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Some asymptotic formulae for torsion
in homotopy groups
Guy Boyde and Ruizhi Huang
Abstract. Inspired by a remarkable work of Félix, Halperin, and Thomas on the asymptotic
estimation of the ranks of rational homotopy groups, and more recent works of Wu and the authors
on local hyperbolicity, we prove two asymptotic formulae for torsion rank of homotopy groups,
one using ordinary homology and one using K-theory. We use these to obtain explicit quantitative
asymptotic lower bounds on the torsion rank of the homotopy groups for many interesting spaces
after suspension, including Moore spaces, Eilenberg–MacLane spaces, complex projective spaces,
complex Grassmannians, Milnor hypersurfaces, and unitary groups.

1 Introduction

The homotopy groups of a simply connected CW-complex Y of finite type have the
form

π i(Y) ≅ (⊕
d i

Z) ⊕ ⊕
prime p

t∈Z+
( ⊕

kp,t
Z/pt) ,

where d i and kp,t are the rank of the free summands and the Z/pt-summands of
π i(Y), respectively. Denote rank0(π i(Y)) ∶= d i and rankZ/pt(π i(Y)) ∶= kp,t .

In the remarkable work [FHT], Félix, Halperin, and Thomas proved an asymptotic
formula for the ranks rank0(π i(Y)) of the free part of the homotopy groups. In
particular, they showed that if Y is finite and rank0(π i(Y)) ≠ 0 for infinitely many
i ∈ Z+, then there is a constant δ > 1 such that for N large enough

N+dim(Y)
∑

i=N+2
rank0(π i(Y)) ≥ δN ,

which they interpret as a strong “regularity” property for the ranks rank0(π i(Y))
of the free part of the homotopy groups. Concerning the ranks rankZ/pt(π i(Y)) of
the torsion part of the homotopy groups, they further raised the following natural
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2 G. Boyde and R. Huang

question, which was rephrased in an explicit form by Wu and the second author in
[HW, Question 1.8].

Question 1.1 Are there “regularity” properties of the torsion subgroups of the homotopy
groups π i(Y) as i →∞?

In this paper, we study the above question by providing estimates for the ranks
rankZ/pt(π i(Y)) in certain cases. In particular, we give quantitative refinements of
results of the authors and Wu, from the papers [Boy1, Boy2, HW]. The methods of
these papers implied more than were stated in the theorems: the statements were
always that the volume of p-torsion in the homotopy groups of various spaces grows
exponentially, but actually the methods were completely constructive, and with more
work one can extract concrete exponential lower bounds. The extraction of these lower
bounds is the business of this paper.

The proof of each of our main theorems (1.2 and 1.7) begins with the combinatorics
of free Lie algebras, which have been well understood since long before Félix, Halperin,
and Thomas’s celebrated theorem. We use in particular some results of Babenko
[Bab] and Lambrechts [Lam], both of which are more general. From this common
beginning, the proof of each theorem is then complicated in a different way; we
elaborate briefly after each theorem statement.

Recent work of Burklund and Senger [BS] has greatly advanced our understanding
of these phenomena: they finish a story begun by Henn [Hen] and Iriye [Iri] and show
that the radii of convergence of the p-local “homotopy” and “loop-homology” power
series are equal. Again, we discuss each of our theorems in light of this.

1.1 Results via homology

We first give our quantitative refinement of the main result of [Boy2]. To state the
results, for any integer q ≥ 2, define a function

fq(x) = (1 − x
x − 1

1
φ
) ⋅ 1

x
φx − cxφ

x
2 − κ∣ψ∣x

for x ≥ 2, where:
• φ is the unique positive real root of the degree q + 1 polynomial P(z) = zq+1 − z − 1,
• ψ is the root of P(z)

(z−φ) for which the absolute value ∣φ∣ is maximized (i.e., the “second
largest root of P(z) after φ in absolute value”),

• c = 2(q + 2)(1 + φ), and
• κ = (q + 1) (1 + 1

∣ψ∣).

We have the properties:

• 2
1

q+1 < φ < 1 + 1
q , and

• for any ε > 0, once x is large enough we have

fq(x) ≥ (1 − ε)(1 − 1
φ
) ⋅ 1

x
φx > (1 − ε)(1 − 2−

1
q+1 ) ⋅ 1

x
2

x
q+1 .

We will use the function fq(x) with its properties freely in this subsection.
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Some asymptotic formulae for torsion in homotopy groups 3

Let Pq+1(pr) be the Moore space defined as the mapping cone of the degree pr

map Sq → Sq . The following theorem provides an asymptotic formula for the p-local
homotopy groups under a homological condition.

Theorem 1.2 Let Y be a simply connected CW-complex, let p ≠ 2 be prime, and let
s ≤ r ∈ Z+. If there exists a map

μ ∶ Pq+1(pr) �→ Y

for some q ≥ 2, such that the induced map

(Ωμ)∗ ∶ H∗(ΩPq+1(pr);Z/ps) �→ H∗(ΩY ;Z/ps)

is an injection, then we have the bound
r
∑
t=s

rankZ/pt(πN+1(Y)) ≥ fq(N).

In particular, for any ε > 0, once N is large enough we have
r
∑
t=s

rankZ/pt(πN+1(Y)) > (1 − ε)(1 − 2−
1

q+1 ) ⋅ 1
N

2
N

q+1 .

Algebraically, Theorem 1.2 depends on the structure of the module of boundaries in
a free Lie algebra over a finite field. It is the need to take boundaries which complicates
the story relative to Babenko and Lambrechts’s work. This is dealt with in Section 2.3,
using a result of Cohen, Moore, and Neisendorfer [CMN].

Using [Boy2, Proposition 10.12], the hypotheses of Theorem 1.2 simplify in the case
that Y = ΣX is a suspension, as follows:

Theorem 1.3 Let X be a connected CW-complex, let p ≠ 2 be prime, and let s ≤ r ∈ Z+.
Suppose that H∗(X;Z/ps) has finite type. If there exists a map

μ ∶ Pq+1(pr) �→ ΣX

for some q ≥ 2, such that

μ∗ ∶ H̃∗(Pq+1(pr);Z/ps) �→ H̃∗(ΣX;Z/ps)

is an injection, then we have the bound
r
∑
t=s

rankZ/pt(πN+1(ΣX)) ≥ fq(N).

In particular, for any ε > 0, once N is large enough we have
r
∑
t=s

rankZ/pt(πN+1(ΣX)) > (1 − ε) (1 − 2−
1

q+1 ) ⋅ 1
N

2
N

q+1 .

The spaces X and Y in Theorems 1.2 and 1.3 can be infinite. The asymptotic formulae
in both theorems bound the ranks of the p-local homotopy groups from below by an
exponential function. In particular, they strengthen a recent result of the first author
on local hyperbolicity [Boy2, Theorems 1.5 and 1.6].
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4 G. Boyde and R. Huang

Note also that if s = r, then the sum appearing on the left-hand side in the
conclusions of Theorems 1.2 and 1.3 simplifies to rankZ/pr(πN+1(ΣX)), and this
simplification will apply in all the examples.

Theorem 1.3 has interesting applications. For instance, the Hurewicz theorem
immediately gives the following example, which refines [Boy2, Corollary 2.4]. We
caution the reader to bear in mind that when a space X satisfies the hypotheses of
Theorem 1.3, the conclusions of that theorem refer to the suspension ΣX, rather than
to X itself.

Example 1.4 Let X be a connected CW-complex, and let p ≠ 2 be prime. Suppose
that H∗(X;Z/pr) has finite type and that the lowest-dimensional nontrivial reduced
integral homology group contains a Z/pr-summand. Then X satisfies the hypotheses
of Theorem 1.3 with s = r and q = conn(X) + 2.

The identity map on a Moore space automatically satisfies the hypotheses of
Theorem 1.2 (alternatively, apply Example 1.4), so we obtain the following.

Example 1.5 Let p be an odd prime and q ≥ 2. Then Pq(pr) satisfies the hypotheses
of Theorem 1.2 with s = r and μ equal to the identity map on ΣPq(pr) = Pq+1(pr). It
follows that

rankZ/pr(πN+1(Pq+1(pr)) ≥ fq(N).

This strengthens a result of Wu and the second author on the Z/pr-hyperbolicity
of Pq+1(pr) [HW, Theorem 1.6].

It is enlightening to compare this result from what could be deduced already from
Burklund and Senger’s work [BS]. It follows from their Corollary A.5 that the radius
of convergence of the series ∑∞N=1 dimZ/p(πN(Pq+1(pr)) ⊗Z/p) ⋅ tN is precisely 1

φ .
Since Pq+1(pr) is rationally elliptic (being rationally contractible), this power series
really is describing the torsion. Example 1.5 adds information in two ways: first, by
giving a concrete function as a lower bound for all N, and second, by saying something
about summands isomorphic to Z/pr in particular, rather than p-torsion in general.

Another interesting consequence of Example 1.4 is a torsion bound for an
Eilenberg–MacLane space after suspension. In particular, the following immediate
consequence gives a quantitative refinement of [Boy2, Example 2.5].

Example 1.6 Let p be an odd prime and q ≥ 2. Then K(Z/pr , q − 1) is
(q − 2)-connected, and the least-dimensional nontrivial homology group is
Hq−1(K(Z/pr , q − 1)) ≅ Z/pr . By Example 1.4, K(Z/pr , q − 1) satisfies the hypotheses
of Theorem 1.3 with s = r.

1.2 Results via K-theory

Denote by

rankp(π i(ΣX)) =
∞
∑
t=1

rankZ/pt(π i(ΣX))
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Some asymptotic formulae for torsion in homotopy groups 5

the rank of the p-torsion summands of π i(ΣX). Our other main result refines the main
theorem of [Boy1] to a quantitative statement under a K-theoretical condition is the
following.

Theorem 1.7 (Weak version of Theorem 3.3) Let p be an odd prime, and let X be a path
connected space having the p-local homotopy type of a finite CW-complex. Suppose that
there exists a map

μ ∶
�

⋁
i=1

m i

⋁
j=1

Sq i+1 → ΣX

with 1 ≤ q1 < q2 < ⋅ ⋅ ⋅ < q�, such that the map

K̃∗(ΣX) ⊗Z/p
μ∗�→ K̃∗(

�

⋁
i=1

m i

⋁
j=1

Sq i+1) ⊗Z/p ≅
�

⊕
i=1

m i

⊕
j=1

Z/p

is a surjection.
Then, for any ε > 0, once the multiple M = mg′ of

g′ = gcd(q1 , . . . , q� , 2(p − 1))
is large enough we have

rankp(πM(ΣX)) ≥ 1
M1+ε φ(

conn(X)+1
dim(X)+1 )M ,

where φ is the unique positive real root of the degree q� polynomial

zq� −
�

∑
i=1

m i zq�−q i = 0

(in particular, φ ≥ (∑�
i=1 m i)

1
q� = (∑�

i=1 m i)
1

max(q1 ,. . . ,q�) ), conn(X) is the p-local connec-
tivity of X, and dim(X) is the rational cohomological dimension of X.

A stronger estimate is provided by Theorem 3.3 with Remark 3.4 at the end of the
paper. In particular, the asymptotic formulae in both theorems bound the ranks of
the p-local homotopy groups from below by an exponential function. Unlike with
Theorem 1.2, it is not necessary to take boundaries to prove Theorem 1.7, but the
topological picture is difficult. The difficulty arises ultimately from an interaction
between the James construction and the Adams operations, which as far as the authors
know originates in the paper [Sel] of Selick on which [Boy1] is modeled, and manifests
combinatorially as Condition (*) in the last section. This condition means that the “Lie
algebra” one is ultimately able to find a copy of in homotopy groups “lags”—appearing
in higher dimensions than one might expect. In the end, this shows up as, for example,
the factor of ( conn(X)+1

dim(X)+1 ) in the exponent in Theorem 1.7.
Theorem 1.7 has interesting applications. For instance, let Grk(Cn) be the Grass-

mannian of k-dimensional complex linear subspaces ofCn , which is simply connected
and of complex dimension k(n − k). Recall Gr1(Cn) ≅ CPn−1. In [Boy1, Example 2.6],
it is shown that when n ≥ 3 and 0 < k < n there is a map

S3 ∨ S5 �→ ΣGrk(Cn),
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6 G. Boyde and R. Huang

which induces a surjection on K̃∗( ) ⊗Z/p for all odd primes p. Applying Theorem
1.7, we must find the positive root of z4 − z2 − 1, which is

√
1+
√

5
2 . Tidying the resulting

formula a little, we obtain the following corollary, which strengthens [Boy1, Examples
2.5 and 2.6].

Corollary 1.8 Let p be an odd prime, n ≥ 3 and 0 < k < n. Then, for any ε > 0, once m
is large enough we have

rankp(π2m(ΣGrk(Cn))) ≥ 1
(2m)1+ε (

3 +
√

5
2

)
m

2k(n−k)+1

.

Similarly, let Hn ,� be the Milnor hypersurface defined by

Hn ,� = {([z], [w]) ∈ CPn ×CP� ∣
min(n ,�)
∑
i=0

z iw i = 0},

which is simply connected and of complex dimension n + � − 1. In [Boy1, Example
2.7], it is showed that when n ≥ 2 and � ≥ 3 there is a map

S3 ∨ S5 �→ ΣHn ,�,

which induces a surjection on K̃∗( ) ⊗Z/p for all odd primes p. Therefore, the
following corollary follows immediately from Theorem 1.7, which strengthens [Boy1,
Example 2.7].

Corollary 1.9 Let p be an odd prime, n ≥ 2 and � ≥ 3. Then, for any ε > 0, once m is
large enough we have

rankp(π2m(ΣHn ,�)) ≥
1

(2m)1+ε (
3 +

√
5

2
)

m
2(n+�)−1

.

Consider the nth unitary group U(n) which is connected and of real dimension
n2. In [Boy1, Example 2.8], it is showed that when n ≥ 3 there is a map

S3 ∨ S5 �→ U(n),

which induces a surjection on K̃∗( ) ⊗Z/p for all odd primes p. It is clear that this
map can be lifted to the special unitary group SU(n), which is 2-connected and of
real dimension n2 − 1. Therefore, the following corollary follows immediately from
Theorem 1.7, which strengthens [Boy1, Example 2.8].

Corollary 1.10 Let p be an odd prime and n ≥ 3. Then, for any ε > 0, once m is large
enough we have

rankp(πm(ΣU(n))) ≥ 1
m1+ε φ

m
n2+1 > 1

m1+ε (1.19)
m

n2+1 ,

rankp(πm(ΣSU(n))) ≥ 1
m1+ε φ

3m
n2 > 1

m1+ε (1.70) m
n2 ,

where φ is the unique positive real root of z5 − z2 − 1 = 0.
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Some asymptotic formulae for torsion in homotopy groups 7

The structure of this paper is as follows: Section 2 treats the algebra and combina-
torics. Section 2.2 treats free Lie algebras without a differential, and Section 2.3 studies
the module of boundaries in the differential case. These results are then used to prove
the main theorems in Section 3.

2 Algebra

2.1 Complex arithmetic

Lemma 2.1 Let S be a finite set of positive integers, let g = gcd(S), and let η ∈ C be
nonzero. Then ηg is a positive real if and only if η i is a positive real for all i ∈ S.

Proof The “only if ” direction follows from the fact that g divides each member
of S. For the “if ” direction, Bezout’s Lemma gives α i ∈ Z for each i ∈ S such that
∑i α i ⋅ i = g. Thus, if each η i is a positive real, we get

ηg = η∑i α i ⋅i =∏
i
(η i)α i ,

which is a product of powers of positive reals, hence also a positive real. ∎
Lemma 2.2 Let c0 , . . . , ck−1 ∈ Z≥0, with c0 ≥ 1. The polynomial

P(z) = zk −
k−1
∑
i=0

c i z i

has precisely one positive real root, φ, which occurs with multiplicity one, and satisfies
φ ≥ 1. The other roots η satisfy ∣η∣ ≤ φ, with equality holding if and only if η is the product
of φ with a gth root of unity, where g = gcd({i ∣ c i ≠ 0} ∪ {k}).

Proof The number of sign changes between consecutive coefficients in P is 1, so
P has precisely one positive real root by Descartes’ rule of signs. Call this root φ.
Rearranging, we have φk = ∑k−1

i=0 c i φ i . Since c0 ≥ 1, we must have φk ≥ 1, so φ ≥ 1.
Suppose that η ∈ C is a root of P. Taking modulus and applying the triangle

inequality, we obtain

∣η∣k = ∣ηk ∣ = ∣
k−1
∑
i=0

c i η i ∣ ≤
k−1
∑
i=0

c i ∣η∣i .

Equality holds in the above if and only if (1) η i is a nonnegative real for all i
for which c i ≠ 0, and (2) ∣η∣ is a root of P. By Lemma 2.1, the first condition is
equivalent to ηg being a nonnegative real, where g = gcd{i ∣ c i ≠ 0}. The second
condition is equivalent to ∣η∣ = φ, since ∣η∣ is a nonnegative real. The root φ satisfies
these conditions, and the other solutions are obtained as the product of φ with the gth
roots of unity.

If the inequality is strict then we have P(∣η∣) < 0. Since the value of the polynomial
P(∣z∣) is positive for sufficiently large ∣z∣, and φ is the unique positive real root, P(∣z∣) >
0 for any ∣z∣ > φ. It follows that ∣η∣ < φ, as required. ∎

For a polynomial P(z) of degree k, let η1 , . . . , ηk be the roots of P, with mul-
tiplicity. The Nth Newton sum of P is the complex number ηN

1 + ⋅ ⋅ ⋅ + ηN
k . If P has
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8 G. Boyde and R. Huang

real coefficients, then the roots occur in conjugate pairs and the Newton sums take
real values. Lemma 2.2 controls the Newton sums quite tightly. In particular, the
next lemma explains that when N = gn is g-divisible they are well approximated
asymptotically by gφgn , and when N is not g-divisible they are approximated by zero
with the same error.

Lemma 2.3 Let c0 , . . . , ck−1 ∈ Z≥0, with c0 ≥ 1. Let η1 , . . . , ηk be the complex roots of
the polynomial

P(z) = zk −
k−1
∑
i=0

c i z i ,

with multiplicity. As N →∞, the Newton sums of P(z) satisfy:
• For N not divisible by g we have

∣ηN
1 + ⋅ ⋅ ⋅ + ηN

k ∣ ≤ (k − g)∣ψ∣N .

• When N = gn is g-divisible we have

∣gφgn − (ηgn
1 + ⋅ ⋅ ⋅ + ηgn

k )∣ ≤ (k − g)∣ψ∣gn ,

where φ is the unique positive real root of P(z), ψ is the second largest root in absolute
value, and g = gcd({i ∣ c i ≠ 0} ∪ {k}).

By definition, ∣ψ∣ < φ. This means that this lemma implies for example that (ηgn
1 +

⋅ ⋅ ⋅ + ηgn
k ) ∼ gφgn as n →∞.

Proof By Lemma 2.2, roots of P(z) come in two kinds: those which are the product
of φ with a gth root of unity, and those roots η with ∣η∣ < φ (hence ∣η∣ ≤ ∣ψ∣). The
important point is that each root of the first kind occurs with multiplicity precisely 1.

To see this, apply Lemma 2.2 to the polynomial

Q(z) = z
k
g −

k−1
∑
i=0

c i z
i
g

obtained by dividing all powers by g, and use the fact that roots of P(z) are precisely
the gth roots of the roots of Q(z).

Then, without loss of generality assume η1, . . ., ηg are the roots of the first kind,
so that ∣η1∣ = ⋅ ⋅ ⋅ = ∣ηg ∣ = φ. From elementary complex analysis or group theory, we

have that ηN
1 + ⋅ ⋅ ⋅ + ηN

g =
⎧⎪⎪⎨⎪⎪⎩

gφN , g ∣ N ,
0, g ∤ N ,

and the result then follows from the triangle

inequality. ∎

2.2 Free Lie algebras

We write the generating set X of a free Lie algebra L = L(X) over Z as follows.
Write q1 < ⋅ ⋅ ⋅ < q� for the distinct degrees which contain an element of X. Write
x i ,1 , x i ,2 , . . . , x i ,m i for the distinct generators in degree q i , so that in particular, the
number of generators in degree q i is m i . Hilton [Hil] showed that L is free as a
Z-module.
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Some asymptotic formulae for torsion in homotopy groups 9

Let μ ∶ Z>0 �→ {−1, 0, 1} be the Möbius inversion function, defined by

μ(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, s = 1,
0, s > 1 is not square-free,
(−1)� , s > 1 is a product of � distinct primes.

Given a polynomial P(z) = a0 + a1z + ⋅ ⋅ ⋅ + ak zk with a0 ≠ 0, the reciprocal of P(z)
is ak + ak−1z + ⋅ ⋅ ⋅ + a0zk . For given P(z), let η1 , . . . , ηk be the complex roots of the
reciprocal of P(z), with multiplicity (so P(z) = a0 ∏k

i=1(1 − η i z)). Write

SN(P(z)) ∶= ηN
1 + ⋅ ⋅ ⋅ + ηN

k

for the Nth Newton sum in the zeros of the reciprocal.
The following theorem is due to Babenko. Relative to his statement, we have

changed variable using the fact that, for fixed N, d ↦ N
d is a self-bijection of the set

of divisors of N.

Theorem 2.4 [Bab, Proposition 1] Let L be the free graded Lie algebra over Z on a
finite set of generators {x i , j}, with notation as above. Then

rank(LN) =
(−1)N

N ∑
d ∣N
(−1) N

d μ(d)S N
d
(1 −

�

∑
i=1

m i zq i),

where the sum is taken over the divisors d of N.

Our next theorem is essentially a result of Lambrechts [Lam, Proposition 1] in
the special case of free Lie algebras. Our derivation of this result from Babenko’s is
essentially the same as Lambrechts’s, but the situation is simpler and slightly more is
true. The point of the theorem is that when g ∣ N , rank(LN) is well-approximated by
g
N φN with an error term given by a sum of exponentials in smaller bases.

Theorem 2.5 Let L be the free graded Lie algebra over Z on a finite set of generators X.
As before, write q1 < ⋅ ⋅ ⋅ < q� for the distinct degrees which contain an element of X, and
let g = gcd(q i). Let m i be the number of generators in degree q i .
• If g ∤ N, then rank(LN) = 0.
• If g ∣ N, then ∣rank(LN) − g

N φN ∣ ≤ q�

N ∣ψ∣
N + gφ N

2 + q�∣ψ∣
N
2 ,

where φ is the unique positive real root of the degree q� polynomial

P(z) = zq� −
�

∑
i=1

m i zq�−q i = 0,

and ψ is the second largest root in absolute value. In particular, φ ≥ (∑�
i=1 m i)

1
q� .

If P(z) has no roots which are strictly smaller than φ in absolute value (i.e., “ψ does
not exist”) then terms involving ψ may be disregarded: precisely, the inequality in the
second claim may be replaced by ∣rank(LN) − g

N φN ∣ ≤ gφ N
2 .

Proof The first claim follows immediately from the fact that L is concentrated in
degrees divisible by g.
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We will now prove the second claim. The point is that the Babenko’s formula of
Theorem 2.4 is dominated by the d = 1 term. Let N be divisible by g. By Theorem 2.4
(using that μ(1) = 1), we have

rank(LN) =
(−1)N

N ∑
d ∣N
(−1) N

d μ(d)S N
d
(1 −

�

∑
i=1

m i zq i )

= 1
N

SN(1 −
�

∑
i=1

m i zq i) + (−1)N

N ∑
d ∣N
d≥2

(−1) N
d μ(d)S N

d
(1 −

�

∑
i=1

m i zq i ).

We name these two terms, writing SN = SN(1 −∑�
i=1 m i zq i ) to simplify notation.

Let

AN ∶= 1
N

SN ,

and let

BN ∶= (−1)N

N ∑
d ∣N
d≥2

(−1) N
d μ(d)S N

d
.

By Lemma 2.3 (with n = N
g ), we have ∣SN − gφN ∣ ≤ (q� − g)∣ψ∣N ≤ q�∣ψ∣N for φ and

ψ as in the theorem statement. It therefore suffices to show that ∣BN ∣ ≤ gφ N
2 + q�∣ψ∣

N
2 .

Since ∣μ(d)∣ ≤ 1, we have by Lemma 2.3 that

∣BN ∣ =
1
N
∣∑
d ∣N
d≥2

(−1) N
d μ(d)S N

d
∣ ≤ 1

N ∑
d ∣N
d≥2

∣S N
d
∣ ≤ 1

N ∑
d ∣N
d≥2

(gφ
N
d + q�∣ψ∣

N
d ).

The number of terms in this summation is at most the number of divisors of N,
which is at most N. The term is a sum of exponentials in positive bases, hence is strictly
increasing, and in particular, for d ≥ 2, we have the termwise bound gφ N

d + q�∣ψ∣
N
d ≤

gφ N
2 + q�∣ψ∣

N
2 . Putting this together gives

∣BN ∣ ≤ gφ
N
2 + q�∣ψ∣

N
2 ,

as required.
Lastly, we check that φ ≥ (∑�

i=1 m i)
1

q� . Since the polynomial P(z) = zq� −
∑�

i=1 m i zq�−q i has a unique positive root by Lemma 2.2, it suffices to check that
P((∑�

i=1 m i)
1

q� ) is nonpositive. For each i, q�−q i
q�

lies between 1 and 0, so for any x ≥ 1,

we have x
q�−qi

q� ≥ 1. It follows that

P((
�

∑
i=1

m i)
1

q�

) = (
�

∑
i=1

m i) −
�

∑
i=1

m i(
�

∑
i=1

m i)
q�−qi

q�

≤ (
�

∑
i=1

m i) −
�

∑
i=1

m i ⋅ 1 = 0,

as required. ∎
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2.3 Free Lie algebras with differentials

Free Lie algebras over Z/pr are obtained by tensoring the corresponding free Lie
algebra over Z with Z/pr , since this gives the correct universal property.

In this subsection, we consider L = L(x , y) = L(x , dx), the free differential Lie
algebra over Z/pr on the acyclic rank 2 free differential Z/pr-module on generators
x and y (dx = y). Suppose that deg(x) = q + 1, so deg(y) = q. By Theorem 2.5, since
gcd(q, q + 1) = 1, we know that

rankZ/pr(LN) ∼
1
N

φN ,

where φ is the unique positive real root of the degree q + 1 polynomial

zq+1 − z − 1 = 0.

The size of the error in this approximation is exponential in base depending on the
second largest root ψ (in absolute value), and √φ.

In this subsection, we are instead interested in B ∶= Im(d) ⊂ L, the module of
boundaries. Our aim is to prove Theorem 2.11. The argument will go as follows. It
is known (Theorem 2.7) that the differential on L is “almost acyclic.” A counting
argument using the fact that rank(LN) ∼ 1

N φN then shows that the rank of the module
of boundaries must be asymptotically a fixed fraction of that of LN .

We will first reduce to the case r = 1 by means of the following lemma, which is
proven in [Boy2] as Lemma 7.10.

Lemma 2.6 Let φ ∶ M �→ N be a map of Z/pr-modules, with N free. Then
rankZ/pr(Im(φ)) = rankZ/p(Im(φ ⊗Z/p)).

Now assume r = 1. Let u be an even-dimensional class in a graded differential Lie
algebra L over Z/p for p ≠ 2. Following [CMN], let

τk(u) = adpk−1(u)(du),

and let

σk(u) = 1
2

pk−1

∑
j=1

1
p
(pk

j
)[ad j−1(u)(du), adpk−1− j(u)(du)].

From our point of view, the point of the next theorem is that free differential Lie
algebras are almost acyclic.

Theorem 2.7 [CMN, Proposition 4.9] Let V be an acyclic differential Z/p-vector
space. Write L(V) ≅ HL(V) ⊕ K, for an acyclic module K. If K has an acyclic basis,
that is, a basis

{xα , yα , zβ , wβ},

where α and β range over index sets I and J , respectively, and we have

d(xα) = yα , deg(xα) even,

d(zβ) = wβ , deg(zβ) odd,
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12 G. Boyde and R. Huang

then HL(V) has a basis

{τk(xα), σk(xα)}α∈I ,k≥1 .

The theorem implies that the differential on L can be modified slightly to make
it acyclic. Namely, define a new differential d ∶ L(V) → L(V) by setting d = d on K,
and letting d(τk(xα)) = σk(xα), d(σk(xα)) = 0. Of course, d will no longer satisfy
the Leibniz rule, but it will still be a vector space endomorphism of degree −1 which
satisfies d

2 = 0.
Now, let B ∶= Im(d) ⊂ L, and let σ ⊂ L be the subspace spanned by the elements

σk(x), for some even degree x ∈ L and k ∈ Z+. By definition of d, we then have the
following corollary.

Corollary 2.8 We have BN ≅ BN ⊕ σN .

The next lemma justifies the approximation by providing a crude upper bound
on σN .

Lemma 2.9 We have the bound

dimZ/p σN ≤ c1 ⋅ Nφ
N
p ,

where c1 = 2(q + 2)φ
2
p .

Proof By definition, σN is spanned by classes σk(xα), and we have deg(σk(xα)) =
pk deg(xα) − 2. We therefore have

dimZ/pr σN ≤ ∑
M≤N

pk M−2=N

dimZ/p LM ≤ ∑
M≤N

pk M−2=N

( 1
M

φM + q + 1
M

∣ψ∣M + φ
M
2 + (q + 1)∣ψ∣ M

2 )

≤ ∑
M≤N

pk M−2=N

((q + 2)φM + (q + 2)φ
M
2 ) ≤ ∑

M≤N
pk M−2=N

2(q + 2)φM

by Theorem 2.5 (we use ∣ψ∣ < φ, and then drop the factors of 1
M , to obtain a bound

which is strictly increasing even for small M). This summation contains fewer than
N terms, and since the value of a given term is increasing in M, the size of the largest
term is controlled by M = N+2

pk ≤ N+2
p , so

dimZ/p σN ≤ N ⋅ 2(q + 2)φ
N+2

p ,

as required. ∎

We next estimate the size of dim BN .

Lemma 2.10 Let ψ be the second largest (in absolute value) root of zq+1 − z − 1 after φ.
We have
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dimZ/p BN ≥ (1 − N
N − 1

1
φ
) ⋅ 1

N
φN − κ∣ψ∣N − c2φ

N
2 ,

where κ = (q + 1)(1 + 1
∣ψ∣) and c2 = (q + 2)(1 + 1√φ ) ≤ 2(q + 2).

Proof Since d is acyclic, we have BN = Ker(d ∶ LN → LN−1). The First Isomorphism
Theorem then gives that LN-BN

≅ BN−1, and since BN−1 ⊂ LN−1, we get

dimZ/p BN ≥ dimZ/p LN − dimZ/p LN−1 .

Theorem 2.5 gives (since g = 1 and ∣ψ∣ < φ)

dimZ/p LN−1 ≤
1

N − 1
φN−1 + q + 1

N − 1
∣ψ∣N−1 + (q + 2)φ

N−1
2 ,

and

dimZ/p LN ≥ 1
N

φN − q + 1
N

∣ψ∣N − (q + 2)φ
N
2 .

Combining these inequalities gives the result. ∎

We are now ready to state and prove the main theorem of this subsection.

Theorem 2.11 Let L ⊗Z/pr be the free differential graded Lie algebra over Z/pr on
two generators x and y satisfying y = dx. Let q = deg(y), so that deg(x) = q + 1. Let
B = Im(d) ⊂ L ⊗Z/pr be the submodule of boundaries. Then we have the bound

rank(BN) ≥ (1 − N
N − 1

1
φ
) ⋅ 1

N
φN − cNφ

N
2 − κ∣ψ∣N ,

where φ > 1 is the unique positive real root of the degree n polynomial

zq+1 − z − 1 = 0,

ψ is the second largest root in absolute value, c = 2(q + 2)(1 + φ), and κ = (q + 1)(1 +
1
∣ψ∣). We have the bounds 2

1
q+1 < φ < 1 + 1

q .

Proof By Lemma 2.6, it suffices to prove the theorem in the case r = 1. By Lemma
2.8, we have

dimZ/p BN ≥ dimZ/p BN − dimZ/p σN .

Combining Lemmas 2.9 and 2.10 (c = c1 + c2) then gives the result. ∎

3 Topology

3.1 Homology

We now prove Theorem 1.2.

Proof of Theorem 1.2 In the proof of Theorem 1.5 of [Boy2] it is shown that there
exists a commutative diagram (the details of the definitions of the maps need not
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14 G. Boyde and R. Huang

concern us here):

L′(x , y)

θ○d
��

βr○Φr ,r
π �� π∗(ΩPn+1(pr))

(Ωμ)∗ ��

h○ρs

��

π∗(ΩY)

h○ρs

��
L(x , y) ⊗Z/ps Φr ,s

H �� H∗(ΩPn+1(pr);Z/ps)
(Ωμ)∗ �� H∗(ΩY ;Z/ps).

In the diagram, L(x , dx) ⊗Z/ps is the free differential Lie algebra (with dx = y,
deg(x) = q + 1, deg(y) = q). The top-left entry L′(x , dx) is a certain module over
Z/pr which is “almost” a free differential Lie algebra.

We now use various results from [Boy2]. By the remark immediately before
Corollary 8.9 of that paper, the image of the left-hand vertical map θ ○ d is precisely the
module of boundaries BL. By Lemma 9.6, the map Φr ,s

H is an injection, and the induced
map on homology, (Ωμ)∗, is an injection by assumption. It follows by commutativity
that the image in the bottom-right, I ∶= Im(h ○ ρs ○ (Ωμ)∗ ○ βr ○Φr ,r

π ), is isomorphic
to BL.

The point is then that the homotopy groups of Y surject onto I, hence must be just
as large. More precisely, we obtain that

r
∑
t=s

rankZ/pt(πN(ΩY)) ≥ rankZ/ps(IN) = rankZ/ps(BLN)

by Lemma 7.8 of [Boy2] applied to the part of the diagram consisting of

πN(ΩY)

����
���

���
���

�

(L′(x , y))N ��

��

HN(ΩY ;Z/ps).

The loops on Y is just a degree shift on homotopy groups, so the result follows by
Theorem 2.11 of this paper. ∎

3.2 K-theory

In this subsection, the following linear inequality relating integers j and N will arise
often. We will refer to it as Condition (*). Here, X is a fixed space, conn(X) is the
p-local connectivity of X, and dim(X) is the largest d for which Hd(X;Q) ≠ 0.

j > 1
2(p − 1) (

dim(X) + 1
conn(X) + 1

− 1)N + ( dim(X) + 1
conn(X) + 1

)(conn(X) + 2) − 1).(*)

The next theorem refines and slightly generalizes Theorem 1.4 of [Boy1].
Theorem 3.1 Let p be an odd prime, and let X be a path connected space having the
p-local homotopy type of a finite CW-complex. Suppose that there exists a map

μ ∶
�

⋁
i=1

m i

⋁
j=1

Sq i+1 → ΣX
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with 1 ≤ q1 < q2 < ⋅ ⋅ ⋅ < q�, such that the map

K̃∗(ΣX) ⊗Z/p
μ∗�→ K̃∗

⎛
⎝

�

⋁
i=1

m i

⋁
j=1

Sq i+1⎞
⎠
⊗Z/p ≅

�

⊕
i=1

m i

⊕
j=1

Z/p

is a surjection.
Then, for any N, j such that

j > 1
2(p − 1) (

dim(X) + 1
conn(X) + 1

− 1)N + ( dim(X) + 1
conn(X) + 1

)(conn(X) + 2) + 1)

(i.e., such that Condition (*) holds) we have
∞
∑
t=1

rankZ/pt(πN+2 j(p−1)−1(ΩΣX)) ≥ rankZ/pr(LN ⊗Z/pr),

where L is as in Theorem 2.5 (the free Lie algebra on generators corresponding to the
spheres in the wedge), conn(X) is the p-local connectivity of X, dim(X) is the dimension
of X as measured by rational cohomology, and g = gcd(q1 , . . . , q�).

Proof This is essentially a more careful restatement of Theorem 1.4 of [Boy1]. Some
of the arguments of that paper are given only for a wedge of two spheres, but all of them
apply verbatim to any finite wedge. Construction 7.15 of that paper gives (in slightly
different language) a diagram of the form

πN(ΩΣX)

����
���

���
���

LN ⊗Z/pr ��

��

EN+2 j(p−1)

for some module E∗ whose definition need not concern us.
Theorem 7.16 of that paper then says that the horizontal map is an injection, and

hence, just as in the proof of Theorem 1.2, the conclusion holds, provided that there
exists some � ∈ Z≥0 such that � j(p−1)+ N−1

2 > λk
� , for an integer k which may be taken

to be ⌈ N+1
conn(X)+1 ⌉, where λ� is the largest eigenvalue of the Adams operation ψ� on

K̃∗(X).
The inequality therefore rearranges to j > 1

p−1 (⌈
N+1

conn(X)+1 ⌉
log(λ�)
log(�) −

N−1
2 ) . In [AA],

it is shown that λ� = �⌈
dim(X)

2 ⌉, so we may simplify to

j > 1
p − 1

(⌈ N + 1
conn(X) + 1

⌉⌈dim(X)
2

⌉ − N − 1
2

) ,

which is implied by Condition (*), using the fact that, for an integer z, we have ⌈ z
2 ⌉ ≤

z+1
2 . This completes the proof. ∎

The next step is a simple application of Bezout’s Lemma.
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16 G. Boyde and R. Huang

Lemma 3.2 Let α, β ∈ Z with α, β > 0, and let a, b ∈ R with a > 0. Consider the set of
linear combinations

Sn = {nα + jβ ∣ j ∈ Z≥0 , j > an + b} ⊂ Z.

Let g′ = gcd(α, β). There exists a constant B, independent of n, such that for each n, all
multiples of g′ which are at least min(Sn) + B are contained in S i for some i which is
close to n in the sense that n ≤ i < n + β(β + 1). Furthermore, there exists a suitable B
satisfying the bound B ≤ β2(α + a(1 + β)) + β, and hence, any B ≥ β2(α + a(1 + β)) +
β is also suitable.

If α and β are fixed (and j and n are allowed to vary), then it is a familiar fact that
the set of integers of the form nα + jβ is precisely the multiples of g′. Our statement
is essentially just a more complicated version of this.
Proof First, consider the set Sn . If an integer j satisfies j > an + b (so that nα + jβ
lies in Sn), then increasing the parameter j certainly does not violate this condition.
Therefore, adding a positive multiple of β to an element of Sn yields another element
of Sn . In particular, Sn already contains all integers which are obtained by increasing
min(Sn) by a multiple of β. These values are by construction linear combinations of
α and β, so they are all multiples of g′.

It remains, then, to show that by increasing n “just a little,” we can “fill in” the
intermediate multiples of g′. We will do so by “giving ourselves enough room,” in
the sense of an ad-hoc quantity which we now define. Define the excess of ( j, n) to
be j − (an + b). The condition j > an + b is then equivalent to ( j, n) having positive
excess.

By Bezout’s Lemma, let x > 0 and y ≥ 0 be the solution of xα − yβ = g′ with small-
est nonnegative y. We have 0 < x ≤ g′

α + β and 0 ≤ y ≤ α. Given an expression nα + jβ,
replacing n by n + x and j by j − y increases the value of the linear combination
nα + jβ by g′, and reduces the excess by the constant ax + y. We will use this to fill in
the remaining multiples of g′.

Let j0 realize the smallest member of Sn , in the sense that min(Sn) = nα + j0β.
Now, take any j ≥ j0 + β

g′ (ax + y). The excess of (n, j0) was positive, so the excess
of (n, j) is greater than β

g′ (ax + y). We may therefore add (x ,−y) to (n, j) up to β
g′

times while retaining a positive excess (and keeping j nonnegative). This shows that
all multiples of g′ lying between nα + jβ and nα + ( j + 1)β are contained in S i for
some i satisfying n ≤ i < n + β

g′ x, and we may perform this procedure for any j ≥ j0 +
β
g′ (ax + y). In particular, all multiples of g′ which are at least min(Sn) + β( β

g′ (ax +
y) + 1) are contained in S i for some i satisfying n ≤ i < n + β

g′ x. The extra +1 here
is because j must be an integer. This is essentially the result, and it remains only to
establish that we may take the constants as in the statement.

Now, g′
α ≤ 1, so x ≤ 1 + β, and β

g′ x ≤ βx ≤ β(1 + β). This establishes the bounds on
i. The bound on B follows from these inequalities, together with y ≤ α. This completes
the proof. ∎

We now prove the following strong version of Theorem 1.7.
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Theorem 3.3 Let p be an odd prime, and let X be a path connected space having the
p-local homotopy type of a finite CW-complex. Suppose that there exists a map

μ ∶
�

⋁
i=1

m i

⋁
j=1

Sq i+1 → ΣX

with 1 ≤ q1 < q2 < ⋅ ⋅ ⋅ < q�, such that the map

K̃∗(ΣX) ⊗Z/p
μ∗�→ K̃∗

⎛
⎝

�

⋁
i=1

m i

⋁
j=1

Sq i+1⎞
⎠
⊗Z/p ≅

�

⊕
i=1

m i

⊕
j=1

Z/p

is a surjection.
Then there exist constants τ, θ > 0 such that for multiples M = mg′ of

g′ = gcd(q1 , . . . , q� , 2(p − 1)),

we have
∞
∑
t=1

rankZ/pt(πM(ΣX)) ≥ τ
1
g

conn(X)+1
dim(X)+1 M + θ

φ(
conn(X)+1
dim(X)+1 )M − o ( 1

M
φ(

conn(X)+1
dim(X)+1 )M) ,

where φ is the unique positive real root of the degree q� polynomial

zq� −
�

∑
i=1

m i zq�−q i = 0

(in particular, φ ≥ (∑�
i=1 m i)

1
q� = (∑�

i=1 m i)
1

max(q1 ,. . . ,q�) ), conn(X) is the p-local con-
nectivity of X, dim(X) is the rational cohomological dimension of X, and g =
gcd(q1 , . . . , q�).

Proof Let Sn be the set of dimensions M for which Theorem 3.1 tells us that
∑∞t=1 rankZ/pt(πM(ΣX)) ≥ dimZ/p(Lng ⊗Z/pr). That is,

Sn = {ng + j ⋅ 2(p − 1) ∣ j ∈ Z, j > an + b} ⊂ Z,

where a = g
2(p−1) (

dim(X)+1
conn(X)+1 − 1) and b = 1

2(p−1) (
dim(X)+1
conn(X)+1 (conn(X) + 2) + 1).

By Lemma 3.2, there exists a constant B, which may be taken to be 4(p − 1)2(g +
a(1 + 2(p − 1))) + 2(p − 1) such that, for each M = mg′ ≥ min(Sn) + B, we have
∑∞t=1 rankZ/pt(πM(ΣX)) ≥ dimZ/p(L i g ⊗Z/pr) for some i with n ≤ i < n + 8(p − 1)2.
By Theorem 2.5,

∞
∑
t=1

rankZ/pt(πM(ΣX)) ≥ 1
i

φ i g − q�∣ψ∣i g − gφ
i g
2 − q�∣ψ∣

i g
2 .

Regardless of whether ∣ψ∣ > 1, we have ∣ψ∣
i g
2 < 1 + ∣ψ∣i g < 2 + ∣ψ∣(n+8(p−1)2)g , so the

inequality implies

∞
∑
t=1

rankZ/pt(πM(ΣX)) ≥ 1
n + 8(p − 1)2 φng − gφ

(n+8(p−1)2)g
2 − q�(3 + 2∣ψ∣(n+8(p−1)2)g).

(†)
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18 G. Boyde and R. Huang

It remains only to find the dependency of n upon M, and convert this expression into
one in terms of M.

The smallest member of Sn is obtained by taking the smallest j = jn satisfying
Condition (*). By definition jn is the smallest integer with jn > an + b, so jn ≤ an +
b + 1. Thus,

min(Sn) = ng + 2 jn(p − 1) ≤ g ( dim(X) + 1
conn(X) + 1

) n + 2(p − 1)(b + 1).

To conclude, for given M = mg′, let n = n(M) be the largest nonnegative
integer satisfying M ≥ g( dim(X)+1

conn(X)+1 )n + 2(p − 1)(b + 1) + B. Rearranging gives n ≤
M−(2(p−1)(b+1)+B)

g ( conn(X)+1
dim(X)+1 ). Since n is the largest such integer, it is at least one less

than this expression. Applying the bounds n ≤ i < n + 8(p − 1)2, now gives that

1
n + 8(p − 1)2 φng ≥ τ

1
g

conn(X)+1
dim(X)+1 M + θ

φ
conn(X)+1
dim(X)+1 M ,

for constants θ and τ, and shows that the other terms of the inequality † are
o( 1

M φ
conn(X)+1
dim(X)+1 ), as required. ∎

Remark 3.4 In this remark, we give the constants and error term for Theorem 3.3,
and collect the other constants appearing in the proof.

The positive integers q1 , . . . , q� are given in the hypotheses of Theorem 3.3 (or
Theorem 2.5). Then

g = gcd(q1 , . . . , q�),

and

g′ = gcd(q1 , . . . , q� , 2(p − 1)) = gcd(g , 2(p − 1)).

The space X and the prime p ≠ 2 are given in the hypotheses of Theorem 3.3,
dim(X) is the rational dimension of X, and conn(X) is its p-local connectivity.

The constants appearing in the proof of Theorem 3.3 are then

a = g
2(p − 1) (

dim(X) + 1
conn(X) + 1

− 1) ,

b = 1
2(p − 1) (

dim(X) + 1
conn(X) + 1

(conn(X) + 2) + 1) , and

B = 4(p − 1)2(g + a(1 + 2(p − 1))) + 2(p − 1).

It then follows from the proof that the constants θ and τ of Theorem 3.3 may be
taken as follows:

θ = 8(p − 1)2 − (conn(X) + 1
dim(X) + 1

) 2(p − 1)(b + 1 + B)
g

≤ 8(p − 1)2, and

τ = φ−g−( conn(X)+1
dim(X)+1 )(2(p−1)(b+1)+B) ,
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where, as usual, φ is the unique positive root of the polynomial P(z) = zq� −
∑�

i=1 m i zq�−q i = 0.
The error term in the bound Theorem 3.3 is an unpleasant expression, and we

restrict ourselves to noting that it is negative, and of the form

−c1φ
1
2

conn(X)+1
dim(X)+1 M − c2∣ψ∣

conn(X)+1
dim(X)+1 M − 3q� ,

for constants c i , where ψ is the second largest root of P(z), in absolute value. The
deviation of the bound from being a pleasant expression is therefore exponential in
bases determined by the roots of P(z).
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