2 3 5
3 5 6 2 5 3
4 1 2 2 1 4
1 4 6 6 4 1

c7
7 =

3 1 4 6 2 4
1 4 3 6 3 2
2 5 5 5 6 2
6 1 3 4 1 5

c8
7 =

6 3 4 2 3 6
3 6 4 2 6 3
5 1 2 2 1 5
1 5 4 4 5 1

c9
7 =

1 3 3 5 4 2
3 2 4 6 1 4
1 6 6 5 5 1
6 2 4 3 2 5

c10
7 =

3 1 1 6 5 2
1 2 5 4 3 5
3 4 4 6 6 3
4 2 5 1 2 6

c11
7 =

4 4 2 5 2 3
1 2 1 5 1 3
2 6 6 5 6 3
6 1 4 3 4 5

c12
7 =

2 4 2 5 3 4
1 1 4 5 3 2
4 6 6 5 5 1
6 2 1 3 3 6

c13
7 =

2 5 3 4 1 6
3 4 2 5 1 1
2 5 3 4 6 1
3 4 2 5 6 6

c14
7 =

4 5 1 2 3 5
1 1 3 6 3 4
3 6 2 2 6 4
2 1 4 5 5 6

∆8:

c1
8 =

2 4 3 6 2 3
3 4 2 6 1 1
1 6 5 6 5 2
5 4 1 4 3 5

c2
8 =

4 2 2 6 3 2
1 1 4 6 3 4
4 5 6 5 5 3
5 2 3 1 1 6

c3
8 =

4 3 5 2 4 3
3 3 6 1 4 4
6 2 2 1 2 6
1 5 6 5 5 1

c4
8 =

4 2 2 6 4 1
1 2 3 5 3 3
4 6 5 5 5 3
6 1 4 1 2 6

c5
8 =

5 3 6 2 4 6
3 6 5 2 5 4
4 1 1 1 2 4
2 3 5 6 3 1

c6
8 =

6 3 3 1 4 5
3 5 4 2 6 4
6 2 2 1 1 6
2 5 4 3 5 1

c7
8 =

3 1 1 5 4 2
1 2 4 6 3 4
3 6 6 5 5 3
6 2 4 1 2 5

c8
8 =

6 6 4 1 4 5
3 4 3 1 3 5
4 2 2 1 2 5
2 3 6 5 6 1

c9
8 =

4 3 1 5 2 3
1 1 2 6 2 4
2 6 5 5 6 4
5 1 4 3 3 6

c10
8 =

4 6 4 2 5 6
3 3 6 2 5 4
6 1 1 2 2 3
1 4 3 5 5 1

c11
8 =

2 4 1 5 3 4
1 1 3 6 3 2
3 6 5 5 6 2
5 1 2 4 4 6

c12
8 =

2 6 3 4 1 6
3 3 1 5 1 2
1 5 4 4 5 2
4 3 2 6 6 5
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∆9:

c1
9 =

5 4 3 2 5 3
3 4 5 2 6 6
6 2 1 2 1 5
1 4 6 4 3 1

c2
9 =

5 4 4 1 6 4
3 3 5 1 6 5
5 2 1 2 2 6
2 4 6 3 3 1

c3
9 =

6 3 4 2 6 3
3 3 5 1 6 6
5 2 2 1 2 5
1 4 5 4 4 1

c4
9 =

6 4 4 1 6 3
3 4 5 2 5 5
6 1 2 2 2 5
1 3 6 3 4 1

c5
9 =

6 3 4 2 5 4
3 4 6 2 6 5
5 1 1 1 2 5
2 3 6 4 3 1

c6
9 =

5 3 3 1 6 4
3 4 6 2 5 6
5 2 2 1 1 5
2 4 6 3 4 1

c7
9 =

5 6 3 2 4 6
3 3 4 1 4 5
4 1 2 2 1 5
2 3 5 6 6 1

c8
9 =

4 5 3 2 6 5
3 3 6 1 6 4
6 1 2 2 1 4
2 3 4 5 5 1

c9
9 =

4 2 1 6 3 2
1 1 3 5 3 4
3 5 6 6 5 4
6 1 4 2 2 5

c10
9 =

2 4 3 5 1 4
3 3 1 6 1 2
1 6 5 5 6 2
5 3 2 4 4 6

∆10:

c10 =

6 4 3 2 5 4
3 3 5 1 5 6
5 1 2 2 1 6
2 3 6 4 4 1

Appendix B.

On the next page we draw the induced subgraph of {c0, c10}, together with the
i-adjacency information. Recall that two adjacent chamber c′ and c′′ are said to be
i-adjacent if τ(c′) = {i} ∪ τ(c′ ∩ c′′) = τ(c′′). So 0-, 1-, 2-adjacency means that c′

and c′′ ‘differ’ only in, respectively, an octad, a trio, a sextet.

As mentioned earlier we only need describe {c0}∪∆1∪∆2∪∆3∪∆4∪∆5−{c0, c10}
can then be constructed from this using y.

So as not to clutter up our picture, the names of the chambers have been sup-
pressed, with the exception of c0 and c1

j (1 6 j 6 5). Reading downwards, in order,

from c1
j gives the chambers ck

j in ∆j . Since c0, c
1
1, c

2
1, c

3
1, c

4
1, c

5
1 and c6

1 have the same
octad and trio, any two of them are 2-adjacent. On our picture we have not drawn
the 2-adjacency between cm

1 and cn
1 (1 6 m < n 6 6). All other adjacencies within

{c0} ∪ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4 ∪ ∆5 are given.
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Appendix C.

m24:=sub<Sym(24)|(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,

20,21,22,23), (24,23)(3,19)(6,15)(9,5)(11,1)(4,20)(16,14)(13,21)>;

#m24;

244823040

sextet:=sub<m24|Stabilizer(m24,{24,3,6,9}),m24.2>;

Index(m24,sextet);

1771

triopw:=Stabilizer(Stabilizer(m24,{22,18,8,12,2,10,17,7}),

{24,3,6,9,11,4,16,13});

flag:=sub<m24|triopw,m24.2> meet sextet;

Index(m24,flag);

79695

CT:=CosetTable(m24,flag);

flagp:=CosetTableToPermutationGroup(m24,CT);

oo:=Orbits(Stabilizer(flagp,1));

[#oo[i]:i in [1..106]];

[ 1, 2, 2, 4, 4, 6, 8, 8, 12, 12, 12, 16, 24, 24, 24, 24, 24, 48,

48, 48, 48, 48, 48, 48, 48, 96, 96, 96, 96, 96, 96, 96, 96, 96,

96, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,

192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384,

384, 384, 384, 768, 768, 768, 768, 768, 768, 768, 768, 768, 768,

768, 768, 768, 768, 768, 1536, 1536, 1536, 1536, 1536, 1536,

1536, 1536, 1536, 1536, 1536, 1536, 1536, 1536, 1536, 1536, 1536,

1536, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072, 3072 ]

References

1. F. Buekenhout, ‘The basic diagram of a geometry’, Geometries and groups

(Berlin, 1981), Lecture Notes in Mathematics 893 (Springer, Berlin-New York,
1981) 1–29. 120

2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A.

Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for

simple groups. With computational assistance from J. G. Thackray (Oxford
University Press, Eynsham, 1985). 123

3. R. T. Curtis, ’On the Mathieu group M24 and related topics’, PhD Thesis,
Cambridge, 1972. 124

4. R. T. Curtis, ’A new combinatorial approach to M24’, Math. Proc. Cambridge

Philos. Soc. 79 (1976) 25–42. 121, 122

5. R. T. Curtis, ’Eight octads suffice’, J. Combin. Theory Ser. A 36 (1984)
116–123. 135

6. M. A. Ronan and S. D. Smith, ’2-local geometries for some sporadic groups’,
Proc. Symp. Pure Math. 37 (1980) 283–289. 120, 121

7. M. Ronan, Lectures on buildings (Academic Press, Boston, MA, 1989). 120,
121

142https://doi.org/10.1112/S1461157000000048 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000048


The chamber graph of the M24 maximal 2-local geometry

8. P. Rowley, ’Chamber graphs of some sporadic group geometries’, The atlas

of finite groups ten years on (ed. R. T. Curtis and R. A. Wilson; Cambridge
University Press, Cambridge, 1998) 249–260. 121, 122

9. J. Tits, ’A local approach to buildings’, The geometric vein (ed. C. Davis,
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