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0. Abstract. The variety O, of all algebras (L; A, v,f,g,0,1) of type
(2,2,1,1,0,0) such that (L; A, v,f,0,1) and (L; A, v,g,0,1) are Ockham algebras
is introduced, and, for n, m e N, its subvarieties DMS,,, of double MS,-algebras, and
DK, ., of double K, ,,-algebras, are considered. It is shown that DK, ,, has equationally
definable principal congruences: a description of principal congruences on double
K, .-algebras is given and simplified for double MS,-algebras. A topological duality for
Or-algebras is developed and used to determine the subdirectly irreducible algebras in
DK, ,. and in DMS,. Finally, MS, -algebras which are reduct of a (unique) double
MS,,-algebra are characterized.

1. Preliminaries. Algebras (L; A, v ,f,0,1)of type (2,2,1,0,0)such that (L; A, v,
0,1) is a bounded distributive lattice and f is a dual endomorphism of (L; A, v,
0, 1) are called distributive Ockham algebras and form a variety. In [1], forn e N, m e N,
the subvariety of Ockham algebras characterized by the equation f*"*™(x)=f"(x) is
denoted by K,, ... Notice that K, ,, < K, - if and only if n | n’ and m =m’, [11].

A topological duality for Ockham algebras based on Priestley’s duality for bounded
distributive lattices was established in [13]. The duality was used to describe the
subdirectly irreducible algebras and several subvarieties including K, ,,, (denoted 25, ., »
in [13]). In particular, each K, , is generated by a single algebra, %,,.,, .., Which is
subdirectly irreducible.

The variety MS of MS-algebras, [4], is the subvariety of Ockham algebras
characterized by x =< f?(x). For n € N, we denote by MS, the variety of Ockham algebras
satisfying x < f*"(x), [12], (these varieties appeared in [11] denoted by KZ ). Obviously,
MS, =MS. We have K, . c MS, cK, ;; besides, MS,, c MS,,. if and only if n | n’, [11]. If
(L; A, v,f,0,1)is an MS,-algebra, f?" is both an endomorphism and a closure operator
on(L; A, v,0,1).

The notion of double MS-algebra, introduced by T. Blyth and J. Varlet in 5], was
inspired by the properties of double Stone algebras. A double MS-algebra (L; A, v,
f,8,0,1) is an algebra of type (2,2,1,1,0,0) such that (L;A,v,f,0,1) and
(L; A, v,g,0,1) are Ockham algebras and f, g satisfy x <f*(x), g°(x)=x, gf(x)=
FA(x), fg(x)=g%*x), Vx e L. DMS denotes the variety of double MS-algebras. Each
algebra (L; A, v,f,8,0,1)eDMS is associated with an MS-algebra and a dual
MS-algebra; gf and fg are, respectively, a closure and a dual closure on (L; A, v, 0, 1).

2. The variety O, and the subvarieties DK, , and DMS,. We shall consider
algebras of type (2,2, 1, 1,0, 0) which are associated with Ockham algebras.

DEeFINITION. [12] An O,-algebra is an algebra £=(L; A, v,f,g,0,1) of type
(2,2,1,1,0,0) such that (L; A, v,f,0,1)and (L; A, v,g,0,1) are Ockham algebras.
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The class of all O,-algebras is a variety and we denote it by Q,. For brevity, we write
F=(L,f,g)e 0, (L,f), (L,g) for Ockham algebras and L for the underlying bounded
distributive lattice.

For each n € N, we introduce a subvariety of O, which is related to MS,, in the same
way that double MS-algebras are related to MS-algebras. The fact that, for (L, f) e MS,,,
the mapping f*" is a closure on L leads to the following definition.

DeriniTiON [12]. A double MS, -algebra is an algebra £ = (L, f, g) € O, such that

fg=g" =id=f"=gf.

The variety of double MS,-algebras is denoted by DMS,,. Now DMS, = DMS, and it
is easy to check that DMS, c DMS,.. if n | n’. Notice that, if (L,f) €K, and g=f>"",
we obtain (L,f,g) e DMS,. Hence, if DMS, c DMS, ., extending %,,, to a double
MS,,-algebra, we conclude that K, o (=V({%,0})) =MS,. <K, ., and n|n’.

Let n,m e N. For each (L,f) €K, ,,, we have f"**=f* VkeN, k=m. If 2n=m,
the map g =f*""" is a dual endomorphism of L satisfying g2* = f>" and g>"*™ = g™; hence
gf =f* and fg=g*". In general, if z is the smallest integer such that 2zn=m, i.e.
z=[m/2n] (Jx] stands for the smallest integer greater than or equal to x), the dual
endomorphism g = f2"~! of L satisfies g*"*"™ = g™ and g**" = f**"; therefore gf = f*" and

fg=g""
DeriNiTiON. Let n,m €N and z = [m/2n]. We denote by DK, ,, the class of all
algebras £ = (L, f, g) € O, such that

f2n+m =fm, g2n+m = gm, gf =f2:n’ fg — 82zn.

If £ €DK, ,,, we say that £ is a double K, ,.-algebra. For m =1, we get the double
K, ;-algebras introduced in [12]. Clearly, DMS, c DK,, ;. The varieties DK, ,,,, n, me N,
are related in the following way.

ProrositioNn 1. Letn,n', m, m' e N.
(1) If nin', then DK, ,,c DK, ..
(it) If m=m’, then DK, ,, c DK, ...
(ii) DK, ,,< DK, . ifand only if n|n' and m=m'.

Proof. Recall that K, ,,cK, . ifandonlyif n|n' and m=m’.

(i) Let n' =nk, z=[m/2n], z' = [m/2n'] and £=(L,f,g) €DK, . Then kz' =z
and, for p € {f, g}, we have p*™" = p*kz'=an*2n = g2 Hence £ e DK, .

(i) f m=m’' and £=(L,f,g)eDK,,,, we have z=[m/2n] <z’ = [m'/2n] and,
for pe{f, g}, p="=p*E~2n*2n = p2n Hence L e DK, ..

@(iii) If n|n’ and m=m’, then DK, ,, DK, .. by (i) and (ii). Conversely, if
DK, ,.cDK, .., it suffices to extend the algebra 2,,,,, ., (which generates K, ) to a
double K, ,-algebra to conclude that K, ,,c K, .., hence n |n’ and m=m’.

The process that motivates the definition of DK, ,, is not, in general, the only one
that allows us to obtain a double K,, ,.-algebra from a given algebra in K, ,,. For instance,
the Stone algebra ¥ = (S, f), where S is the chain 0 <a <1 and f is defined by f(0)=1,
f(a)=f(1)=0, yields two algebras in DK, ;: letting g,(0) = g,(a) =1, g,(1) =0, we get
(S,f,81) e DMS,; taking g, =f, we get (S,f, g,) € DK, ,\DMS,.
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Let £=(L,f,g) e DK, Then f2"*%=fk g2+ =gk Yk =>m Denote by r(t) the
remainder of the integer ¢ on division by 2n. For 1=i,j=2n+m-1, let z;;=
m+r(j—i—m) (thenm=z;<2n+m—1).

ProposITION 2. Let n, meN, z=[m/2n] and £=(L,f,g) e DK, ,,. Then
() gf =f>" fig'=g*", 1=i=2n+m—1

(i) g'f' =f™, fig' =g%,1=<i,j<2n+m—1.

(iii) Imf™ =Img™.

Proof. (i) Use induction on i and the fact that 2zn =m.

(ii) For 1=i,j=2n+m—1, we have |i —j|=2n+m —2=2n+2zn -2 <4zn. We
consider three cases:

(a) i =j. Now, z;;=2zn and g'f’ = f*", by (i).

(b) l <] We have g,f/ = glftfj—i =f27,nfj——i =f22n+j—i =f2zn+m+(j—i—m) =f2ij-

(c) i>]. Now, gif/ =g'™g/f/ = g"™If " If i—j<2zn, we get g'f’ =f* by (b). If

i—j=2zn, we have g'fi=g>f=f2n=f%_ If i—j>2zn, we get g'fi =

gimimmgRnpin — gizj=2nplin — % ysing (b), since i —j —2zn < 2zn.

(iii) Just notice that f™ = g™f™* (™ apd g™ = fmgm*rtm),

CoroLLARY 3 [12, Lemma 5.3]. LetneNand £=(L,f,g) e DMS,. Then
() gf' =1, fg'=g", 1=i=<2n;

(ii) g'f =fU=0, figh=g""D 1=<i, j<2n,i+#j,

(iii) Imf =Img;

(iv) A (x) =g ¥ (x), g *(x)=f*(x),VxeL,0<k=n-1.

Proof. Since DMS,, « DK,, ,, (i), (ii) and (iii) follow from Proposition 2.

(iv) We have g*"(x)<x, Vx € L. For 0=k =n — 1, using (ii) and the fact that f>*'
is a dual endomorphism of L, we get f2**!(x) < f%**1g27(x) = g?"~2*~1(x). Again by (ii)
and as f** is an endomorphism of L, we have f*(x) = f*g**(x) = g*""*(x).

3. Principal congruences. For ¥=(L,f,g)e O,, we denote by Con(Z) the con-
gruence lattice of £ and by Conp (%) the congruence lattice of the Dy,-lattice L. For a,
belL, 6(a,b), resp. Bp(a,b), is the smallest element of Con(Z), resp. Conp(Z),
collapsing a and b. It suffices to consider 6(a, b) for a <b, since, if 8 € Con(¥) and x,
yelL, wehave (x,y)efif andonly if (x Ay, x vy)€e@.

It is easy to see that, for £=(L,f,g)eDK,,, and a, b e L, a<b, the principal
congruence 6(a, b) is given by

0@, b)= 6(a,b)v 0o @. S BNV 6og'@), g5)).

Now, by [2, Th. 1.3], we conclude that DK, ,, has equationally definable principal
congruences and, hence, satisfies the congruence extension property, [8, Corollary 2].

The description of a principal congruence as a join of congruences of a distributive
lattice and [9, Lemma 2] allow us to conclude that each principal congruence in a double
K, -algebra can be defined by 2*"**"~! equations.

https://doi.org/10.1017/50017089500009745 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009745

192 M. SEQUEIRA

For n, m € N, define

- —2
T,.,m={0,1,2,. n+ {mTIJ} T;,m={0,1,2,...,n+ [”’—Z—J}

T, .= T,.\{0}

(|x] stands for the greatest integer less than or equal to x).
Let £=(L,f,g)eDK,,,a,beL,a<b. Then (x,y)€ 6(a, b) if and only if

(x ndpcusfa,b))Vvercua,b)y=(y ndrgusa,b))Vvercusla,b) ()
for each F, G, H,Jsuch that F< T, ,; G,J< T, ,; Hc T, , and where

drcuia,b)=\f*@) A AT O N\ g5@) A \E0),

ercndab)= V U0y N U@y Y g0y V).

GETy n s€Ty ,m\X

(The process used for obtaining these equations is described in [12, Theorem 6.4].)

For double MS,-algebras, this description can be simplified since some of the 2*"*!
equations (1) obtained for algebras in DK, ; hold trivially for algebras in DMS,. Let
£=(L,f,g)eDMS, and x € L. Then x =< f*"(x); and, for each i € T , and each je T},
we have g%(x) =f?""%(x) and f¥*'(x) = g* %" !(x) (Corollary 3(iv)).

For F,G,H,Jsuchthat Fc T, ;G,JcT, ,; HcT,,, define

Teu={seT;,|seH,n—s¢F}, Tg,={teT,,|teG,n—1-t¢J}.
We say that

the pair (F, H) satisfies the condition (0") if Tz, =, n¢ Fand Oe F:
the pair (F, H) satisfies the condition (i), for i € T}, ,, if Tf.,; # < and i = min T} ;
the pair (G, J) satisfies the condition (j'), for je T, ,, if T¢;, #@ and j = min T .

THEOREM 4 [12, Theorem 6.5]. Let £=(L,f,g)e DMS, and a, be L, a<b. Then
the principal congruence 0(a, b) is defined by the equations (t) in which (F, H) does not
satisfy (i"), i € T, |, and (G, J) does not satisfy (j'), je T, ;.

Proof. Since DMS, c DK, ,, the congruence 6(a,b) is defined by the 2*'*!
equations (1) above. Consider the following cases.
(a) (F, H) satisfies (0"). Then Oe F, n ¢ F, hence

drcusa,b)<a=f"(a)=<f"(b)<ercn.a,b).
(b) AieT,,: (F,H) satisfies (i"). Since i e H and n —i ¢ F, we get
dr.c.ui(a,b)=g*(a)=g¥(b)=f*~%(b) <er g n.la,b).
(c) 3jeT, ,:(G,J) satisfies (j'). Now, je Gand n—1—j¢J, hence
drc.ni@,b)=fi"'(b)=f*"(a) =g ¥ "'(a) S ercn.la,b).

In each case, we have (zAdrgusa,b))vercuia,b)=ergu,a,b), VzelL,
therefore the corresponding equation (1) holds trivially in L.
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Observe that, if F< T, ; H< T, , and (F, H) satisfies (0"), then each k such that
1=k =n -1 satisfies exactly one of the following: ke H, n—keF; k¢ H, n—keF,
k¢ H, n—k ¢ F; moreover, we have either ne H, Oc For n¢ H, 0 e F, and, besides,
n ¢ F. Therefore the number of pairs (F, H) that satisfy (0") is &, o=3""". 2.

Also, if (F, H) satisfies (s"), for a given se T}, ;, we have se H, n —s ¢ F and, for
each ke T, , with k <s, exactly one of the above cases holds. Therefore there exist
@, =371 2nHIms Qnms = 3571 Q2= nairs (F, H) satisfying (s").

Similarly we conclude that the number of pairs (G, J), with G, J = T, ;, that satisfy
(t'), for a given te T, ,,is B,,=3".2""'70. 2" 1t=30 Q2272

CoroLLARY 5. [12, Corollary 6.6] Let £=(L,f,g)eDMS, and a,be L. Then
6(a, b) can be described by 2*. 3*"~! equations.

Proof. Since 6(a,b)=6(a Ab,avb), we simply consider the case a <b. Then
6(a, b) is defined by the equations (}) in the conditions of Theorem 4.

There are a, =2"*'— ¥ a,,=2%.3""! pairs (F, H) that do not satisfy (i"), i € T, ;;
s=0

n—1

and there exist B,=2*"— ¥ B,,=3" pairs (G,J) that do not satisfy (j'), jeT,,.
1=0

Therefore 8(a, G) is defined by a,8, =2*. 3!

A description of principal congruences in double MS-algebras by means of 12
equations is given in {7, Theorem 1].

4. A duality for O,-algebras. We develop a topological duality for O,-algebras
which is similar to the duality for Ockham algebras obtained in [13].

DerniTiON [12]. X =(X, T, =, &, v) is an O,-space if (X, J, =) is a Priestley space
(i.e., a compact totally ordered disconnected space) and &,y : X — X are continuous
antitone mappings.

DEFINITION. The dual space of the algebra L=(L,f,g)e0Q, is Pr(¥)=
(X, T, =, &, &) where
(i) X, is the set of Dy-homomorphisms from L into the two-element chain {0, 1};
(i) 7 is the topology induced in X, by the product topology of {0, 1}*;
(iii) = is the order in X, given by h, < h, if and only if h,(a) < h,(a), Va e L;
(iv) &(h)=chf and g,(h) = chg, Vh € X, (c denotes complementation in {0, 1}).

Pry(%) is an O,-space. For pe {f,g}, jeN and h € X,, we have &,(h)=chp’ if j is odd
and &i(h) = hp’ if j is even. If £ is finite, then 7 is the discrete topology in X, .

DeriNiTION. The dual algebra of the O,-space X =(X,J,=,¢,7) is OfX)=
(O(X),f.,f,) where O(X) is the bounded distributive lattice of the clopen order filters of
(X,9,=), and f3, Be{e, vy}, is the unary operation defined by fs(Y)= X\B~Y(Y),
VY € O(X).

0,(X) is an O,-algebra. Given e {&,7},j €N, Y € O(X), we have fj(Y) = X \(#)7'(Y)
if j is odd and fi(Y) = (B/)~'(Y) if j is even.
For £€0,, the mapping ®:L— O(X,), defined by ®(a)={heX,|h(a)=1},
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Va € L, is an isomorphism of O,-algebras from £ into 0,(Pr,(¥)). If X is an O,-space, the
mapping ¥ : X — Xy, defined by

1 ifxeY;

@ ={, o

VxeX, VYeOX),
is an O,-homeomorphism between X and Pr,(0,(X)).

Given %, % € 0,, there exists a bijection between the set of homomorphisms from
&, into % and the set of O,-continuous mappings from Pry(%) into Pry(%): just
associate to each homomorphism ¢:L,— L, the mapping 0,:X,,— X;, defined by
oy,(h)=h¢,VheX,,.

Therefore we have a duality between (Os-algebras (with O,-homomorphisms) and
O,-spaces (with O,-continuous mappings), (see [13, Theorems 1, 3, 4]).

Let X be a set, Y ¢ X and ¢,y: X — X mappings. We denote by Y, , the smallest
subset Z of X such that Y€ Z, £(Z) c Z and y(Z) c Z, and say that Y is invariant under
eand yif Y, , =Y.

THEOREM 6. [12, Theorem 7.5] The congruence lattice of an algebra £ =(L,f,g) €
0, is dually isomorphic to the lattice of all closed subsets of Pry(¥)=(X., T, =, &, &)
which are invariant under & and ¢,.

Proof. The proof is analogous to that of [13, Theorem 5]. Identify & and 0,(Pry(%¥));
for each closed invariant subset Y of Pry(£), define the relation 6y on L by (a, b) € 8, if
and only if Y < (aNb)U((X.\a) N (X, \b)). Then the correspondence associating Y to
Oy is a dual isomorphism from the lattice of all closed invariant subsets of Pr,(¥) into
Con(%).

Note that, if £=(L,f,g)eDK,,, and x,yeL satisfy p'(x)=p'(y), for some
pe{f,g} and m+1=<i=2n+m~1, then p™(x)=p™(y). Now, for 1=i, j=m, we
define the relation ker(f’,g’) on L by (x,y)eker(f’,g’) if and only if fi(x)=f(y),
g'(x) =g/(y). Using Proposition 2 we may easily prove that ker(f’, g’') € Con(%).

The results concerning subdirectly irreducible algebras in O, are similar to those in
13, 2.

Lemma 7. (12, Lemma 7.6] Let X =(X, T, =<, ¢, y) be an Oyspace and Y a subset
of X. )
(i) If Y is invariant under € and vy, then so is Y.

(ii) Y., is the smallest closed subset of X that contains Y and is invariant under € and y.

TueoreM 8. [12, Theorem 7.7] Let £=(L,f,g) € O, and Pry(&) = (X, T, <¢;, ¢,).
Then % is subdirectly irreducible if and only if {x € X, |Ax}, . #X_.} is not dense in
(X., T). In particular, if L is finite, &£ is subdirectly irreducible if and only if there exists
x € X such that {x}, . =X,.

5. Subdirectly irreducible algebras in DK, ,, and in DMS,. In order to apply the
above duality to determine the subdirectly irreducible algebras in DK, ,, and in DMS,,,
we begin by characterizing the dual space of a double K, ,-algebra and of a double
MS,, -algebra.
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THEOREM . Let £=(L,f,g)€ O, and Pr(L)=(X., T, <, &, ¢,). Let n,m e N and
z=[m/2n]. Then

(i) £eDK,,, if and only if

{3%”'"(") = ef(h), &' (h) = eg'(h)
g6, (h) = €7°"(h), €.&r(h) = €3"(h)

=¢f'(h), eg'(h)=h
&g (h) = 7"(h), &.e(h) = e7"(h)’

Proof. Observe that gf = f>" in L if and only if g€, = /" in X, (similarly, fg = g*
if and only if g,6; = €2*"). In fact, if gf =f*" and h € X, we get

gr6g(h) = gr(chg) = c(chg)f = h(gf) = hf**" = ef™"(h).

Conversely, suppose that g, = £/ and recall that & and Oy(Pr(£)) are isomorphic
algebras. Let Y € O(X,). Then

gf(Y)=g(X . \er (V) = X, \ e (X \ef (X)) = (gr8,) /(Y) = (e7") ' (Y) =f>"(Y).

Also, for p e {f, g} and p,q € Ny such that p # ¢ and |p — ¢q| is even, p”(x) = p?(x) holds
in L if and only if ef(h) < €%(h), h € X,, (see [13, Theorem 9]).

Hence the double K, ,,-algebras (resp. double MS, -algebras) are exactly the algebras
¥ € O, for which the conditions in (i) (resp. (ii)) hold in Pry ().

,VheX,.

(ii) £ e DMS, if and only if { VheX,.

ProposiTioN 10. Let £=(L,f,g) € DK, , and Pry(£)= (X, I, sf, &) Then
(i) efe =i, gpef= €, 1=<i, js2n+m—1 (in particular, €c,= ", eief=
8 2zn

(ii) {x}£[‘5g= {x, efx), eh(x) | 1=i=2n+m—1}, Vx e X,.
Proof. (i) Just translate the properties in Proposition 2 to the dual space of %.

(ii) Apply (i) to check that Y = {x, eix), ei(x)|1=<i=<2n+m—1} is invariant
under ¢ and y. Now it is clear that {x} . =

Tueorem 11. Every subdirectly irreducible algebra in DK, , is finite. Up to
isomorphism, there is only a finite number of subdirectly irreducible algebras in DK,, ..

Proof. Let £=(L,f,g) e DK, ,, be subdirectly irreducible and Pr,(¥)=(X,, T, =,
&, &). By Theorem 8, we have {x}, . =X,, for some x € X,. By Proposition 10ii),
{x}¢., is finite. Hence £ is finite. Since the cardinality of the dual space of a subdirectly
irreducible algebra is not greater than 4n +2m —1, the number of non-isomorphic
subdirectly irreducible algebras in DK, ,, is finite.

PropPOSITION 12. Every subalgebra of a subdirectly irreducible algebra ¥ € DK,, ,,, is
subdirectly irreducible.

Proof. Let ¥=(L,f,g)eDK,, be subdirectly irreducible, Pr(¥)=(X., T,
<, &, &) and %, a subalgebra of £. Then £ is finite and there exists x, € X, such that
X, ={xo}¢.e The inclusion inc:L,—~L is an embedding, hence the corresponding
O,-continuous mapping 0;,.:X,— X, is onto. It is easy to check that X, =
{Ginc(¥0)} ¢ .c,- Therefore £, is subdirectly irreducible.
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We are going to introduce an algebra whose role is particularly important in DK,, ,,..
For each integer ¢, denote by r(¢) the remainder of ¢ on division by 2n and let
s(y=4n+2m—-2—-r(2m -2 —1). Consider X, ,={0,1,2,...,4n+2m —2} and de-
fine the mappings ¢, v: X, »— X, . by

k-1 f2n+l1=k=<2n+m-1;
r(k —1) otherwise.

e(k)= {

(k)_{k+1 if2n+m-1=<k=2n+2m-3;

= s(k +1) otherwise.

Then &(X,,,)=1{0,1,2,...,2n+m =2} and y(X,,.)=(2n+m,2n+m+1,... ,4n+
2m - 2}.

Lemma 13, ForjeNand ke X, ,,,

k—j if2n+j=k=2n+m-1;
r(k —j) otherwise.

#iy={
y’(k)={k+j f2n+m—-1=k=2n+2m-2—-j,
s(k +j) otherwise.
If j=m, then &(k)=r(k —j), yY(k)=s(k +j), Yk € X, (in particular, (k) =r(k),
y**(k) =s(k), Vk € X, ).
Proof. By induction on j.
Note that, for 1 =j=m,
EXpm)={keX,m|0=k=2n+m-1-j}
and
Y X, m)=tlkeX, |2n+m—-1+j<k=d4n+m-2};

for j=m, £(X, ) = €"(X, ) and Y(X, ) = y"(X, ). |

Let X, = (X, m> T, =7, €, 7) where X, ,,={0,1,2,...,4n+2m -2}, J, is the
discrete topology, <r is the trivial order and ¢, v : X, ,,— X, ,,, are the mappings defined
above. It is obvious that X, ,, is an O,-space. Denote by 9, , the dual algebra of X, .
the Dy-reduct of 9, ,, is the lattice (X, ,) of all subsets of X, ,, and the unary
operations f3, B € {¢, v}, are defined by f(Y) =X, ,\B7(Y), VY c X, .

THeOREM 14. Forn, meN, 9, ,, is a subdirectly irreducible double K, ,-algebra.

Proof. Let n, meN and X, ,,=(Xnm» T4, <7, £, 7). By Lemma 13 we have
gt = g™ YT =" gy =€*", ye = y**". Therefore 9,,, € DK, , by Theorem 9(i).
Now, {2n + m -1}, ,= X, ,,, hence 9, ,, is subdirectly irreducible (Proposition 10(ii),
Theorem 8).

We can, in fact, describe Con(2, ,,).

THEOREM 15. Let nym e N.

(i) Besides & and X, ,,,, the (closed) subsets of X, ,, which are invariant under € and y
are exactly the sets Y, ;= (X, ) U VY (X, ), 1=i,j=m.

(i) Con(2,,,)=1D (m Xm)D 1.
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Proof.(i) Let 1 <i, j=m and Y; ;= ¢(X,,,,) U ¥(X,..). Then
e(Y;)) = € (X ) U e9(X, ) = £7H(X, ) U €™(X, ) € €1(X ) € Yy

Similarly, y(Y; ;) € Y;,. Hence Y is invariant under £ and y. Let Y ¢ X,, ,, be a nonempty
set invariant under ¢ and y. If 2n+m —1€Y, then X, ,,={2n+m—1},,cY, ie.
Y=X,,,. lf2n4+m—-1¢Y,letY={keY|k=2n+m-2}and Y,={keY|k=2n+
m}. Then Y, #J, V,#& and Y=Y, UY,. Notice that maxY;=2n—1 and min ¥, <
2n+2m—1. Leti=2n+m—1—max Y, j=min Y, — (2n +m —1). Now we have 1 =i,
j=m, Y, =€(X,,), Ya=¥(X,.); hence Y =Y, ;.

(ii) By Theorem 6, Con(9, ,,) is dually isomorphic to the lattice of all (closed)
subsets of X, ,, which are invariant under € and y. The set {Y;;|1=<i,j=<m}, partially
ordered by inclusion, is lattice-isomorphic to m X m and its non-trivial v -irreducibles are
Yi > Y 1 =i, j=m — 1. Therefore, both Con(9, ,,) and the lattice of invariant subsets
of X, . are isomorphic to the self-dual lattice 1D (m xm) @D 1. (Note that, for 1=<i,
J =m, the congruence 0y, associated with Y, ; in Theorem 6 is just ker( o).

The importance of 9, ,, in DK, , is evident in the following result.

THEOREM 16. Up to isomorphism, each double K,, ,,-algebra is a subalgebra of a direct
product of copies of D,, , i.e., DK, ,,=SP({Z, .}).

Proof. Let £=(L,f,g)e DK, ,, and Pri(¥)=(X,., T, <¢, ¢,). Identifying £ and
0,(Pry(¥)), we shall define an embedding of & into a direct product of copies of 2, ,,.
For each x € X, and Y € L, consider

Yi={2n+m-1-k|1=k=2n+m—1,¢f(x)eY},
Yi={2n+m—-1+1|1=I=2n+m—-1,¢(x)eY};
and define ¢,: L— #(X,,,,) by
Y, UYL if x¢Y;
YUY U{2n+m—1} if xeY.
Given x € X, it is easily seen that ¢, is a Dy,-homomorphism and, using Lemma 13, we
conclude that @, (f(Y)) =f.(¢.(Y)) and ¢,(g(Y)) =f,(¢.(Y)), VY € L. Hence the map-
ping @:L— [l P(X,,.), defined by @(Y)=(@(Y))ex,, VYeL, is an O,

xeXy,
homomorphism. For Y,, Y, e L, Y, # Y, there exist i € {0, 1} and x € X such that x € Y},
x¢Y,_. Then 2n+m—-1eq@(Y;) and 2n+m-1¢ @, (Y,_), ie., @(Yo)# @(Y)).
Therefore @ is injective.

@:(Y) ={

THeoreM 17. Up to isomorphism, the subdirectly irreducible algebras in DK, ,, are
exactly the subalgebras of 9, ,,.

Proof. Since 9,,, is subdirectly irreducible, so are all its subalgebras (Proposition
12). It follows immediately from Theorem 16 that each subdirectly irreducible algebra in
DK, ,, is isomorphic to a subalgebra of 9, ,,.

In order to obtain the subdirectly irreducible algebras in DMS,,, observe that every
algebra £=(L,f,g) e DK, , has, at least, a subalgebra in DMS,; the universe of the
greatest subalgebra of £ in DMS, is {xeL|g¥(x)=x=f>(x)}. Since DK,, is
generated by a single subdirectly irreducible algebra, the same is true for DMS,,. Denote
by 2, the greatest subalgebra of 9, , that belongs to DMS,,.
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CoroLLARY 18. The subdirectly irreducible algebras in DMS,, are, up to isomorphism,
the subalgebras of 9,. Therefore DMS, is generated by 9,,

Proof. 1t follows immediately from Theorem 17: each subalgebra £ of 9, is a
subalgebra of 9, ,, hence & is subdirectly irreducible; on the other hand, every
subdirectly irreducible algebra in DMS,, is a subalgebra of 9, ; and, hence, of 9,.

The subdirectly irreducible algebras in DMS, =DMS were determined in [6,
Theorem 2.7).

We describe the algebra 9,. Recall that 9, , is the dual algebra of X, =
(Xn1, T4, =<r, €, v) where X, ,={0,1,2,...,4n}, and ¢,y:X, ,— X, are defined by
g(k)=r(k—1) and y(k)=s(k +1), Vk € X,, ;. Then D, ;=(P(X,.), f.,f,) where f, and
[, are the dual endomorphisms of ?(X,, ;) induced, respectively, by

X, \{i+1,i+1+2n} if 0<i<2n-2;

f({i}) =9 X..1\{0,2n,4n} if i=2n-1,
X if 2n<i<dn.
X if 0=i=<2n;
L) =9 Xn1\0, 2n, 4n} if i=2n+1;

X, \i-1,i-1-2n} if 2n+2=<i<dn.

9, is the subalgebra of 9, , whose universe is D, = {Y € (X, ,) | f>(Y)c Y c fZ(Y)}.
For Y € (X, ), we have

() Yef(Y)o(Vke X, , ke Y> e '(k)eY)
&SVkeX, ,keY>r(k)eY).

(i) F7(Y) S YO (Vh € X,y 7' (K) € Y Sk € ¥)
& (VkeX, ,s(k)eY>keY).

We say that Z ¢ X, | satisfies () if Z=2Z'UZ"U Z" where
Z'c{2n+1,2n+2,...,4n-1}, Z"={r(k)|keZ'},
Z2"c{1,2,...,2n—1}\2Z".
The elements of P(X,, ;) in case (i) are
Z, ZV{0}, Zu{0,2n}, ZU{0,4n}, ZU{0,2n,4n} where Z satisfies (*);
the subsets of X,, ; in case (ii) are
Z, ZU{0}, ZU{2n}, ZU{0,2n}, ZU{0,2n,4n} where Z satisfies (*).

Hence D,={Z,ZU{0},ZU{0,2n},ZU{0,2n,4n}|Z satisfies (*)} and 9.=
(D,.f.,f,) where f, and f, are the dual endomorphisms of D, whose restriction to J(D})
is, respectively,

L({0}) =£({0,2n})=f.({0, 2n, 4n}) = X,, ,\ {1, 2n + 1},
Ay o _ Xoa\i+1,i+2n+1} if 1=i<2n-2;
ff({’})‘ff({”’+2"})‘{X",1\{0,2n,4n} it i=2n-1.
. [ X,1\{0,2n, 4n} if i=1;
fy({”’+2”})'{X,,,1\{i—1,i+2n—1} if 2<i=2n—1.
£({0,2n,4n})=X, \{2n - 1,4n - 1},
fv({l}) =fy({07 2n})=X,, 0=i<2n-1.
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6. MS, -algebras which are reduct of double MS, -algebras. We already observed
that each algebra (L, f) € K, ,, can be extended to, at least, one double K, ,-algebra. On
the contrary, not every MS,-algebra can be extended to a double MS,-algebra, but,
whenever it is possible, the extension is unique.

The MS-algebras which are reduct of a double MS-algebra are characterized in {5,
Theorem 2.2]. We obtain a similar result for MS, -algebras, n € N, and the central point is
the fact that, for (L, f, g) e DMS,,, the closure f*" is residuated.

We recall a few notions from [3]. Let E, F be partially ordered sets. A mapping
@:E—F is said to be residuated if it is isotone and there exists a (unique) isotone
mapping ¥ :F— E such that y@ =id; and ¢y =<id,. The mapping v is called the
residual of @ and is given by y(y)=max{xeE| @)=y}, VyeF. Moreover, @
preserves suprema and i preserves infima. If £ = F and ¢ is a residuated closure, we
have @(x)=min([x) NIm ¢) and y(x)=max((x] N Im @), Vx € E; besides, y is a dual
closure on £ and Im y = Im ¢.

A nonempty subset Z of E is said to be bicomplete if, for each x e E, [x) N Z has a
smallest element and (x] N Z has a greatest element. The bicomplete subsets of E are
exactly the sets Im @, where g is a residuated closure on E. Let Z be a bicomplete subset
of E and v; E — E the mapping defined by v(x) = max((x] N Z), Vx € E; then we say that
Z is strong if v preserves suprema, [5]. Clearly, Z is a strong bicomplete subset if and only
if Z=1Im @ for a residuated closure @ whose residual y preserves suprema. Moreover,
the following result holds.

LeMMa 19 [12, Lemma 5.4). Let E be a distributive lattice and @ be a closure on E.
Then the following are equivalent:
(i) Im @ is a strong bicomplete subset of E.
(ii) Im @ is a bicomplete subset of E and, for every xelm @, if x=y vz, with y,
z€E, then x = y(y) v ¥(2).
Proof. See the proof of the equivalence of the statements (2) and (3) in [5, Theorem
2.2]: only properties of closure operators are used, not the particular closure involved.

Note that (i) => (ii) holds in every partially ordered set E, but the converse is not true
in general. Consider the lattice £ whose Hasse diagram is

1

Figure 1.

The mapping ¢ defined by @(1) = @(e) = p(a) = p(b)=1, p(d)=d and @0)=0is a
residuated closure on E and its residual vy is given by (1) =1, y(e)= y(d)=d and
y(a) = y¢(b) = y¢(0)=0. Then Im ¢ = {0, d, 1} satisfies (ii) and does not satisfy (i) since
d=vy(e)=y(avb)>ya)vybd)=0.

Now, if £=(L,f,g) e DMS,, it follows from Corollary 3(i) that the closure operator
" is residuated, its residual being g*".
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For (L,f) e MSn, we have Imf?" =Imf. We present a condition on Im f which is
necessary and sufficient for (L, f) to be a reduct of a (unique) double MS,-algebra.

TueoreM 20. {12, Theorem 5.6] An algebra (L, f) € MS,, can be extended to a double
MS, -algebra if and only if Im f is a strong bicomplete subset of L. In this case, we obtain
(L,f,g) e DMS, where g(x) = f*""'(max((x} N Imf)), Vx € L.

Proof. If (L,f) can be extended to a double MS,-algebra (L,f,g), then f*" is a
residuated closure. Moreover, its residual, g, is an endomorphism of L. Hence Im fis a
strong bicomplete subset of L. For each x € L, we have max((x]NImf)=g*(x) and,
applying Corollary 3(ii), we have f%*~'(max ((x] N Im f)) = g(x). Therefore (L, f) is the
reduct of exactly one double MS,-algebra.

Conversely, let (L, f) be an MS,-algebra such that Im f is a strong bicomplete subset
of L. Then the closure f** is residuated and its residual y is both an endomorphism and a
dual closure on L. We have y(x)=max((x]NImf), hence y(f(x)) =f(x), Vx € L. The
mapping g:L— L, defined by g(x) =f>~'(y(x)), Vx € L, is a dual endomorphism of L.
Now w(g(x))=g(x), and g'(x)=f"""(y(x)), 1=i=2n Hence g (x)=y(x)=x,
%f(xg =f"71(p(f(x))) =f*(x) and fg(x) =f*(y(x)) = p(x) =g>(x) so that (L,f,g) €

MS.,..

From Theorem 20 and using Lemma 19 we now obtain the following corollary.

CoroLLArY 21 [12, Corollary 5.7 If (L,f)eMS, can be extended to a double
MS, -algebra, then every element of Im f that is v -reducible in L is also v -reducible in
Imf.

Observe that the condition stated above is not sufficient for an MS,-algebra to be a
reduct of a double MS,-algebra: if L is the chain —o<. .. <2< -1<0<1<2<" -
<z<+w and f is defined by f(z)= -, f(a)=—a if a#z, then (L,f)eMS and
Im f = L\{z} is not bicomplete ((z] N Im f does not a have a greatest element).

ExampLes. (1) It was already pointed out that, if (L,f) €K, , then (L,f,f*" ") e
DMS,..

(2) The (non-isomorphic) subdirectly irreducibles in MS,\MS are the algebras &,
A, 1=i=5, € and 4, depicted in [11, Theorem 1].

As o, €cK,y, o, € are reducts of double MS,-algebras; so are &, and o, (see
(12, example 5.3]). The algebra €, = (C,, f) that generates MS, has the Hasse diagram
shown in Figure 2 and can be extended to the double MS,-algebra (C,, f, g) where g is
the dual endomorphism of C, induced by g(a)=f*a;), 0=<i=<3, and g(u)=
F(max((u] NImf)) =f(ao v a, v as) = a.

The algebras &,, &3 and &5 are not extendable to double MS,-algebras; just apply
Corollary 21: the element b=y v k is v -reducible in A,, but is v -irreducible in Imf; a
similar statement holds for the element d =s v k both in A5 and in As.

(3) Given neN, let L be a direct product of 2n finite non-trivial chains. Let a;,
0=i=2n -1, be the maximal elements in J(L) (i.e., the atoms of C(L), the center of L)
and consider the dual endomorphism f of L induced by f(x) = c(a,i+1)), x € J(L), x < a;,
0=<i=2n-1 (c(z) denotes the complement of z). Then (L, f) e MS, and Imf = C(L).

For each yeL, let w,=\/{a;|a;<y}. It is obvious that w,e(y]NImf; if
ae(y]NImf, then a =w,<w,, hence w, = max((y] N Im f). Moreover, for y, z € L and
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f()=£(1)

Figure 2.

since a;, 0=i=2n—1, is a v -irreducible element, we have w,,, =w, v w,. Therefore
Imf is a strong bicomplete subset of L. By Theorem 20, we obtain (L, f, g) € DMS,,
where g(y)=f>"'(w,), ¥y e L. Since w,=a;,, 0=i<2n-1, and w, =0, Vx eJ(L)\
{a;|0=i=2n -1}, we conclude that g is the dual endomorphism of L induced by
gla)=c(a,i-1)), 0=i=2n—1,and g(x) =1, Vx e J(L)\{a; |0=i=2n —1}.

Note that, if L =4X3*"~', the algebra (L, f, g) just described is isomorphic to 9.
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