On certain Quadric Hypersurfaces in Riemannian Space

By C. E. Weatherburn (Western Australia).
(Received 8th October, 1934. Read 2nd November, 1934.)
\section*{1. The Hypersurfaces Defined.}

The use of geodesic polar coordinates in the intrinsic geometry of a surface leads to the concept of a geodesic circle, i.e. the locus of points at a constant distance from the pole O along the geodesics through O. A geodesic hypersphere is the obvious generalisation of this for a Riemannian V_{n}. We propose to consider more general central quadric hypersurfaces of V_{n}, which we define as follows. Let $x^{i}(i=1,2, \ldots, n)$ be a system of coordinates in V_{n}, whose metric is $g_{i j} d x^{i} d x^{j}$, and let $a_{i j}$ be the components in the x^{\prime} s of a symmetric covariant tensor of the second order, evaluated at the point O, which is taken as pole. If s is the arc-length of a geodesic through O, the quantities ξ^{i} defined by

$$
\xi^{i}=\left(d x^{i} / d s\right)_{0}
$$

are the contravariant components of the unit vector in the direction of the geodesic at O, the suffix zero indicating that the derivative is to be evaluated at the pole. If s is measured from O along the geodesic to the current point P, the variables y^{i} defined by

$$
y^{i}=\xi^{i} s
$$

are the Riemannian coordinates of P relative to the pole O.
The quadric hypersurface defined by the equation

$$
\begin{equation*}
y^{i} a_{i j} y^{j}=1 \tag{1}
\end{equation*}
$$

is clearly a central quadric. For the equation may be expressed

$$
\begin{equation*}
\xi^{i} a_{i j} \xi^{j}=1 / s^{2} \tag{2}
\end{equation*}
$$

showing that, on a given geodesic through O, there are two points of the hypersurface, in opposite directions along the geodesic, and at equal geodesic distances from the pole. The positive value of s given by (2) may be called the geodesic radius of the quadric (1) for the
direction ξ^{i} at O. The particular case of a hypersphere, of geodesic radius c, corresponds to

$$
a_{i j}=g_{i j} / c^{2}
$$

For, if this value of $a_{i j}$ be substituted in (2), we obtain $s^{2}=c^{2}$, as required.

Further, we deduce immediately from (2) that
The sum of the inverse squares of the geodesic radii for n mutually orthogonal directions at O is an invariant, equal to $a_{i j} g^{i j}$.

For, if $e_{h 1}^{i}(h=1, \ldots, n)$ are the contravariant components of the unit tangents at O to the curves of an orthogonal ennuple in V_{n}, it follows from (2) that the sum of the inverse squares of the geodesic radii for these directions is given by

$$
\sum_{h}\left(s_{h \mid}\right)^{-2}=\sum_{h} e_{h \mid}^{i} a_{i j} e_{h \mid}^{j}=a_{i j} g^{i j}
$$

as stated.
Let y^{i} be the Riemannian coordinates of a point P, not necessarily on the quadric (1). Then the equation

$$
\begin{equation*}
Y^{i} a_{i j} y^{j}=\mathbf{1} \tag{3}
\end{equation*}
$$

defines a hypersurface of V_{n}, the quantities Y^{i} being Riemannian coordinates of the current point on the hypersurface. We shall call this the polar hypersurface of P relative to the quadric (1). If P lies on the quadric it also lies on its polar hypersurface. It is easy to see that

The geodesic through P and the centre of the quadric is divided harmonically by the quadric, the point P and its polar hypersurface.

For if ξ^{i} is the unit tangent to this geodesic at O, s^{\prime} the geodesic distance of P from O, and $s, s^{\prime \prime}$ those of the points B and Q in which the geodesic cuts the quadric and the polar hypersurface, the Riemannian coordinates of Q are $\xi^{i} s^{\prime \prime}$; and since this point lies on (3) we have

$$
s^{\prime} s^{\prime \prime}\left(\xi^{i} a_{i j} \xi^{j}\right)=1
$$

and therefore, in virtue of (2),

$$
\begin{equation*}
s^{\prime} s^{\prime \prime}=s^{2} \tag{4}
\end{equation*}
$$

as required.
Because the tensor $a_{i j}$ is symmetric, it follows from (3) that if the polar hypersurface of P passes through a point Q, then that of Q passes through P.

Certain Quadric Hypersurfaces in Riemannian Space 87

2. Rectprocal Quadrics.

Let $a^{i j}$ be the symmetric contravariant tensor at O reciprocal to $a_{i j}$, so that

$$
\begin{equation*}
a^{i j} a_{j k}=\delta_{k}^{i} . \tag{5}
\end{equation*}
$$

Let η_{i} be the covariant components of the unit tangent to a geodesic at O, and t the distance along this geodesic to a point R. If we write

$$
\begin{equation*}
z_{i}=\eta_{i} t \tag{6}
\end{equation*}
$$

the quantities z_{i} are covariant components of a vector at O,

determining the point R by its geodesic distance from the pole and the direction of the geodesic at O. Points R which satisfy the relation

$$
\begin{equation*}
z_{i} a^{i j} z_{j}=1 \tag{7}
\end{equation*}
$$

also lie on a central quadric with centre at O. We shall call this the reciprocal quadric to (1).

Let P be a point on (1) whose Riemannian coordinates y^{i} are $\xi^{i} s$. Then the point whose coordinates z_{i} are equal to $a_{i j} y^{j}$ lies on the reciprocal quadric. For, if these quantities are substituted for z_{i} in (7), the equation is satisfied in virtue of (5). Let R be this point on (7). The relation is reciprocal; for

$$
a^{i j} z_{j}=a^{i j} a_{j k} y^{k}=\delta_{k}^{i} y^{k}=y^{i}
$$

and it follows from (7) that

$$
\begin{equation*}
z_{i} y^{i}=1 \tag{8}
\end{equation*}
$$

so that, if θ is the inclination at O of the central geodesics to P and R,

$$
\text { st } \cos \theta=1
$$

Let Q be the point in which the geodesic $O R$ cuts the polar hypersurface of P with respect to (1), and t^{\prime} the geodesic distance $O Q$. Then the Riemannian coordinates of Q are $t^{\prime} \eta^{i}$; and since this point lies on the polar hypersurface (3), we have
that is

$$
t^{\prime} \eta^{i} a_{i j} y^{j}=1
$$

$$
t^{\prime} \eta^{i} z_{i}=1
$$

and therefore, in virtue of (6),

$$
\begin{equation*}
t t^{\prime}=\mathbf{1} \tag{9}
\end{equation*}
$$

since η^{i} and η_{i} are components of a unit vector. Thus the geodesic distances $O Q$ and $O R$ are reciprocal. Similarly if the geodesic $O P$ cuts the polar hypersurface of R with respect to (7) in the point S at a geodesic distance s^{\prime} from O, the (covariant) coordinates of S are $\xi_{i} s^{\prime}$; and since this point lies on the polar hypersurface
it follows that

$$
Z_{i} a^{i j} z_{j}=1
$$

which may be expressed

$$
s^{\prime} \xi_{i} y^{i}=1
$$

$$
s s^{\prime} \xi_{i} \xi^{i}=1
$$

Consequently

$$
\begin{equation*}
s s^{\prime}=1 \tag{10}
\end{equation*}
$$

and the geodesic distances $O P$ and $O S$ are reciprocal. Also from $\left(8^{\prime}\right),(9)$ and (10) it follows that

$$
\begin{equation*}
s \cos \theta=t^{\prime} \tag{11}
\end{equation*}
$$

and

$$
t \cos \theta=s^{\prime}
$$

It is easy to show that the hypersurface $Y^{i} \eta_{i}=q$ is the polar hypersurface of a point on (1) with respect to that quadric provided that

$$
\eta_{i} a^{i j} \eta_{j}=q^{2}
$$

and hence that the polar hypersurfaces of n points $y_{h \mid}^{i}$ on (1), for which the vectors $a_{i j} y_{h 1}^{j}$ are mutually orthogonal, meet on the geodesic hypersphere $s^{2}=a^{i j} g_{i j}$.

3. Conjugate Geodesic Radir.

Before considering conjugate directions and radii of the quadric (1), we introduce the symmetric covariant tensor $A_{i j}$, evaluated at O and defined by the relation

$$
\begin{equation*}
A_{i k} g^{k l} A_{l j}=a_{i j} \tag{12}
\end{equation*}
$$

Then, if y^{i} are the Riemannian coordinates of the point P on the quadric (1), this quadric is given by

$$
y^{i} A_{i k} g^{k l} A_{l j} y^{j}=1
$$

Consequently

$$
\begin{equation*}
E_{k} g^{k l} E_{l}=1 \tag{13}
\end{equation*}
$$

where we have written

$$
\begin{equation*}
E_{k}=y^{i} A_{i k} \tag{14}
\end{equation*}
$$

From (13) it is evident that these quantities E_{k} are covariant components of a unit vector, whose contravariant components E^{i} are therefore given by

$$
E^{i}=g^{i j} \dot{E}_{j}=g^{i j} A_{j k} y^{k}
$$

The components z_{i} of the covariant vector defining the corresponding point R on the reciprocal quadric are

$$
\begin{equation*}
z_{i}=a_{i j} y^{j}=A_{i k} g^{k l} A_{l j} y^{j}=A_{i k} E^{k} \tag{15}
\end{equation*}
$$

If $A^{i j}$ is the reciprocal contravariant tensor to $A_{i j}$, the relations (14) and (15) are equivalent to

$$
\begin{align*}
y^{i} & =A^{i k} E_{k} \\
E^{i} & =A^{i j} z_{j}
\end{align*}
$$

and

And it is easily verified that, in terms of this tensor,

$$
\begin{equation*}
A^{i k} g_{k l} A^{l j}=a^{i j} . \tag{16}
\end{equation*}
$$

The directions of the vectors u^{i} and v^{i} at O will be said to be conjugate with respect to the quadric (1) when they satisfy the relation

$$
\begin{equation*}
u^{i} a_{i j} v^{i}=0 \tag{17}
\end{equation*}
$$

and the geodesics which pass through O in these directions will be called conjugate geodesic diameters of (1). If $y_{h \mid}^{i}$ and $y_{k \mid}^{i}$ are the Riemannian coordinates of the extremities of conjugate geodesic diameters, we deduce from (17) and (14) that
that is

$$
\begin{array}{r}
y_{h \mid}^{i} A_{i l} g^{l p} A_{p j} y_{k \mid}^{j}=0 \\
E_{h \mid l} g^{l p} E_{k \mid p}=0 \tag{18}
\end{array}
$$

showing that the corresponding vectors $E_{h \mid}^{i}$ and $E_{k ; \mid}^{i}$ are orthogonal. It is easily verified that, if the conditions (18) are satisfied, the corresponding points $z_{h \mid i}$ on (7) are the extremities of mutually conjugate geodesic radii of that quadric.

We may now establish the theorem:

The sum of the squares of n mutually conjugate geodesic radii of the quadric (1) is an invariant, equal to $a^{i j} g_{i j}$.

Let $y_{h \mid}^{i}(h=1, \ldots, n)$ be the Riemannian coordinates of the extremities of the n mutually conjugate geodesic radii, and $E_{h \mid i}$ the corresponding unit vectors (14). The conjugate relations are expressed by (18), where $h \neq k$. Further, if $s_{h \mid}$ is the length of the geodesic radius to $y_{h \mid}^{i}$, and $\xi_{h \mid}^{i}$ its direction at O, it follows from (1^{\prime}) that

$$
s_{h \mid} \xi_{h \mid}^{i}=A^{i j} E_{h \mid j}
$$

Taking the square of the length of each member, and summing for h from 1 to n, we have

$$
\begin{aligned}
\Sigma_{h}\left(s_{h \mid}\right)^{2} & =\sum_{h} E_{h \mid j} A^{j i} g_{i p} A^{p q} E_{h \mid q} \\
& =\sum_{h} E_{h \mid j} a^{j q} E_{h \mid q}=a^{j q} g_{j q}
\end{aligned}
$$

since the n vectors $E_{h \mid i}$ are mutually orthogonal unit vectors.
We may also observe in passing that
The polar hypersurfaces of the extremities of n mutually conjugate geodesic radii of the quadric (1) meet on a similar quadric.

For, in virtue of (3), (12) and (14), the polar hypersurface of the extremity y_{h}^{i}, is given by

$$
Y^{i} A_{i l} g^{l k} E_{l \mid k}=1
$$

Squaring both members, and summing for h from 1 to n we obtain

$$
\sum_{h}\left(Y^{i} A_{i l} g^{l k} E_{h \mid k}\right)\left(E_{h \mid q} g^{q p} A_{p j} Y^{j}\right)=n
$$

and therefore

$$
Y^{i} A_{i l} g^{l k} g_{k q} q^{q p} A_{p j} Y^{j}=n,
$$

which, in virtue of (12), reduces to

$$
\begin{equation*}
Y^{i} a_{i j} Y^{j}=n \tag{19}
\end{equation*}
$$

Thus the locus of the intersection Y^{i} of the n polar hypersurfaces is a similar quadric.

4. Application.

Let the V_{n} considered above be a hypersurface of an enveloping Riemannian V_{n+1}, with $\Omega_{i j} d x^{i} d x^{j}$ as the second fundamental form of V_{n}. It is well known that the quantities $\Omega_{i j}$ are components of a
symmetric covariant tensor ${ }^{1}$, and that the normal curvature κ_{n} of the hypersurface for the direction of the unit vector ξ^{i} is given by

$$
\begin{equation*}
\kappa_{n}=\xi^{i} \Omega_{i j} \xi^{j} . \tag{20}
\end{equation*}
$$

It follows that, with the same notation as above, the normal curvature is equal to the inverse square of the geodesic radius of the quadric

$$
\begin{equation*}
y^{i} \Omega_{i j} y^{j}=1 \tag{21}
\end{equation*}
$$

in the direction ξ^{i} at O. And from the first theorem of $\S 1$ we then deduce that

The sum of the normal curvatures of the hypersurface V_{n} for n mutually orthogonal directions at a point is invariant, and equal to $\Omega_{i j} g^{i j}$.

Similarly from the first theorem of $\S 3$ it follows that, if $\Omega^{i j}$ is the reciprocal tensor to $\Omega_{i j}$,

The sum of the reciprocals of the normal curvatures of the hypersurface V_{n} for n mutually conjugate directions at a point of it is invariant, and equal to $\Omega^{i j} g_{i j}$.

The quadric (21) corresponds to Dupin's indicatrix for a surface.

[^0]
[^0]: ${ }^{1}$ Of. Eisenhart, Riemannian Geometry, $\S \S 43,44$.

