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0. Abstract. The variety O2 of all algebras (L; A , v , / , g , 0 , 1 ) of type
(2 ,2 ,1 ,1 ,0 , 0) such that (L; A , V , / , 0,1) and (L; A , V ,g, 0,1) are Ockham algebras
is introduced, and, for n, meN, its subvarieties DMSn, of double MSn-algebras, and
DKn ,„, of double Kn>m-algebras, are considered. It is shown that DKn m has equationally
definable principal congruences: a description of principal congruences on double
Kn m-algebras is given and simplified for double M5n-algebras. A topological duality for
O2-algebras is developed and used to determine the subdirectly irreducible algebras in
DK n m and in DMSn. Finally, MSn-algebras which are reduct of a (unique) double
M5n-algebra are characterized.

1. Preliminaries. Algebras(L; A , V , / , 0 , 1 ) of type (2,2, l ,0,0)such that (L; A , V ,
0,1) is a bounded distributive lattice and / is a dual endomorphism of ( L ; A , V ,

0,1) are called distributive Ockham algebras and form a variety. In [1], for n e N, m e No,
the subvariety of Ockham algebras characterized by the equation f2n+m(x) =fm(x) is
denoted by Kn m. Notice that Kn-m c Kn•„,• if and only if n \ n' and m < m', [11].

A topological duality for Ockham algebras based on Priestley's duality for bounded
distributive lattices was established in [13]. The duality was used to describe the
subdirectly irreducible algebras and several subvarieties including Kn m (denoted ^n+m,™
in [13]). In particular, each K n m is generated by a single algebra, 3?2n+m,nf, which is
subdirectly irreducible.

The variety MS of MS-algebras, [4], is the subvariety of Ockham algebras
characterized by x <f2(x). For n e N, we denote by MSn the variety of Ockham algebras
satisfying x^f2n(x), [12], (these varieties appeared in [11] denoted by KJO). Obviously,
MS, = MS. We have Kn.o c MSn c Kn,,; besides, MSn c MSn. if and only if n\n', [11]. If
(L; A , v , / , 0,1) is an MSn-algebra, f2" is both an endomorphism and a closure operator
on (L; A , v ,0 ,1) .

The notion of double MS-algebra, introduced by T. Blyth and J. Varlet in [5], was
inspired by the properties of double Stone algebras. A double MS-algebra (L; A , V ,
f,g,0,1) is an algebra of type (2 ,2 ,1 ,1 ,0 ,0 ) such that (L; A , v , / , 0 , 1 ) and
(L; A , v,g,0,1) are Ockham algebras and / , g satisfy x^f\x), g2{x)<x, gf(x) =
f\x), fg(x) = g2(x), V;c 6 L. DMS denotes the variety of double A/S-algebras. Each
algebra (L; A , v , / , g , 0 , 1 ) eDMS is associated with an MS-algebra and a dual
AfS-algebra; gf and fg are, respectively, a closure and a dual closure on (L; A , v , 0,1).

2. The variety O2 and the subvarieties DKn m and DMSn. We shall consider
algebras of type (2 ,2 ,1 ,1 ,0 ,0 ) which are associated with Ockham algebras.

DEFINITION. [12] An O2-algebra is an algebra !£={L; A , v , / , g , 0 , 1 ) of type
(2 ,2 ,1 ,1 ,0 ,0 ) such that (L; A , v , / , 0,1) and (L; A , v , g, 0,1) are Ockham algebras.
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190 M. SEQUEIRA

The class of all O2-a\gebras is a variety and we denote it by O2. For brevity, we write
J£ = (L,f,g) e O2, (L,f), (L,g) for Ockham algebras and L for the underlying bounded
distributive lattice.

For each n e N, we introduce a subvariety of O2 which is related to MS,, in the same
way that double MS-algebras are related to A/5-algebras. The fact that, for (L,/) e MS,,,
the mapping/2" is a closure on L leads to the following definition.

DEFINITION [12]. A double MSn-algebra is an algebra if = (L,f,g) e O2 such that

The variety of double MSn-algebras is denoted by DMSn. Now DMS, = DMS, and it
is easy to check that DMS,, c DMS,,. if n \ n'. Notice that, if (L,f)e Knfi and g=f2"~\
we obtain (L, / ,g)eDMSn. Hence, if DMS,, c DMS,,., extending ifj^o t 0 a double
M5n-algebra, we conclude that Kn 0 (=K({i?2« o})) <= MS,,. <= Kn. , and n | «'.

Let n,meN. For each (L,/)eKn,m, we have f"+k=f\ VkeN, k>m. If 2«>m,
the map g =/2"~' is a dual endomorphism of L satisfying g2" = / 2 " and g2n+m = g

m
; hence

gf=f2" and fg=g2n- In general, if z is the smallest integer such that 2zn^m, i.e.
z — \ml2n\ {\x\ stands for the smallest integer greater than or equal to x), the dual
endomorphism g =/2 z"-1 of L satisfies g2n+m = gm and g2zn =f2zn; therefore gf =/2 z" and
fg = g2zn-

DEFINITION. Let n,meN and z= \m/2n]. We denote by DKnm the class of all
algebras !£ = (L, / , g) e O2 such that

/ 2 n + m = r , g2n+m=gm, gf=f2zn, fg=g2zn.

If if eDKn m, we say that if is a double Knm-algebra. For m = 1, we get the double
/:„,, -algebras introduced in [12]. Clearly, DMSncDKn, . The varieties DKnm, n, m 6 N,
are related in the following way.

PROPOSITION 1. Let n, n', m, m' e N.

(i) Ifn\n',thenDKn,mczDKn.,m.
(ii) / / m < / n ' , then DKn,mEDKn>m,

(iii) D K n m c. D K n > m . if and only if n\n' and m^m'.

Proof. Recall that Knm c K B > . if and only if n \ n' and m<m'.
(i) Let n' = nk, z= \'m/2n],'z'= \m/2n'] and if = (L,/,g)eDKn m. Then kz'^z

and, for p e {f,g}, we have p2z'"' = p2<**'-*>»+2» = p^«. Hence if e DKn m.
(ii) If w < m ' and if = (L,f,g) eDKnm, we have z = \m/2n]<z'= \m'/2n] and,

for p e {/,g}, p2zn = p2(*'-*)"+2*" = p2*». Hence if eDKn,m..
(iii) If « | n ' and m<m', then DK n m cDK n m . by (i) and (ii). Conversely, if

D K n m c D K n m , it suffices to extend the algebra !£in+m<m (which generates Knm) to a
double Kn m-algebra to conclude that Knm c Kn• m., hence n\n' and m<m'.

The process that motivates the definition of DKn m is not, in general, the only one
that allows us to obtain a double Kn m-algebra from a given algebra in Kn m. For instance,
the Stone algebra Sf = (S,f), where 5 is the chain 0 < a < 1 and / is defined by /(0) = 1,
/ ( a ) = / ( l ) = 0, yields two algebras in DK,,,: letting gl(0) = gl(a) = 1, g,(l) = 0, we get
(5, / ,g,) e DMSi; taking g2 = / , we get (5,/ ,g2) e DKU\DMS,.
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Let 2=(L,f,g)eDKnjn. Then f2n+k = fk, g
2n+k = gk, \/k>m. Denote by r(t) the

remainder of the integer t on division by 2n. Fo r 1 < / , / < 2 « + m — 1, let z ( J =
m + r(j -i-m) (then m £ z,v =s In + m - 1).

PROPOSITION 2. Let n,meN,z= \m/2n] and <£=(LJ,g) e DKn m. Then
(j) g'f' =f2™, fg> = g 2 » , 1 < / S 2fl + IW - 1.

(it)
(iii)

Proof, (i) Use induction on i and the fact that 2zn > m.
(ii) For 1 < i, j < 2/i + m - 1, we have |i -y | < 2n + m - 2 < 2n + 2zn - 2 < Azn. We

consider three cases:
(a) i =y. Now, zn = 2zn and g'f =f2zn, by (i).
(b) i <j. We have g'f = g'/'/y"' =f2z"f"' = / 2 2 « + J-< =/2™+"1+o-'-'") =/'.v.
(c) />y. Now, g'f = g'~'g'f = g'~'f2zn. If i-j<2zn, we get g'f=fZii by (b). If
i-j = 2zn, we have g'f =g2z"/22" =/2z" = / ^ . if i-j>2zn, we get g'f =

i-j-2zn 2znr2zn i-j-2znr2zn ^z, iicino CM Since i — i - 2?n < 2zM

(iii) Just notice that/"1 =g"1/m+r(m) and gm = f g"'-'*'").

COROLLARY 3 [12, Lemma 5.3]. Let n e N and g = (L,f, g) e DMSn.

(») g'f =fr°~'\f'g'=gr('~'\ l=£',y"^2n, /^y;(iii)
(iv) f2k+\x)^gln-2k-\x), g2"-2k(x)<f2k(x), VJC eL, 0<A:<n - 1.

Proo/. Since DMSn <= DKn ,, (i), (ii) and (iii) follow from Proposition 2.
(iv) We have g2"(x)<x,^x e L. For 0 < A: < n - 1, using (ii) and the fact that /2*+1

is a dual endomorphism of L, we get /2Ar+1(*) </2*+1g2"(*) =g2"-2*-1(;t). Again by (ii)
and as/2* is an endomorphism of L, we ha\ef2k(x)>f2kg2n(x) = g2"-2k(x).

3. Principal congruences. For X = (L,f,g) eO2, we denote by Con(i?) the con-
gruence lattice of X and by ConD(i?) the congruence lattice of the Dorlattice L. For a,
/> e L, 6(a,b), resp. dD(a,b), is the smallest element of Con(if), resp. ConD(if),
collapsing a and b. It suffices to consider 6(a, b) for a < b, since, if 0 6 Con(,S?) and x,
y e L, we have (x,y) e 0 if and only if (JC Ay,x vy) e 0.

It is easy to see that, for !£ = (L,f,g)eDKnm and a, beL, a<b, the principal
congruence 8(a, b) is given by

2/i + m — I 2n + m — 1

0(a,6)=0o(«,&)v V 0D(f'(a),f'(b))v V 0D(g;(«),g;(&))-
1 = 1 y = l

Now, by [2, Th. 1.3], we conclude that DKnm has equationally definable principal
congruences and, hence, satisfies the congruence extension property, [8, Corollary 2].

The description of a principal congruence as a join of congruences of a distributive
lattice and [9, Lemma 2] allow us to conclude that each principal congruence in a double
Kn m-algebra can be defined by 24n+2m~i equations.
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For n, meN, define

([x\ stands for the greatest integer less than or equal to x).

Leti? = (L,/ ,g)eDKn,m, a,beL,a<b. Then (x,y)e6(a,b) if and only if

(x A dFXS,HJ{a, b)) v eF,c,Hj(a, b) = (y A dFCHr)(a, b)) v eFCMJ(a, b) (t)

for each F,G, H,J such that F c 7n,„,; G, J c 7V, >m; / / c r;,m and where

dF,c.HAa,b) = A / 2 ' ( « ) A A / 2 / + 1 ( & ) A A g2*(a)
leF /<=G * e H /e7

>,&)= V /2<?Wv V /2f+'(«)v V g^tfOv V g2'+1(«).
qeTn,m\F reT^\G seTZ,mXX leT^,m\J

(The process used for obtaining these equations is described in [12, Theorem 6.4].)
For double MSn-algebras, this description can be simplified since some of the 24"+1

equations (t) obtained for algebras in DKn , hold trivially for algebras in DMSn. Let
$={L,f,g) e DMS« and x e L. Then x <f2"\x); and, for each / e T"n , and each j e T'n ,,
we have g2'(x) </2""2'(x) and fi+l(x) <g2"~2i-\x) (Corollary 3(iv)).'

For F, G, H, J such that F c Tny, G,Jc T'ny, H c T^,, define

rF,H = {seTZ.l\seH,n-stF}, T'GJ= {teT'nA\teG,n-l-t$J}.

We say that

the pair (F, H) satisfies the condition (0") if TFH = 0, n $ F and 0 e F:
the pair (F, H) satisfies the condition (V), for i e T^u if TFMJ=0 and j = min TFtH;
the pair (G, / ) satisfies the condition (/'), for j e T'nU if T^j =£ 0 and / = min T'GJ.

THEOREM 4 [12, Theorem 6.5]. Let %={LJ,g)eDMS,, and a, beL, a<b. Then
the principal congruence 6(a, b) is defined by the equations (f) in which (F, H) does not
satisfy (/"), i e TnA, and (G,J) does not satisfy (/'), j € T'nA.

Proof. Since DMS n cDK n l l the congruence 6(a,b) is defined by the 24n+1

equations (f) above. Consider the following cases.

(a) (F, H) satisfies (0"). Then 0eF,n$F, hence

dF,c,Hj(a, b) < a </2"(«) < / » < e F , G , W >, b).

(b) 3/ e r;',, : (F, H) satisfies (/"). Since / e / / a n d n - i $ F, we get

dF,c,HJ(a, b)^g2i(a) < g2'(6) < / 2 - 2 ' ( 6 ) < eF,c,H > , 6).

(c) 3/ e 7̂ , a : (G, / ) satisfies (/"'). Now, j e G and n-l-j$J, hence

In each case, we have (2 A dFC HJ{a, b)) v eFCHJ{a, b) = eFGJ1rJ(a,b), VzeL,
therefore the corresponding equation (f) holds trivially in L.
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Observe that, if FcTny, H^T'^t and (F,H) satisfies (0"), then each k such that
1 < k < n - 1 satisfies exactly one of the following: k eH, n-keF; k $H, n-keF;
k$H, n- k$F; moreover, we have either n eH, 0 6 F or n $ H, OeF, and, besides,
n i F. Therefore the number of pairs (F, H) that satisfy (0") is anJ0 = 3""1. 2.

Also, if (F, H) satisfies {s"), for a given s e THA, we have s eH, n — s $ F and, for
each keT'^A with k<s, exactly one of the above cases holds. Therefore there exist
aHJ = 3 ' - ' . 2n+x~s. 2n~s = 3s"1 . 22n+i-2s pairs (F, H) satisfying (s").

Similarly we conclude that the number of pairs (G,J), with G,J^T'nU that satisfy
(t% for a given t e T'nA, is ft,,, = 3'. 21-1" ' . 2""1-' = 3'. 22""2-2'.

COROLLARY 5. [12, Corollary 6.6] Let 3! = (L,f,g)eDMSn and a,beL. Then
6{a, b) can be described by 22 . 32""1 equations.

Proof. Since 6(a,b) = 8(a A b,a v b), we simply consider the case a<b. Then
6(a, b) is defined by the equations (f) in the conditions of Theorem 4.

There are an = 22n+1 - E ans = 22 .3n~{ pairs (F, H) that do not satisfy (j"), I E T , , ;

n - l

and there exist /3n = 22"- E /Jn, = 3" pairs (G,7) that do not satisfy (/'), jeT'ni.
1=0

Therefore 6{a, G) is defined by an^n = 22 . 32""1.

A description of principal congruences in double A/S-algebras by means of 12
equations is given in [7, Theorem 1].

4. A duality for O2-algebras. We develop a topological duality for O2-algebras
which is similar to the duality for Ockham algebras obtained in [13].

DEFINITION [12]. X = (X, ST, <, e, y) is an O2-space if (X, ST, < ) is a Priestley space
(i.e., a compact totally ordered disconnected space) and e,y : X—>X are continuous
antitone mappings.

DEFINITION. The dual space of the algebra Z£ •-= (L,f,g) e O2 is Pr2(££) =
(XL, ST, < , Ef, eg) where

(i) XL is the set of D01-homomorphisms from L into the two-element chain {0,1};
(ii) 9~ is the topology induced in XL by the product topology of {0,1}L;
(iii) < is the order in XL given by hx £ h2 if and only if h{(a) < h2(a), Va e L;
(iv) £y(/i) = chf and £g(h) = chg, V/i e XL (c denotes complementation in {0,1}).

Pr2(££) is an 02-space. For p e {/, g}, j e N and heXL, we have e'p{h) = chp1 if / is odd
and £'p{h) = hp* if y is even. If i£ is finite, then ?f is the discrete topology in XL.

DEFINITION. The dual algebra of the O2-space X = (X, J, <, e, y) is O2(X) =
(O(X),fe,fY) where O(X) is the bounded distributive lattice of the clopen order filters of
(X,ST,<), and fp, /3e{e,y}, is the unary operation defined by fp(Y) = X\p~l{Y),
VYeO(X).

O2(X) is an O2-algebra. Given fi e {e, y}, j e N, Y e O{X), we have f'^Y) = X\(fty\Y)
if y is odd and/fc(y) = (P)~l(Y) if y is even.

For i?eO 2 , the mapping <P:L^>O(XL), defined by <*>(a) = {/i eXL \ h(a) = 1},
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Va e L, is an isomorphism of 02-algebras from Z£ into 62{Pr2(Z£)). If X is an 02-space, the
mapping vP:A'-»Ar

o(A.), defined by

***£, VxtX, VYeO(X),

is an O2-homeomorphism between X and Pr2{O2(X)).
Given j? b ^ e O2, there exists a bijection between the set of homomorphisms from

i?i into &i and the set of O2-continuous mappings from Pr2(i^) into Pr2{££\): just
associate to each homomorphism 0:/^—»L2 the mapping o$ -XL2—>XLl defined by

p 2

Therefore we have a duality between O2-algebras (with O2-homomorphisms) and
O2-spaces (with 02-continuous mappings), (see [13, Theorems 1, 3, 4]).

Let X be a set, Y c l and e,y\X —*X mappings. We denote by Yey the smallest
subset Z of X such that Y cZ, e(Z) c Z and y(Z) c Z, and say that Y is invariant under
e and y if YE y = Y.

THEOREM 6. [12, Theorem 7.5] The congruence lattice of an algebra ££ = (L,f,g) e
O2 is dually isomorphic to the lattice of all closed subsets of Pr2{££) = (XL, ST, <, ef, eg)
which are invariant under ef and eg.

Proof. The proof is analogous to that of [13, Theorem 5]. Identify SE and 62{Pr2{5£))\
for each closed invariant subset Y of Pr2{Z£), define the relation 8Y on L by (a, b) e 6Y if
and only if Y^(af)b)U ((XL\a) D (XL\b)). Then the correspondence associating Y to
dY is a dual isomorphism from the lattice of all closed invariant subsets of Pr2{££) into
Con(if).

Note that, if X = (L,f,g) e DKn m and x,yeL satisfy p'(x) = p'(y), for some
pe{f,g} and m + l < / < 2 r c + m - 1, then pm(x) = p" 1 ^ ) . Now, for \<i,j<m, we
define the relation ker(/ ' ,g;) on L by (*,)>) eker( / ' , g') if and only if f'(x) =f'(y),
g'(x) =g'(y)- Using Proposition 2 we may easily prove that ker(f',g') e Con(i?).

The results concerning subdirectly irreducible algebras in O2 are similar to those in
[13, 2].

LEMMA 7. [12, Lemma 7.6] Let X = (X, 3~, <, e, y) be an O2-space and Y a subset
ofX.

(i) / / Y is invariant under e and y, then so is Y.
(ii) Y£-y is the smallest closed subset of X that contains Y and is invariant under e and y.

THEOREM 8. [12, Theorem 7.7] Let 5£={L,f,g) e O2 and Pr2(S£) = (XL, °T, <ef, eg).
Then if is subdirectly irreducible if and only if {x eXL \Ax}e[hi

: XL} is not dense in
(XL, 3~). In particular, if L is finite, X is subdirectly irreducible if and only if there exists
x eXL such that {x}E/,eg = XL.

5. Subdirectly irreducible algebras in DKn m and in DMS,,. In order to apply the
above duality to determine the subdirectly irreducible algebras in DKn m and in DMSn,
we begin by characterizing the dual space of a double Kn m-algebra and of a double
MSn -algebra.
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THEOREM 9. Let if = (L, / ,g) e O2 and Pr2($£) = (XL, ST, <, ef, eg). Let n,m e M and
z = [m/2n]. Then

(i) ifeDK_,m if and only if

(EJn+m(h) = £f"(h), E2n+m(h) = £g
n(h)

\£f£g(h) = £fzn(h), EgEf(h) = E2
g
zn{h) ' L'

= ef(h)
Proof Observe that gf = f2zn in L if and only if efeg = ef" in XL (similarly, fg = g2zn

if and only if egef = e2/"). In fact, if gf =f2z" and /i e XL, we get

= e,{chg) = c(chg)f = h(gf) = hf2z" = e?"(h).

Conversely, suppose that efeg = ejz" and recall that J£ and O2(Pr2(J£)) are isomorphic
algebras. Let Y e O(XL). Then

= g{XL\ej\Y)) = *L\eg-'(*l.\e/-
1(y)) = (£/eg)-'(y) = (efT\Y) =f2zn{Y).

Also, for p e {/, g} and p,q e No such that p^q and |p - ^| is even, pp(x) =s p 9 ^ ) holds
in L if and only if e"p(h) < e»(A), /i e XL, (see [13, Theorem 9]).

Hence the double Kn m-algebras (resp. double MSn-algebras) are exactly the algebras
j£e O2 for which the conditions in (i) (resp. (ii)) hold in Pr2(££).

PROPOSITION 10. Let ££ = (L,f,g)e DKn-m and Pr2{%) = (XL, 3~,<,ef, eg). Then
(i) e'f£g = Ef4, e'ge'f= £*'•', i s / , j < 2n + m - 1 (in particular, E'feg = £^z", 4 4 =

e2z").
(ii) {^}£/,£g = {x, E'M), E'8(X) I 1 ^ i < 2n + m - 1}, Vx e XL.

Proof, (i) Just translate the properties in Proposition 2 to the dual space of 56.

(ii) Apply (i) to check that Y = {JC, efo), £g(jt) | 1 < i < 2 n + m - 1} is invariant
under £ and y. Now it is clear that {-*}e/,Eg = Y.

THEOREM 11. Every subdirectly irreducible algebra in DKn m is finite. Up to
isomorphism, there is only a finite number of subdirectly irreducible algebras in DKn m.

Proof Let £e=(L,f,g)e DKn,m be subdirectly irreducible and Pr2(£) = (XL, ST, <,
Ef, Eg). By Theorem 8, we have {x}efJSg = XL, for some xeXL. By Proposition 10(ii),
{x}ef.eg is finite. Hence i? is finite. Since the cardinality of the dual space of a subdirectly
irreducible algebra is not greater than 4n + 2m — l, the number of non-isomorphic
subdirectly irreducible algebras in DKn m is finite.

PROPOSITION 12. Every subalgebra of a subdirectly irreducible algebra i ?eDK n m is
subdirectly irreducible.

Proof Let i ?=(L , / ,g )eDK n , m be subdirectly irreducible, Pr2(ie) = (XL, &,
<, £f, £g) and !£x a subalgebra of £E. Then if is finite and there exists xneXL such that
XL = {xo}eheg. The inclusion inc:LX-*L is an embedding, hence the corresponding
O2-continuous mapping oinc:XL—*XLf is onto. It is easy to check that XLl =
{<7inc(*o)}e/,v Therefore if, is subdirectly irreducible.
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We are going to introduce an algebra whose role is particularly important in DKn m.
For each integer t, denote by r(t) the remainder of t on division by 2« and let
s{t) = 4/i + 2/n - 2 - r(2m -2-t). Consider *„ ,„ , = {0,1,2,... ,4n+ 2m- 2} and de-
fine the mappings e, y:Xn m-> Xnjm by

ir(Jfc-l) otherwise.

•f 1 if 2n + m — 1^k^2n + 2m — 3;
fc + 1) otherwise.

Then e(Xn m) = {0,1, 2,. . . , 2n + m - 2} and y(*B,m) = {2n + m, 2n + m + 1,. . . , 4n +
2/n-2}.

LEMMA 13. For y e N and k eXn m,

k — j i / 2 n + ; s ^ < 2 n + m - l ;
r (^"" /) otherwise.

\ k +j if 2n + m — 1 ^ A: £ 2n + 2/n — 2—j;
s(k+j) otherwise.

lfj^m, then e'(k) = r(k-j), y>(k)=s(k+j), VkeXnjn (in particular, e2zn(k) = r(k),

Proof. By induction on j .

Note that, for l < / < / n ,

e>(Xnjm) = {ke Xnm \ 0 < A: < 2n + m - 1 - ; }

and

for/ > m , e'(Xn,m) = em(Zn.m) and /(*„,„,) =
Let ^rn,m = (Xn<m, STd, < r , e, y) where *„,„, = {0 ,1 ,2 , . . . , 4/i + 2m - 2}, 9~d is the

discrete topology, ^T is the trivial order and e, y : A^_„,-» A'n m are the mappings defined
above. It is obvious that Xn m is an O2-space. Denote by 2)n m the dual algebra of Xnm:
the Dorreduct of 3 n m is the lattice ^*(Zn m) of all subsets of Xn m, and the unary
operations/^, 0 e {e, y}, are defined by/p(y) = J r^Xjg-^y) , V y E i n , m .

THEOREM 14. For «, m e N, ®n m « a subdirectly irreducible double Knm-algebra.

Proof. Let n, meN and Ar
nm = (Ar

nm, STd, <T, E, y). By Lemma 13 we have
e2n+m = £m; Y2n+m = ym £y = £2zn ' y£ _ y2zn T h e r e f o r e ^ ^ g D K n ^ b y Theorem 9(i).
Now, {2n+ m - 1}E y = A'n m, hence S n m is subdirectly irreducible (Proposition 10(ii),
Theorem 8).

We can, in fact, describe Con(3)n m).

THEOREM 15. Let n,m e N.

(i) Besides 0 and Xnm, the (closed) subsets of Xnm which are invariant under e and y
are exactly the sets Yu = £'(*„,„,) U /(*„,„,), 1 < i , / < m .

(ii) Con(2)n,m) = 1 0 (m x rn) 0 1.
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Proof.(x) Let 1 < / , / s m and y,,,= e'(Xnjn) U /(*„,„,). Then

£(y,,y) = ei+\xn.m) u £2' '(^n.m) = e'+\xn,m) u £"•(*„.„,) s £'(*„,„,) £ y,,y.

Similarly, y(y,,y) g Yitj. Hence Ytj is invariant under e and y. Let Y ^Xn m be a nonempty
set invariant under £ and y. If 2n + m — leY, then Xn,m = {2n + m — \}e y c Y, i.e.
y = *„,„,. If 2n + m - 1$Y, \et Yt = {k eY \ k<2n + m -2} and Y2= {k eY \ k>2n +
m}. Then y , ^ 0 , y 2 # 0 and y = y , u y 2 . Notice that m a x y , & 2 n - l and miny2<
2n + 2m — 1. Let j = 2n + m — 1 — max Yu j = min V2 — (2« + m — 1). Now we have 1 < I ,
j<m, y, = £'(*„,,„), y2 = /(JfB.m); hence Y = YtJ.

(ii) By Theorem 6, Con(Sn „,) is dually isomorphic to the lattice of all (closed)
subsets of Xnm which are invariant under e and y. The set {y,,y| l < i , y <m}, partially
ordered by inclusion, is lattice-isomorphic t o r a x m and its non-trivial v -irreducibles are
y, ,„, Ym j , 1 < /, / < m — 1. Therefore, both Con(2)n „,) and the lattice of invariant subsets
of Xnm are isomorphic to the self-dual lattice 1 6 ( m X m ) ® l . (Note that, for I s / ,
/ < m, the congruence 6Yi. associated with Y,j in Theorem 6 is just ker(/'E,/y

y)).

The importance of %nm in DKn m is evident in the following result.

THEOREM 16. Up to isomorphism, each double Knm-algebra is a subalgebra of a direct
product of copies of 3lnm, i.e., DKnm = SP({3lnm}).

Proof. Let S£={L,f,g) e DKn-m and Pr2{S£) = (XL, 3~, < £ / , eg). Identifying S£ and
G2{Pr2{S£)), we shall define an embedding of S£ into a direct product of copies of 3)n m.
For each x eXL and Y e L, consider

Y\f = {2n + m-1- k\l<k-^2n + m-1, £*(x) e Y),

Yx
Eg = {2n + m - 1 + /11 < / < 2n + m - 1, e's{x) e Y};

and define cpx:L^> 3P(Xn m) by

;uy; if X$Y-,

\L> Yx
g(J {2n + m - 1} if xeY.

Given x eXL, it is easily seen that cpx is a Z)0i-homomorphism and, using Lemma 13, we
conclude that <px{f(Y))=fe(cpx{Y)) and <px{g{Y)) =fy{<px(Y)), VY e L. Hence the map-
ping (p:L-^ II ^f{Xnm), defined by q>(Y) = (<px(Y))xeXl, VYeL, is an O2-

homomorphism. For Yo, Yx e L, Yo^ Yu there exist i e {0,1} and x eXL such that x e Yh

jt$y,_,. Then 2n + m - 1 e <p,(Y,-) and 2« +m - 1 $ (px(Y^,), i.e., (p(y0) ¥= <jp(Yi).
Therefore (p is injective.

THEOREM 17. {//? to isomorphism, the subdirectly irreducible algebras in DKnm are
exactly the subalgebras of 3)n,m.

Proof. Since 3)n m is subdirectly irreducible, so are all its subalgebras (Proposition
12). It follows immediately from Theorem 16 that each subdirectly irreducible algebra in
DKn m is isomorphic to a subalgebra of 2)n m.

In order to obtain the subdirectly irreducible algebras in DMSn, observe that every
algebra j? = (L, / ,g) eDK,,, has, at least, a subalgebra in DMSn; the universe of the
greatest subalgebra of SB in DMSn is {x e L\g2n(x)<x<f2n(x)}. Since DKn,, is
generated by a single subdirectly irreducible algebra, the same is true for DMSn. Denote
by %'n the greatest subalgebra of Sn>1 that belongs to DMSn.
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COROLLARY 18. The subdirectly irreducible algebras in DMSn are, up to isomorphism,
the subalgebras of 3>'n. Therefore DMSn is generated by 2)'n.

Proof. It follows immediately from Theorem 17: each subalgebra SB of 3)'n is a
subalgebra of 3>nA, hence SB is subdirectly irreducible; on the other hand, every
subdirectly irreducible algebra in DMSn is a subalgebra of $)„A and, hence, of 3)'n.

The subdirectly irreducible algebras in DMSi = DMS were determined in [6,
Theorem 2.7].

We describe the algebra 3)'n. Recall that ®n-, is the dual algebra of Xn_, =
(XnA, STd, < r , e, y) where XnA = { 0 , 1 , 2 , . . . ,4n} , and e,y:XnA-+XnA are defined by
e{k)-r(k-\) and y{k) = s(k + 1), VkeXnl. Then 9>H.i = (9%Xn<i),fe,fr) where/„ and
fY are the dual endomorphisms of 9>(Xnyl) induced, respectively, by

nA\{i + l,i + l + 2n} if 0</<2n-2;

n>1\{0,2«,4«} if i = 2 n - l ;

„,, if 2/i<i<4«.
'jfB>1 if 0sjs2«;

fY({i}) = -\XnA\{0,2n,4n} if i = 2n + l;

n,i\{i — 1, i — 1 — 2n} if 2« + 2</^4/ i .

2^ is the subalgebra of 2>n?1 whose universe is D^ = { Y e ^ , ) I/^CY) S Y c / f (Y)}.
For K e ^ , , ) , we have

O (VA: e Xn\, k e Y^> r(k) e Y).
(ii) /2"(Y) c YO(VA: e Zn,',, y

2"(A:) e Y^> A: e Y)
«>(VA: e ^ ' j , * ^ ) 6 Y=^A: e Y).

We say that ZcXnA satisfies (*) if Z = Z' U Z" U Z'" where
Z ' c {2n + 1,2« + 2 , . . . ,4 /1-1} , Z"={r(fc)|A:eZ'},

The elements of &{Xn x) in case (i) are

Z, ZU{0}, ZU{0,2n}, ZU{0,4n}, ZU {0,2«,4/i} where Z satisfies (*);

the subsets of Xn _, in case (ii) are

Z, ZU{0}, ZU{2/i}, ZU{0,2/i}, ZU{0,2n,4n} where Z satisfies (*).

Hence £>;= {Z, ZU {0}, ZU {0,2n}, ZU {0,2n,4n} | Z satisfies (•)} and Q)'H =
(D'nJeJy) where /£ and fY are the dual endomorphisms of D'n whose restriction to J(D'n)
is, respectively,

/B({0})=/.({0,2n})=/e({0,2n,4#i}) = Jrfl,1\{l,2n + l}>

N 2 n + 1> if i ^ ^ 2 " - 2 ;

lAnl\{0,2/i,4n} if j = 2/1-1.

if i = l;

l} if 2 S ,

2/i - l,4n - 1},

fr({i})=fr({0,2n}) = XnA 0 < / < 2 / z - l .
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6. MSn-algebras which are reduct of double MSn-algebras. We already observed
that each algebra (L , / ) e Kn m can be extended to, at least, one double Kn m-algebra. On
the contrary, not every M5n-algebra can be extended to a double M5n-algebra, but,
whenever it is possible, the extension is unique.

The A/5-algebras which are reduct of a double MS-algebra are characterized in [5,
Theorem 2.2]. We obtain a similar result for A/Sn-algebras, neM, and the central point is
the fact that, for (L,f,g) e DMSn, the closure/2" is residuated.

We recall a few notions from [3]. Let E, F be partially ordered sets. A mapping
cp:E—*F is said to be residuated if it is isotone and there exists a (unique) isotone
mapping \p:F—>E such that ipq>>idE and cpip <idF. The mapping xp is called the
residual of cp and is given by ip(y) = max{x e E \ cp(x)<y}, Vv e F. Moreover, cp
preserves suprema and tp preserves infima. If E = F and cp is a residuated closure, we
have q>(x) = minfljt) n Im cp) and ip(x) = max((x] n Im cp), VxeE ; besides, ip is a dual
closure on E and Im xp = Im cp.

A nonempty subset Z of E is said to be bicomplete if, for each x e E, [x)(~\ Z has a
smallest element and (x] n Z has a greatest element. The bicomplete subsets of E are
exactly the sets Im cp, where cp is a residuated closure on E. Let Z be a bicomplete subset
of E and v;£—»E the mapping defined by v(*) = max((;c] fl Z), V* e £; then we say that
Z is strong if v preserves suprema, [5]. Clearly, Z is a strong bicomplete subset if and only
if Z = Im <p for a residuated closure cp whose residual \p preserves suprema. Moreover,
the following result holds.

LEMMA 19 [12, Lemma 5.4]. Let E be a distributive lattice and cp be a closure on E.
Then the following are equivalent:

(i) Im cp is a strong bicomplete subset of E.
(ii) Im cp is a bicomplete subset of E and, for every x elm cp, if x = y v z, with y,

z e E, then x = xp(y) v ip(z).

Proof. See the proof of the equivalence of the statements (2) and (3) in [5, Theorem
2.2]: only properties of closure operators are used, not the particular closure involved.

Note that (i)=y>(ii) holds in every partially ordered set E, but the converse is not true
in general. Consider the lattice E whose Hasse diagram is

Figure 1.

The mapping cp defined by <p(l) = cp(e) = cp(a) = cp(b) = 1, cp(d) = d and <p(0) = 0 is a
residuated closure on E and its residual ip is given by i/>(l) = l, xp{e) = xp{d) = d and
t//(a) = ip(b) = t/;(0) = 0. Then Im cp = {0, d, 1} satisfies (ii) and does not satisfy (i) since
d = \p(e) = \p(a vb)> xp(a) v xp(b) = 0.

Now, if 58 = (L,f,g) e DMSn, it follows from Corollary 3(i) that the closure operator
f2" is residuated, its residual being g2".
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For (L,f)eMSn, we have Im/2" = Im/. We present a condition on Im/ which is
necessary and sufficient for (L,/) to be a reduct of a (unique) double M5M-algebra.

THEOREM 20. [12, Theorem 5.6] An algebra (L,f) e MSn can be extended to a double
MSn-algebra if and only iflmfis a strong bicomplete subset of L. In this case, we obtain
(L,f, g) e DMSn where g(x) =/2"-1(max((^] n Im/)), Vx e L.

Proof. If (L,f) can be extended to a double M5n-algebra (L,f,g), then f2" is a
residuated closure. Moreover, its residual, g2", is an endomorphism of L. Hence Im/is a
strong bicomplete subset of L. For each xeL, we have max((x] D Im/) = g2"(x) and,
applying Corollary 3(ii), we have /2"~'(max ((x] n Im/)) = g(x). Therefore (L, /) is the
reduct of exactly one double MSn-algebra.

Conversely, let (L, /) be an A/Sn-algebra such that Im/is a strong bicomplete subset
of L. Then the closure f2n is residuated and its residual \\> is both an endomorphism and a
dual closure on L. We have ip{x) = max((x] D Im/) , hence ip(f(x)) =f(x), Vx e L. The
mapping g:L—>L, defined by g(x) =f2n~1(il>(x)), V* e L, is a dual endomorphism of L.
Now 1>(g(x))=g(x), and gi{x)=f7"-'{v(x)), l s ( < 2 « . Hence g2n(x) = ip(x)^x,
gf(x)=f2n-l(y(f(x)))=f2"(x) andfg(x)=f2"(y(x)) = y(x)=g2"(x) so that (L,f,g)e
DMSn

From Theorem 20 and using Lemma 19 we now obtain the following corollary.

COROLLARY 21 [12, Corollary 5.7] / / (L , / )eMS n can be extended to a double
MSn-algebra, then every element of Im/ that is v -reducible in L is also v -reducible in
Im/.

Observe that the condition stated above is not sufficient for an MSn -algebra to be a
reduct of a double M5,,-algebra: if L is the chain - < » < • • . < - 2 < - K 0 < l < 2 < - - -
<z<+oo and / is defined by /(z) = -°°, f(a) = -a if a¥=z, then (L , / )eMS and
Im/ = L\{z} is not bicomplete ((2] fl Im/does not a have a greatest element).

EXAMPLES. (1) It was already pointed out that, if (L,f)eKn0, then (L,/ , / 2"~') e
DMSn.

(2) The (non-isomorphic) subdirectly irreducibles in MS2\MS are the algebras si,
dh 1 < i < 5, % and % depicted in [11, Theorem 1].

As si, <€ e K2,o, si, <# are reducts of double A/52-algebras; so are dx and si4 (see
[12, example 5.3]). The algebra % = (C,,/) that generates MS2 has the Hasse diagram
shown in Figure 2 and can be extended to the double M52-algebra (C, , / ,g) where g is
the dual endomorphism of C, induced by g(ai)=f3(ai), 0 ^ / < 3 , and g(u) =
/3(max((u] n Im/)) =f\a0 v a2 v a3) = a0.

The algebras s£2, sd3 and si5 are not extendable to double A/S2-algebras; just apply
Corollary 21: the element b = y v k is v -reducible in A2, but is v -irreducible in Im/ ; a
similar statement holds for the element d = s v k both in A3 and in A5.

(3) Given M e r\l, let L be a direct product of In finite non-trivial chains. Let ah

0 < / ^ 2 n - 1, be the maximal elements in J(L) (i.e., the atoms of C(L), the center of L)
and consider the dual endomorphism / of L induced by f(x) = c(ar(/+1)), x eJ(L), x < a,,
0 < / < 2 n - l (c(z) denotes the complement of z). Then (L, / )eMS n and I m / = C(L).

For each yeL, let wy = \J{ai\ai<y). It is obvious that wy e (y] n Im/; if
a e ( y ] n I m / , then a = wa< wy, hence Wy = max((_y] flIm/). Moreover, for y, z e L and
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ki = /(o)

201

/(«) = /(I) =

Figure 2.

since a,-, 0 s / < 2n — 1, is a v -irreducible element, we have wyvz = wy v wz. Therefore
Im/ is a strong bicomplete subset of L. By Theorem 20, we obtain (L, / ,g) e DMSn

where g(y)=f2n~\wy), Vy e L. Since wai = a,, 0 < i < 2 n - l , and w, = 0, Vjee/(L)\
{fl, | 0 s / < 2 n — 1}, we conclude that g is the dual endomorphism of L induced by
g(a,) = c(ar(l-1)), 0 < / < 2 « - 1, and g(x) = l, Vx eJ(L)\{a, | 0 < / < 2 « - 1}.

Note that, if L = 4 X 32" ', the algebra (L, / , g) just described is isomorphic to 2)'n.
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