
JFP 17 (6): 731–776, 2007. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006314 First published online 15 March 2007 Printed in the United Kingdom

731

Monadic augment and generalised short
cut fusion

NEIL GHANI

University of Nottingham, Nottingham, NG7 2RD, UK

(e-mail: nxg@cs.nott.ac.uk)

PATRICIA JOHANN∗

Rutgers University, Camden, NJ 08102, USA

(e-mail: pjohann@crab.rutgers.edu)

Abstract

Monads are commonplace programming devices that are used to uniformly structure compu-

tations; in particular, they are often used to mimic the effects of impure features such as state,

error handling, and I/O. This paper further develops the monadic programming paradigm

by investigating the extent to which monadic computations can be optimised by using

generalisations of short cut fusion to eliminate monadic structures whose sole purpose is to

“glue together” monadic program components. Ghani, Uustalu, and Vene have recently shown

that every inductive type has an associated build combinator and an associated short cut

fusion law. They have also used the notion of a parameterised monad to describe those monads

that give rise to inductive types, and have shown that the standard augment combinators

and cata/augment fusion rules for algebraic data types can be generalised to fixed points of

all parameterised monads. We revisit these augment combinators and generalised short cut

fusion rules for such types but consider them from a functional programming perspective,

rather than a categorical one. In addition to making the category-theoretic ideas of Ghani,

Uustalu, and Vene more easily accessible to a wider audience of functional programmers,

we demonstrate their practical applicability by developing nontrivial application programs

and performing modest benchmarking on them. We also show how the cata/augment rules

can serve as the basis for deriving additional generic fusion laws, thus opening the way for

an algebra of fusion. Finally, we offer deep theoretical insights, arguing that the augment

combinators are monadic in nature, and thus that the cata/build and cata/augment rules

are arguably the best generally applicable fusion rules obtainable.

1 Introduction

As originally conceived by Moggi (1991), monads form a useful computational

abstraction which can be used to perform such diverse tasks as structuring computa-

tions, modeling the effects of impure features such as state, error handling, and I/O in

pure languages, and safely separating purely functional code from impure code – all

in a modular, uniform, and principled manner. Over a decade ago, Wadler (1992) led

the call to turn Moggi’s theory of monads into a practical programming methodology.
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Monads are now firmly established as part of Haskell (Peyton Jones, 2003), supported

by specific language features and used in a wide range of applications. The essential

idea behind monads is the type-safe separation of computations, which might have

effects, from values, which don’t. An alternative view of a monad is as a data

type equipped with a well-behaved generalised substitution operation, although these

two views are easily reconciled by regarding the effect of a data structure as storing

data. Because monads abstract computational structure – and, in particular, abstract

the mechanism for composing computations – monadic programs are often more

highly structured than non-monadic ones which perform the same computational

tasks. Monadic programs thus boast the usual benefits of structured code, namely

being easier to read, write, modify, and reason about than their non-monadic

counterparts. However, compositionally constructed monadic programs also tend to

be less efficient than monolithic ones. In particular, it frequently happens that a

component in a monadic program will construct an intermediate monadic structure –

i.e., an intermediate structure of type m t where m is a monad and t is a type – only

to have it immediately consumed by the next component in the composition.

Given the widespread use of monadic computations, it is natural to try to apply

automatable program transformation techniques to improve the efficiency of modu-

larly constructed monadic programs. Fusion is one technique which is suitable for this

purpose, and a number of fusion transformations appropriate to the non-monadic

functional setting have been developed in recent years (Chitil, 1999; Gill et al.,

1993; Hu at al., 1996; Johann, 2002; Jürgensen, 2005; Sheard and Fegaras, 1993;

Svenningsson, 2002; Takano and Meijer, 1995; Voigtländer, 2002). Perhaps the best

known of these is short cut fusion (Gill et al., 1993), a local transformation based

on two combinators – namely, build, which produces lists in a uniform manner,

and foldr, which uniformly consumes them – and a single, oriented replacement

rule known as the foldr/build rule (see Section 3). The foldr/build rule replaces

calls to build which are immediately followed by calls to foldr with equivalent

computations that do not construct the intermediate lists introduced by build and

consumed by foldr. Eliminating such lists via short cut fusion can significantly

improve the efficiency of programs which manipulate them.

Unfortunately, there are common list producers, such as the append function, that

build cannot express in a manner which is both efficient and suitable for short cut

fusion. This led Gill to introduce a list producer, called augment, which generalises

build, together with an accompanying foldr/augment fusion rule for lists (Gill,

1996). This rule has subsequently been generalised to give cata/augment rules1 which

fuse producers and consumers of arbitrary non-list algebraic data types (Johann,

2002). Fusion rules which are dual to the cata/build rules in a precise category-

theoretic sense (Svenningsson, 2002; Takano and Meijer, 1995), and which eliminate

list-manipulating operations other than data constructors (Voigtländer, 2002), have

also been developed.

1 As is standard in Haskell, we use foldr to denote the standard catamorphism for lists. Catamorphisms
for other inductive data types are written using cata.
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1.1 This paper

This paper describes a further generalisation of short cut fusion to laws which

eliminate certain intermediate monadic structures (Ghani et al., 2004; Ghani et al.,

2005). In order to write consumers of expressions of type m t in terms of catas,

attention is restricted to types m t which are inductive types in a uniform manner.

A monad m with the property that m t is an inductive data type for every type t is

called an inductive monad.

In Ghani et al. (2004, 2005) it was shown that build combinators and cata/build

fusion rules can be defined for all inductive types. It is therefore natural to ask

whether augment combinators and cata/augment rules can similarly be generically

defined. As we observe in Section 4.2, there are inductive types which do not

support augment combinators, but a large class of inductive monads do. In Ghani

et al. (2004, 2005), these monads are described using the notion of a parameterised

monad (Uustalu, 2003), and the observation that the least fixed point of every

parameterised monad is an inductive monad is used to define generic augment

combinators and cata/augment rules for all such fixed points.

This paper revisits the augment combinators and cata/augment rules derived in

Ghani et al. (2004, 2005) for fixed points of parameterised monads. But whereas

those papers assume the reader has a rather extensive background in category

theory, this paper is written from a functional programming perspective, and thus

makes no such assumption. Like Ghani, Johann et al. (2005), on which it is based,

this paper aims to render the category-theoretic ideas of Ghani et al. (2004, 2005)

more easily accessible to a wider audience of functional programmers. But unlike

these papers, it explores the significance of these rules from the point of view of

a functional programmer in ways not done in previous papers. For example, it

introduces the idea of an algebra of fusion, and shows how this idea can be used

to derive further generic fusion rules from cata/augment rules. This paper also

constitutes a significant expansion of Ghani, Johann et al. (2005) with a substantial

addition of expository material to aid the reader. This expansion consists primarily

of deeper and more careful explanations of the kind afforded by the journal format,

implementations of new nontrivial examples of a more sophisticated nature, and

indicative benchmarking demonstrating roughly a 10% gain in program efficiency.

More specifically, this paper illustrates the generic augment combinators and

cata/augment rules from Ghani et al. (2004, 2005) with expression languages, rose

trees, interactive input/output computations, and hyperfunctions, all of which are

commonly used monads arising as least fixed points of parameterised monads.

When applied to types for which augment combinators were previously known, the

techniques developed in Ghani et al. (2004, 2005) yield more expressive augment

combinators. On the other hand, the examples involving rose trees and interactive

input/output computations show that there exist well-known and widely used

monads for which neither augment combinators nor cata/augment fusion rules

were previously known, but for which both can be derived using these techniques.

In addition, since the bind operations for monads which are least fixed points of

parameterised monads can be written in terms of their augment combinators (see
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Section 4.3), the cata/augment fusion rules from Ghani et al. (2004, 2005) can be

applied whenever an application of bind is followed by a cata. In fact, as we show

in Section 5, these rules can be used to optimise sequences of binds of the form

(...((m >>= k1) >>= k2)...>>= kn) whenever they occur. This is expected to

be often, since bind is the fundamental operation in monadic computation.

In this paper we show, via modest benchmarking, that the results of Ghani et al.

(2004, 2005) are of practical interest, since cata/augment rules have the potential to

improve the efficiency of modularly constructed programs using a variety of different

monads. (See Section 5.1). But these results are of theoretical importance as well:

they clearly establish the monadic nature of augment combinators by showing that

these combinators are interdefinable with the monadic bind operations. The facts

that cata/build rules can be defined for all functors, and that cata/augment rules

can be defined for all least fixed points of parameterised monads, suggest that the

results described in this paper are close to the best achievable. We expect, therefore,

that these ideas will appeal to a variety of different audiences. Those who work

with monads will be interested in parameterised monads and their applications, and

those in the program transformation community will be interested in seeing their

ideas for optimising computations successfully deployed in the monadic setting. We

hope that, as with the best cross-fertilisations of ideas, this paper will enable experts

in each of these communities to gain greater understanding of, and facility with, the

ideas and motivations of the other.

We stress that the results described in this paper apply to all monads which are

fixed points of parameterised monads. That is, we need not restrict attention to a

particular syntactic class of monadic data types in order to obtain our results.

We also stress that the results described in this paper apply only to those monads

which are fixed points of parameterised monads: such fixed points carry a monadic

interface which makes it possible to define augment combinators, as well as an

inductive structure which makes it possible to define cata combinators for them. All

monads induced by parameterised monads in this way are definable in pure Haskell.

Although they are often most naturally viewed as (pure) data structures supporting

generalised substitution operators, some, such as the error monad in Example 4 and

the interactive I/O monad in Example 5, are more naturally regarded as modeling

computations. It is unclear at present whether or not similar results can be developed

for monads, such as the state monad or the impure Haskell I/O monad, which do

not arise as inductive types.

The rest of this paper is organised as follows:

• In Section 2 we recall the monadic approach to functional programming and

give examples of data types which are instances of Haskell’s monad class.

We also discuss the structuring possibilities afforded by monadic code. This

discussion is new relative to Ghani, Johann et al. (2005).

• In Section 3 we show how cata and build combinators, and a cata/build

fusion rule, are derived in Ghani et al. (2004, 2005) for the least fixed point of

any functor. We also introduce the new idea of an algebra of fusion, arguing

that the generic cata/build rules make it possible to define additional generic
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fusion rules which are applicable to any data type. We illustrate this idea by

deriving entirely new generic cata/map and map/build fusion rules for fixed

points of arbitrary bifunctors.

• In Section 4 we recall the notion of a parameterised monad and the fact that the

least fixed point of any parameterised monad is a monad (Uustalu, 2003). We

show how the latter fact is used in Ghani et al. (2004, 2005) to generalise

the standard augment combinators for algebraic data types to augment

combinators for all monads arising as least fixed points of parameterised

monads. We note that the augment combinator for each parameterised monad

is shown in Ghani et al. (2004, 2005) to be interdefinable with the bind

operation for the monad which is its least fixed point via the elegant equation

augment g k = build g >>= k

On the basis of this observation, we argue that augment combinators are

inherently monadic in nature, and thus that the cata/augment rules are the

best general fusion rules obtainable. This realises the import for functional

programming of the theoretical work done in Ghani et al. (2004, 2005), which

goes unremarked upon in those papers.

• In Section 5 we show how the standard cata/augment fusion rules from

(Johann, 2002) for algebraic data types are generalised in Ghani et al. (2004,

2005) to give cata/augment rules for all monads arising as least fixed points

of parameterised monads. We also detail how the cata/augment rules can

be used to fuse programs of the form (x >>= f) >>= g. This discussion is

greatly expanded over the passing mention in Ghani et al. (2005).

• We demonstrate in Section 5.1 the practical applicability of the cata/augment

fusion rules with a variety of examples of programs over data structures arising

as fixed points of parameterised monads, as well as with modest benchmarking.

The extensive Examples 22 and 23 here replace the more toy-like Examples 20

and 21 of Ghani, Johann et al. (2005). Although they are still far from

industrial-strength applications, these more significant examples demonstrate

that cata/augment fusion scales up to programs other than small exercises.

We provide Haskell implementations for all concepts and examples in the

paper. These are used in our benchmarking, and can be downloaded from

www.cs.nott.ac.uk/∼nxg.

We discuss related work in Section 6 and conclude in Section 7. Throughout the

paper we assume as little background of the reader as possible. We emphasize that

no knowledge of category theory is assumed or required and, in order to make this

paper accessible to as wide an audience as possible, correctness proofs for all of

the fusion rules presented here are given in a separate paper (Ghani et al., 2005),

which extends the categorical account of cata/build fusion given in Ghani et al.

(2004). On the other hand, this paper is disjoint from Ghani et al. (2004, 2005), in

that it is addressed to the functional programming community and, as did Wadler

(1992) for monads, serves to illustrate the relevance to functional programming of

the category-theoretic notion of a parameterised monad.
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2 Why monads?

Functional programming was recognised early on as providing a clean programming

environment in which programs are easy to read, write, and prove correct. But

the problem of performing (possibly) effectful computations in a purely functional

language without compromising the advantages of the functional paradigm proved

difficult to solve. Moggi’s very nice solution was to tag types with “flags” which

indicate that effects are associated with values of those types. That is, if t is a type

and m flags a particular computational effect, then m t is a new computational type

whose inhabitants can be thought of as performing effectful computations described

by m and (possibly) returning results of type t. For example, the type Int contains

integer values, while the computational type Err Int introduced in Example 4

contains error messages, as well as integer values. Similarly, the computational type

IntIO i o a introduced in Example 5 contains not just values of type a, but also

functions which transform a token of type i into a new interactive input/output

computation, and output configurations, each of which comprises an output token

of type o together with a new interactive input/output computation.

In order to program with computational types we need two operations. The first,

called return, lifts any value of the underlying type to the trivial computation

which returns that value. The second, called bind and written >>=, composes two

computations which have the same type of effect. A flag m together with its two

operations forms a monad. Monads are represented in Haskell via the type class

class Monad m where

return :: a -> m a

>>= :: m a -> (a -> m b) -> m b

From a semantic perspective, return and bind are expected to satisfy the following

three monad laws (Moggi, 1991):

(return x) >>= k = k x

x >>= return = x

(x >>= k1) >>= k2 = x >>= (\y -> k1 y >>= k2)

These can be thought of as requiring that values act as left and right units for

composition, and that the composition of effectful computations be associative.

Satisfaction of the monad laws is, however, not enforced by the compiler. Instead,

it is the programmer’s responsibility to ensure that the return and bind operations

for any instance of Haskell’s monad class behave appropriately.

Note that, for any monad m, its bind operation >>= can be thought of as a

“generalised substitution” operator which uses its second argument, a function of

type a -> m b, to replace the data of type a in its first argument, a structure of

type m a, and then applies a “flattening” operation of type m (m b) -> m b to the

resulting structure of type m (m b) to get a new structure of type m b. This flattening

operation is the multiplication operation in the standard categorical definition of a

monad.

Here are some examples of monads and their associated computational types,

given in their Haskell form.
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Example 1

The built-in Haskell list data type has a natural interpretation as a monad of data

structures with the following operations:

instance Monad [] where

return x = [x]

xs >>= k = concatMap k xs

The function concatMap, which on input k and xs first maps the list-producing

function k over the elements of xs and then concatenates the results, is standard

in the Haskell prelude. This definition of >>= thus gives a generalised substitution

operation for the list monad as described above. Similar remarks apply to each of

the monads appearing in this paper.

Since the list monad can also be seen as a computational monad modeling non-

determinism, it nicely demonstrates that monads describe data structures as well

as effects. Interestingly, however, the list monad does not arise as a fixed point of

any parameterised monad, and so the results of this paper do not apply directly to

it. For this reason, the list monad is not discussed further in this paper except in

Section 4.5 below, where we show how we can indirectly apply to lists the techniques

developed in this paper.

Example 2

The data type Expr a represents simple arithmetic expressions. It has a natural

interpretation as a monad of data structures whose bind operation performs

substitution on those structures. But it can also be thought of as modeling

computations which have the effect of constructing elements of type Expr a.

data Ops = Add | Sub | Mul | Div

data Expr a = Var a | Lit Int | Op Ops (Expr a) (Expr a)

instance Monad Expr where

return = Var

Var x >>= k = k x

Lit i >>= k = Lit i

Op op e1 e2 >>= k = Op op (e1 >>= k) (e2 >>= k)

Example 3

The type Maybe a consists of values of type a and a distinguished error value.

data Maybe a = Just a | Nothing

instance Monad Maybe where

return = Just

Nothing >>= k = Nothing

Just x >>= k = k x
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Example 4

The type Err a consists of values of type a, as well as string-valued error messages.

data Err a = OK a | Failed String

instance Monad Err where

return = OK

Failed s >>= k = Failed s

OK x >>= k = k x

Example 5

An interactive input/output computation (Plotkin and Power, 2002) is either i) a value

of type a, ii) an input action, which, for every input token of type i, results in a new

interactive input/output computation, or iii) an output configuration consisting of

an output token of type o and a new interactive input/output computation. This is

captured in the declaration

data IntIO i o a = Val a

| Inp (i -> IntIO i o a)

| Outp (o, IntIO i o a)

We will see in Section 4.4 that

instance Monad (IntIO i o) where

return x = Val x

Val x >>= k = k x

Inp h >>= k = Inp (\i -> h i >>= k)

Outp (y,z) >>= k = Outp (y, z >>= k)

In fact, these last three equations verify that

intio >>= k = cataf k Inp Outp intio

where cataf is the instantiation for interactive input/output types of the cata

combinator derived in Section 3.2.

We conclude this section by demonstrating that our results allow the use of monads

to systematise, simplify, and highlight the structure of (possibly) effectful programs

without forfeiting the possibility of automatic fusion optimisations. Suppose we

want to perform a sequence of computations of the form k2 (k1 x), where

x :: m a

k1 :: m a -> m b

k2 :: m b -> m c

If we know that x is constructed using an augment combinator from Johann (2002)

for the monad m, that k1 consumes its input expression using the cata combinator

for m and produces its result expression using the standard augment combinator for

m, and that k2 consumes its input expression using the cata combinator for m, then

we can eliminate the intermediate result of type m b using known cata/augment

fusion techniques. Being able to construct monadic structures using augment entails
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that k1 and k2 perform computations that can be regarded as a kind of generalised

substitution as discussed above. (See the introduction to Section 4 for additional

details.)

If we instead use monads to structure the above computation, then the substitu-

tions performed by k1 and k2 can be achieved using bind. Indeed, if

x :: m a

k1’ :: a -> m b

k2’ :: b -> m c

then we can write (x >>= k1’) >>= k2’ to produce the same result as k2 (k1 x).

Here, each ki’ corresponds to the substitution function ki. But whereas each

ki takes a monadic structure as argument and thus specifies the action of a

substitution on an entire such structure, the corresponding function ki’ need

only specify the action of the substitution on data over whose type the monad is

parameterised. This is because traversal of monadic structures is encoded in bind,

rather than in the substitution functions themselves, as is the case in the non-monadic

setting.

The monadic code above is much easier to write: it is simpler to specify actions

k1’ and k2’ than to write entire substitution functions k1 and k2. Of course, we

cannot escape defining the traversal mechanism for the monad m entirely, but in the

monadic setting we do this exactly once – namely, in the definition of bind in the

monad class instance for m – rather than incorporating the same traversal strategy

into the definition of every substitution function individually.

One potential concern when using monads to structure programs is that standard

program optimisation techniques might not be applicable. For example, the program

k2 (k1 x) is subject to standard cata/augment optimisations, but such optimisa-

tions do not obviously apply to (x >>= k1’) >>= k2’. However, the development

of augment combinators and cata/augment rules for a more general class of

monads than were handled previously, together with the observation that these

augment combinators are interdefinable with the monadic bind operations, makes

it possible to reap the benefits of monadic structuring while simultaneously enabling

fusion. (See Section 5 for details.) One could, in fact, say that augment is a “fusion-

optimised” version of bind.

3 Short cut fusion

As already noted, modularly constructed programs tend to be less efficient than

their non-modular counterparts. A major difficulty is that the direct implementation

of compositional programs will literally construct, traverse, and discard intermediate

structures – even though they play no essential role in a computation. Even in lazy

languages like Haskell this is expensive, both slowing execution time and increasing

heap requirements.
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foldr :: (a -> b -> b) -> b -> [a] -> b

foldr c n xs = case xs of [] -> n

z:zs -> c z (foldr c n zs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

augment :: (forall b. (a -> b -> b) -> b -> b) -> [a] -> [a]

augment g xs = g (:) xs

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

map :: (a -> b) -> [a] -> [b]

map f xs = build (\ c n -> foldr (c . f) n xs)

Fig. 1. Combinators and functions for lists.

3.1 Short cut fusion for algebraic data types

Fortunately, fusion rules often make it possible to avoid the creation and manip-

ulation of intermediate structures. The foldr/build rule (Gill et al., 1993), for

example, capitalises on the uniform production of lists via build and the uniform

consumption of lists via foldr to optimise list-manipulating programs. Intuitively,

foldr c n xs produces a value by replacing all occurrences of (:) in xs by

c and the single occurrence of [] in xs by n. For instance, foldr (+) 0 xs

sums the (numeric) elements of the list xs. The function build, on the other

hand, takes as input a function g providing a type-independent template for

constructing “abstract” lists, and produces a corresponding “concrete” list. For

example, build (\c n -> c 3 (c 7 n)) produces the list [3,7]. The Haskell

definitions of foldr and build, as well as those of other list-processing functions

used in this paper, are given in Figure 1. The recursive combinator foldr is standard

in the Haskell prelude.

The foldr/build rule is the basis for short cut fusion.

Theorem 1 (Gill et al., 1993)

For every closed type t and closed function g :: forall b. (t -> b -> b) -> b

-> b,

foldr c n (build g) = g c n (1)

Here, type instantiation is performed silently, as in Haskell. When this law, considered

as a replacement rule oriented from left to right, is applied to a program, it yields a

new program which avoids constructing the intermediate list produced by build g

and immediately consumed by foldr c n in the original. Thus, if sum and map are

defined as in Figure 1, and if sqr x = x * x, then
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cataE :: (a -> b) -> (Int -> b) -> (Ops -> b -> b -> b) -> Expr a - > b

cataE v l o e = case e of

Var x -> v x

Lit i -> l i

Op op e1 e2 -> o op (cataE v l o e1) (cataE v l o e2)

buildE :: (forall b. (a -> b) -> (Int -> b) -> (Ops -> b -> b -> b) -> b) ->

Expr a

buildE g = g Var Lit Op

accum :: Expr a -> [a]

accum = cataE (\x -> [x]) (\i -> []) (\op -> (++))

mapE :: (a -> b) -> Expr a -> Expr b

mapE env e = buildE (\v l o -> cataE (v . env) l o e)

Fig. 2. Combinators and functions for expressions.

sumSqs :: [Int] -> Int

sumSqs xs = sum (map sqr xs)

= foldr (+) 0 (build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0

= foldr ((+) . sqr) 0 xs

No intermediate lists are produced by this version of sumSqs.

Transformations such as the above can be generalised to other data types. It is

well-known that every algebraic data type D has an associated cata combinator

and an associated build combinator. An algebraic data type is, intuitively, a fixed

point of a covariant functor which maps type variables to a type constructed using

sum, product, arrow, forall, and other algebraic data types defined over those type

variables – see Pitts (2000) for a formal definition. Algebraic data types can be

parameterised over multiple types, and can be mutually recursive, but not all types

definable using Haskell’s data mechanism are algebraic. Non-algebraic data types

include nested types and fixed points of mixed variance functors.

Operationally, the cata combinator for an algebraic data type D takes as input

appropriately typed replacement functions for each of D’s constructors and a data

element d of D. It replaces all (fully applied) occurrences of D’s constructors in d by

corresponding applications of their replacement functions. The build combinator for

an algebraic data type D takes as input a function g providing a type-independent

template for constructing “abstract” data structures from values. It instantiates

all (fully applied) occurrences of the abstract constructors which appear in g

with corresponding applications of the “concrete” constructors of D. Versions of

these combinators and related functions for the arithmetic expression data type of

Example 2 appear in Figure 2.

Compositions of data structure-consuming and -producing functions defined using

the cata and build combinators for an algebraic data type D can be fused via a
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cata/build rule for D. For example, the following rule for the data type Expr t is

a special case of rule (3) below.

Theorem 2 (Johann, 2002)

For every closed type t and closed function g :: forall b. (t -> b) -> (Int ->

b) -> (Ops -> b -> b -> b) -> b,

cataE v l o (buildE g) = g v l o (2)

Example 6

Let env :: a -> b be a renaming environment and let e be an expression. The

function

renameAccum :: (a -> b) -> Expr a -> [b]

accumulates variables of renamings of expressions, and can be defined modularly as

renameAccum env e = accum (mapE env e)

Using rule (2) and the definitions in Figure 2 we can derive the following optimised

version of renameAccum:

renameAccum env e

= cataE (\x -> [x]) (\i -> []) (\op -> (++))

(buildE (\v l o -> cataE (v . env) l o e))

= (\v l o -> cataE (v . env) l o e)

(\x -> [x]) (\i -> []) (\op -> (++))

= cataE ((\x -> [x]) . env) (\i -> []) (\op -> (++)) e

Unlike the original definition accum (mapE env e) of renameAccum env e, the

optimised version does not construct the renamed expression but instead accumulates

variables “on the fly” while renaming.

3.2 Short cut fusion for functors

In this section we recall that the least fixed point of every functor has an associated

cata/build rule and provide clean Haskell implementations of these rules. This

opens the way for an algebra of fusion, which allows us to define generic fusion rules

which are applicable to any data type, rather than only specific rules for specific

data types. Haskell’s Functor class, which represents type constructors supporting

map functions, is given by

class Functor f where

fmap :: (a -> b) -> f a -> f b

The function fmap is expected to satisfy the two semantic functor laws

fmap id = id

fmap (g . h) = fmap g . fmap h
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stating that fmap preserves identities and composition. Like the monad laws, the

functor laws are enforced by the programmer rather than by the compiler.

Given an arbitrary functor f we can implement its least fixed point and cata and

build combinators as follows:

newtype Muu f = Inn {unInn :: f (Muu f)}

cataf :: Functor f => (f a -> a) -> Muu f -> a

cataf h (Inn k) = h (fmap (cataf h) k)

buildf :: Functor f => (forall b. (f b -> b) -> b) -> Muu f

buildf g = g Inn

The definition of the type Muu f represents in Haskell the standard categorical

formulation of the initial algebra/least fixed point of f, while cataf represents the

unique mediating map from the initial algebra of f to any other f-algebra. For a

categorical semantics of build and the other combinators introduced in this paper

see Ghani et al. (2004, 2005). Generic cata combinators go back to Malcolm (1990).

But while generic build combinators are essentially given in Takano & Meijer

(1995), attention is restricted there to “functors whose operation on functions are

continuous.” By contrast, the build combinators defined above are entirely generic

over all instances of Haskell’s functor class. Moreover, all previously known build

combinators for specific types are instances of these. We call a type of the form

Muu f for an instance f of the Functor class an inductive data type, and we call an

element of an inductive data type an inductive data structure. By definition, every

algebraic data type is an inductive data type.

Example 7

The algebraic data type Expr a in Example 2 is Muu (E a) for the functor E a

defined by

data E a b = V a | L Int | O Ops b b

instance Functor (E a) where

fmap k (V x) = V x

fmap k (L i) = L i

fmap k (O op e1 e2) = O op (k e1) (k e2)

The combinators cataE and buildE from Figure 2 can be obtained by first

instantiating the above generic definitions of cataf and buildf for f = E a, and

then using standard type isomorphisms to unbundle the type arguments to the

functor (and guide the case analysis performed by cataf). Unbundling allows us

to treat the single argument h :: E a b -> b to the instantiation of cataf as a

curried triple of “constructor replacement functions” v :: a -> b, l :: Int -> b,

and o :: Ops -> b -> b -> b, and to give these three functions, rather than the

isomorphic “bundled” function h, as arguments to cataf. Unbundling is not in any

sense necessary; its sole purpose is to allow the instantiation to take a form more
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familiar to functional programmers. Similar remarks apply at several places below,

and unbundling is performed without comment henceforth.

Instantiating f to E a we have

cataf h (Inn e)

= h (fmap (cataf h) e)

= h (case e of V x -> V x

L i -> L i

O op e1 e2 -> O op (cataf h e1) (cataf h e2))

= case e of V x -> h (V x)

L i -> h (L i)

O op e1 e2 -> h (O op (cataf h e1) (cataf h e2))

= case e of V x -> v x

L i -> l i

O op e1 e2 -> o op (cataf v l o e1) (cataf v l o e2)

Apart from the names of the constructors, this is precisely the definition of cataE

from Figure 2. We similarly have that

buildf g = g Inn

Since the type of g is forall b. (E a b -> b) -> b, the term argument to

g can be considered a bundled triple of replacement functions v :: a -> b,

l :: Int -> b, and o :: Ops -> b -> b -> b. In particular, since the bundled

triple representation of Inn comprises Var, Lit, and Op, we have

buildf g = g Var Lit Op

precisely as in Figure 2.

Example 8

The data type IntIO i o a of interactive input/output computations in Example 5

is Muu (K i o a) for the functor K i o a defined by

data K i o a b = Vk a | Ik (i -> b) | Ok (o,b)

instance Functor (K i o a) where

fmap k (Vk x) = Vk x

fmap k (Ik h) = Ik (k . h)

fmap k (Ok (y,z)) = Ok (o, k z)

We can obtain cata and build combinators for K i o a by instantiating the generic

definitions of cataf and buildf for f = K i o a. Writing f for K i o a gives

cataf :: (a -> b) -> ((i -> b) -> b) -> ((o,b) -> b)

-> IntIO i o a -> b

cataf v p q k = case k of Val x -> v x

Inp h -> p (cataf v p q . h)

Outp (y,z) -> q (y, cataf v p q z)
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buildf :: (forall b. (a -> b) -> ((i -> b) -> b) ->

((o,b) -> b) -> b) -> IntIO i o a

buildf g = g Val Inp Outp

Pleasingly, our generic cata and build combinators for any functor f can be used

to eliminate inductive data structures of type Muu f from computations. For every

functor f, and every closed function g of closed type forall b. (f b -> b) -> b,

we can generalise rules (1) and (2) to the following cata/build rule for f:

Theorem 3 (Ghani et al., 2004, 2005)

For every functor f and every closed function g of closed type forall b.(f b -> b)

-> b,

cataf h (buildf g) = g h (3)

3.3 An algebra of fusion

In Section 3.1 we saw how the foldr/build rule can be used to eliminate from

sumSqs the intermediate list produced by map and consumed by sum. In Example 6,

we saw how the cata/build rule for expressions can be used to eliminate from

renameAccum the intermediate expression produced by mapE and consumed by

accum. Since modularly constructed programs often use catas to consume data

structures produced by maps, it is convenient to derive a generic cata/map fusion

rule that can be instantiated at different types, rather than having to invent a new

such rule for each data type. We now show that the build combinators make

it possible to derive both cata/map and map/build rules, and thus illustrate the

“algebra of fusion” idea introduced in the opening paragraph of the previous

subsection.

Clearly, we cannot define cata/map and map/build rules for arbitrary func-

tors. To see this, note that the key step for doing this is writing the function

fmap :: (a -> b) -> f a -> f b for the functor f in question as buildf applied

to a function which constructs its body using cataf, i.e., as an expression of the form

buildf (\k -> cataf h x) for some function h involving k. Unfortunately, this is

not possible in general, as even the types of cataf and buildf, which consume and

produce structures of type Muu f rather than of f itself, suggest.

We can, however, define cata/map and map/build rules for functors which arise

as fixed points of bifunctors. A bifunctor is a functor in two variables. In Haskell,

we have

class BiFunctor bf where

bmap :: (a -> b) -> (c -> d) -> bf a c -> bf b d

with bmap satisfying the semantic conditions

bmap id id = id

bmap (f . g) (h . k) = bmap f h . bmap g k

If bf is a bifunctor with mapping function bmap then, for every type a, bf a is

a functor with fmap = bmap id, and the type Muu (bf a) is well-defined. If we
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define the type constructor Mu bf by Mu bf a = Muu (bf a) then, by inlining the

definition of Muu in that of Mu bf, we see that Mu bf is a functor and its cata and

build combinators can be represented in Haskell as

newtype Mu bf a = In {unIn :: bf a (Mu bf a)}

cataMubf :: BiFunctor bf => (bf a c -> c) -> Mu bf a -> c

cataMubf h (In k) = h (bmap id (cataMubf h) k)

buildMubf :: (forall c. (bf a c -> c) -> c) -> Mu bf a

buildMubf g = g In

Here, we have written cataMubf and buildMubf rather than cata(Mu bf a) and

build(Mu bf a), respectively. Suppressing reference to the type a is reasonable

because the definitions of the build and cata combinators for Mu bf a are uniform

in a. We have the following analogue of rule (3) for bifunctors:

Theorem 4 (Ghani et al., 2004, 2005)

For every bifunctor bf,

cataMubf h (buildMubf g) = g h (4)

If bf is a bifunctor, then Mu bf is a functor. Indeed, we can define an fmap

operation with type

fmap :: (a -> b) -> Mu bf a -> Mu bf b

by

instance BiFunctor bf => Functor (Mu bf) where

fmap f x = buildMubf (\k -> cataMubf (k . bmap f id) x)

Note that this definition of fmap has the same form as the definitions of map and

mapE in Figures 1 and 2. In fact, those definitions of map and mapE are instances of

this definition of fmap for the standard list bifunctor L a b = N | C a b and the

bifunctor E from Example 7, respectively.

Example 9

Using the above definition of fmap together with rule (4), we can derive, for every

bifunctor bf with f = Mu bf, the cata/map and map/build fusion rules

cataMubf k (fmap f x) = cataMubf (k . bmap f id) x

and

fmap f (buildMubf g) = buildMubf (\k -> g (k . bmap f id))

The left-hand side expression in the first rule above constructs an intermediate data

structure via fmap and then immediately consumes it with a call to cataMubf. The

optimised final expression avoids this. In the second fusion rule, the right-hand side

expression is a call to buildMubf, making further fusions possible. Developing an
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“algebra of fusion” incorporating generic rules such as these is an exciting possibility,

since it extends the standard notion of an algebra of programs based around generic

catas to include generic builds and generalised short cut fusion laws.

Finally, we can use short cut fusion as a potential proof technique. For example,

using the above definitions, one can prove that fmap obeys the laws of the functor

class. In particular, we can see that fmap preserves composition as follows:

fmap f (fmap g x)

= fmap f (buildMubf (\h -> cataMubf (h . bmap g id) x))

= buildMubf (\k -> (\h -> cataMubf (h. bmap g id) x) (k. bmap f id))

= buildMubf (\k -> cataMubf (k . bmap f id . bmap g id) x)

= buildMubf (\k -> cataMubf (k . bmap (f . g) id) x)

= fmap (f . g) x

4 Augment

The instance of buildE used in mapE in Figure 2 can be thought of as constructing

particularly simple substitution instances of expressions. It replaces data of type a

associated with the non-recursive constructor Var by new data of type b, but not

with arbitrary expressions of type Expr b. Thus, as demonstrated above, the process

of mapping over an expression and then accumulating variables in the resulting

expression is well-suited for optimisation via the cata/build rule for expressions.

Although it is possible to use buildE to construct more general substitution

instances of expressions which replace data (e.g., of type a in the above example)

with arbitrary expressions (e.g., of type Expr b) – and, more generally, to use build

combinators to construct general substitution instances of structures of inductive

data types – the build representations of these more robust substitution instances are

inefficient. The problem is that extra consumptions must be introduced to process the

subexpressions introduced by the substitution. Unfortunately, subsequent removal

of such consumptions via fusion cannot be guaranteed, as was originally shown in

Gill (1996) and as we now illustrate.

Suppose, for example, that we want to write a substitution function for expressions

of type Expr a in terms of buildE and cataE. It is tempting to write

badSub :: (a -> Expr a) -> Expr a -> Expr a

badSub env e = buildE (\v l o -> cataE env l o e)

but the expression on the right-hand side is ill-typed: env has type a -> Expr a,

while buildE requires cataE’s replacement for Var to be of the more general type

a -> b for some type variable b. The difficulty here is that the constructors in

the expressions introduced by env are part of the result of badSub, but they are

not properly abstracted by buildE. More generally, the argument g to buildE

must abstract all of the concrete constructors that appear in the data structure it

produces, not just the top-level ones contributed by g itself. To achieve this, extra

consumptions using cataE are required:
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goodSub :: (a -> Expr a) -> Expr a -> Expr a

goodSub env e = buildE (\v l o -> cataE ((cataE v l o) . env) l o e)

The function goodSub is well-suited for composition with a consuming cata. But if

the expression produced by goodSub is not immediately consumed by a cata, so that

no fusion is possible, then as noted above this definition of goodSub is inefficient.

In the literature, eliminating such extra consumptions has been addressed by the

introduction of more general augment combinators. The augment combinator for

lists was introduced in Gill (1996) and appears in Figure 1. Analogues for arbitrary

algebraic data types are given in Johann (2002); the augment combinator given

there for the data type Expr a, for example, is

augE:: (forall b. (a -> b) -> (Int -> b) -> (Op -> b -> b -> b) -> b)

-> (a -> Expr a) -> Expr a

augE g v = g v Lit Op

Note that the type of augE is more restrictive than that of the augment combinator

augmentE developed in this paper; see Example 17 below. Using augE we can express

substitution for expressions as

sub :: (a -> Expr a) -> Expr a -> Expr a

sub env e = augE (\v l o -> cataE v l o e) env

The augE combinator offers more than a nice means of expressing substitution,

however. When expression-producing functions are written in terms of augE and

are composed with expression-consuming functions written in terms of cataE,

a cata/augment fusion rule generalising the cata/build rule for expressions

can eliminate the intermediate data structure produced by augE. This rule states

that

Theorem 5 (Johann, 2002)

For every closed type t and every closed function g :: forall b. (t -> b) ->

(Int -> b) -> (Ops -> b -> b -> b) -> b,

cataE v l o (augE g f) = g (cataE v l o . f) l o (5)

Example 10

Inlining the augE form of sub above and the cataE form of accum from Figure 2,

and then applying the above rule, eliminates the intermediate expression in

substAccum :: (a -> Expr a) -> Expr a -> [a]

substAccum env e = accum (sub env e)

to give

substAccum env e = cataE (accum . env) (\i -> []) (\op -> (++)) e

This example generalises Example 6, since renaming is a special case of substitution.
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Note that augment combinators are derived only for algebraic data types in

Johann (2002). In Section 5 the combinators of Johann (2002) are generalised

to give augment combinators, and analogues of the cata/augment rule (5), for

non-algebraic inductive data types as well. The precise relationship between these

combinators and those of Johann (2002) is discussed in Section 4.5 below, where we

show how the latter can be derived from the former.

4.1 Introducing monadic augment

We have seen that a build combinator can be defined for any functor. A natural

question raised by the discussion in the previous section is thus: For how general a

range of functors can augment combinators be defined?

The essence of augment is to extend build by allowing data structure-producing

functions to take as input additional replacement functions. In Gill (1996), the

append function (++) is the motivating example, and the replacement function

argument to the augment combinator for lists replaces the empty list occurring at

the end of the first input list to (++) with the second input list. Similar combinators

are defined for arbitrary algebraic types in Johann (2002). There, each constructor

of an algebraic data type is designated either recursive or non-recursive, and the

augment combinator for each algebraic data type allows the replacement of data

stored at the non-recursive constructors with arbitrary elements of that data type.

(See Section 4.5.)

A different approach is taken in Ghani et al. (2004, 2005). Those papers start

from Johann’s observation that each augment combinator extends the corres-

ponding build combinator with a function which replaces data/values by struc-

tures/computations. However, they go further and note that the essence of monadic

computation is precisely a well-behaved notion of such replacement. We see these

observations as evidence that the augment combinators are inherently monadic in

nature. Moreover, as discussed at the end of Section 4.3, the augment combinators

bear relationships to their corresponding build combinators similar to those that

the bind operations bear to their corresponding fmaps. That is, both build and

fmap support the replacement of data by data, while augment and bind allow the

replacement of data by structures. Of course, augment and bind are defined for

monads, while build and fmap are defined for functors.

This theoretical insight offers practical dividends. As we illustrate below, it

allows in Ghani et al. (2004, 2005) the definition of augment combinators and

cata/augment rules for data types for which these combinators and rules were

not previously known to exist. It also allows the definition of more expressive

augment combinators, and more general cata/augment rules, than those known

before. Example 11 gives an example of a data type for which the former is possible,

and Example 12 gives an example of a data type for which the latter is possible.

Example 11

The data type

data Rose a = Node a [Rose a]
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of rose trees has no non-recursive constructors. The associated augment combinator

of Johann (2002) therefore does not allow the replacement of data of type a with

rose trees, and so is trivial. But we will see in Section 4.3 that Rose is a monad, and

thus that the nontrivial augment combinator for Rose defined in this paper does

allow such replacements. In fact, it allows the replacement of data of type a with

structures of type Rose b for any given b.

Example 12

The data type

data Tree a b = Node (Tree a b) a (Tree a b) | Leaf b

has one non-recursive constructor storing data of type b. The associated augment

combinator of Johann (2002) therefore allows replacement functions of type b ->

Tree a b. But since Tree a is also a monad, the augment combinator defined in

this paper supports replacement functions of the more general type b -> Tree a c.

4.2 Parameterised monads

We have argued above that the essence of an augment combinator is to extend its

corresponding build combinator with replacement functions mapping data/values

to structures/computations. The types of the structures produced by augment

combinators must therefore be of the form m a for some monad m. But if we want

to be able to consume with catas the monadic structures produced by augment

combinators, then we must restrict our attention to those monads m for which cata

combinators can be defined. This is possible provided m is an inductive monad.

One way to specify inductive monads uniformly is to focus on monads of the

form m a = Mu bf a for a bifunctor bf. As we have seen, Mu bf is a functor, but it

is clear that Mu bf is not, in general, a monad. For instance, the data type Tree a b

from Example 12 can be written as

Tree a b = Mu (T b) a

where

data T b a c = N c a c | L b

i.e., as Mu (T b) a for the bifunctor T b. Yet Tree a b, i.e., Mu (T b) a, is not

a monad in a, since it does not admit a substitution function Tree a b -> (a

-> Tree c b) -> Tree c b. Defining such a function would entail constructing

new trees from old ones by replacing each internal node in a given tree by a new

tree. Since there is no way to do this, we see that T b is an example of a bifunctor

whose fixed point is not a monad. On the other hand, Tree a b can also be realised

as Mu (T’ a) b for the bifunctor T’ a given by

data T’ a b c = N’ c a c | L’ b

Since this fixed point is indeed monadic in b, we see that the same data type can be

represented as the fixed point of more than one bifunctor. Moreover, one bifunctor

for a given type may have a fixed point which is monadic, while another may not. In
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light of the existence of bifunctors, such as T b, whose fixed points are not monadic,

it is quite satisfying to find elegant conditions on bf which guarantee that Mu bf is

indeed a monad.

Such conditions can be defined using the notion of a parameterised monad (Uustalu,

2003). Parameterised monads are represented in Haskell via the following type class:

class PMonad pm where

preturn :: a -> pm a c

(>>!) :: pm a c -> (a -> pm b c) -> pm b c

pmap :: (c -> d) -> pm a c -> pm a d

The operations preturn, >>!, and pmap are expected to satisfy the following five

parameterised monad laws:

>>! preturn = id

(>>! g) . preturn = g

>>! ((>>! g) . j) = (>>! g) . (>>! j)

pmap g . preturn = preturn

pmap g . (>>! j) = (>>! (pmap g . j)) . pmap g

Thus a parameterised monad is just a type-indexed family of monads. That is, for

each type c, the map pm’ c sending a type a to pm a c is the monad whose return

operation is given by preturn, and whose bind operation is given by >>!. Note how

the first three parameterised monad laws ensure this. Moreover, the fact that pm’ c

is a monad uniformly in c is expressed by requiring the operation pmap to be such

that every map g :: c -> d lifts to a map pmap g between the monads pm’ c and

pm’ d. This is ensured by the last two parameterised monad laws. Intuitively, we

think of >>! as replacing, according to its second argument, the non-recursive data

of type a in structures of type pm a c, and of pmap as modifying, according to its

first argument, the recursively defined substructures of structures of type pm a c to

give corresponding structures of type pm a d. As for the monad and functor laws,

the compiler does not check that the operations of a parameterised monad satisfy

the required semantic conditions.

Giving the arguments to pm in the order specified in the class declaration for

parameterised monads ensures that Mu pm is a monad. Changing the order of the

arguments to pm is, of course, possible, but this would make our definition of a

parameterised monad differ from that in Uustalu (2003), and would entail the added

complication that Mu be redefined to compute the fixed point over the first variable

of a bifunctor (rather than the second). The latter would make computing with Mu

counterintuitive, as well as notationally more cumbersome.

Note that a parameterised monad is a special form of bifunctor with pmap, >>!,

and preturn implementing the required bmap operation:

instance PMonad pm => BiFunctor pm where

bmap f g x = (pmap g x) >>! (preturn . f)

It is not difficult to check that the semantic restrictions associated with the BiFunctor

class are satisfied.
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There are many parameterised monads commonly occurring in functional pro-

gramming. To illustrate, we first show that the expression language Expr a from

Example 2 is generated by a parameterised monad. We then give three different

mechanisms for constructing parameterised monads and, for each, give a widely

used example of a parameterised monad constructed using that mechanism.

Example 13

We can derive expression monads from parameterised monads as follows. If

data E a b = V a | L Int | O Ops b b

as in Example 7, then E is a parameterised monad with operations given as follows,

and Expr a = Mu E a.

instance PMonad E where

preturn = V

V x >>! h = h x

L i >>! h = L i

O op e1 e2 >>! h = O op e1 e2

pmap g (V x) = V x

pmap g (L i) = L i

pmap g (O op e1 e2) = O op (g e1) (g e2)

These definitions of preturn, >>!, and pmap are easily seen to satisfy the semantic

restrictions associated with the PMonad class. Similar comments apply for the class

instances of PMonad appearing below.

Example 14

If f is any functor, then the following defines a parameterised monad:

data SumFunc f a b = ValS a | Con (f b)

instance Functor f => PMonad (SumFunc f) where

preturn = ValS

ValS x >>! h = h x

Con y >>! h = Con y

pmap g (ValS x) = ValS x

pmap g (Con y) = Con (fmap g y)

The name SumFunc reflects the fact that SumFunc f a is the sum of the functor

f and the constantly a-valued functor. The data type Expr a from Example 2 is

essentially (i.e., ignoring constructors induced by the “extra” lifting implicit in the

data declaration for F b ) Mu (SumFunc F) a for

data F b = Lit Int | Op Ops b b

Similarly, the data type IntIO i o a of interactive input/output computations from

Example 5 is (essentially) Mu (SumFunc f) a for f = K’ i o where

data K’ i o b = I (i -> b) | O (o,b)
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A parameterised monad of the form SumFunc f constructs monads with a tree-

like structure in which data is stored at the leaves. We can instead consider

monads with a tree-like structure in which data is stored at the nodes, i.e., in

the recursive constructors. These are induced by parameterised monads of the form

ProdFunc f a b = Node a (f b). Because the >>! operation of a parameterised

monad must replace (internal) tree nodes with other trees, the branching structure

of such trees must form a monoid. We therefore restrict attention to “structure

functors” f such that, for each type t, the type f t forms a monoid. This restriction

is captured in the following Haskell type class definition:

class Functor f => FunctorPlus f where

zero :: f a

plus :: f a -> f a -> f a

The programmer is expected to verify that the operations zero and plus form a

monoid on f a, i.e., that they satisfy the laws

plus x zero = x

plus zero x = x

plus (plus x n) k = plus x (plus n k)

Example 15

The following defines a parameterised monad:

newtype ProdFunc f a b = Node a (f b)

instance FunctorPlus f => PMonad (ProdFunc f) where

preturn x = Node x zero

Node x t >>! k = let Node y s = k x in Node y (plus t s)

pmap g (Node x t) = Node x (fmap g t)

Both plus s t and plus t s are possible in the definition of >>! above, and these

two choices give rise to different parameterised monads.

A commonly occurring data type which is the least fixed point of a parameterised

monad of the form ProdFunc f is the data type of rose trees from Example 11.

Indeed, the data type Rose is Mu (ProdFunc []) where [] is the standard list

functor and

instance FunctorPlus [] where

zero = []

plus = (++)

The use of plus t s in the definition of >>! entails that new trees are put to the

right of old trees. If >>! were instead defined in using plus s t, then new trees

would be put to the left of old ones.

Our final example of a general mechanism for generating parameterised monads

concerns a generalisation of hyperfunctions (Launchbury et al., 2000). Here, we start

with a contravariant “structure functor”, i.e., with a functor in the class
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class ContraFunctor f where

cfmap :: (a -> b) -> f b -> f a

Example 16

If f is a contravariant functor, then the following defines a parameterised monad:

newtype H f a b = H {unH :: f b -> a}

instance ContraFunctor f => PMonad (H f) where

preturn x = H (\k -> x)

H h >>! g = H (\k -> unH (g (h k)) k)

pmap g (H h) = H (\k -> h (cfmap g k))

An example of a data type which arises as the least fixed point of a parameterised

monad of the form H f is the data type of hyperfunctions with argument type e

and result type a:

newtype Hyp e a = Hyp {unHyp :: (Hyp e a -> e) -> a}

Indeed, Hyp e is Mu (H f) for the contravariant functor f b = b -> e. This example

shows that the data types induced by parameterised monads go well beyond those

induced by polynomial functors, and include exotic and sophisticated examples

which arise in functional programming.

We now turn our attention to showing that every parameterised monad has an

augment combinator and an associated cata/augment fusion rule. This will allow

us to see that every least fixed point of a parameterised monad is a monad by

writing the required bind operation for the least fixed point in terms of the augment

combinator for the parameterised monad whose least fixed point it is. That this can

be done is very important and we will return to it in the next section. We will also

show there that we can write augment combinators in terms of their corresponding

binds, and thus that augment combinators really are monadic in nature.

4.3 Augment for parameterised monads

In this section we give the definitions from Ghani et al. (2004, 2005) of an augment

combinator for each parameterised monad bf, and a cata/augment fusion rule for

what we will see below is the monad Mu bf. These definitions are entirely generic,

and extend the definitions of the augment combinators from Johann (2002) to

non-algebraic inductive data types of the form Mu bf t.

Recall that every parameterised monad is a bifunctor. If bf is a parameterised

monad then an augment combinator can be defined for it by

augmentbf :: PMonad bf => (forall c. (bf a c -> c) -> c)

-> (a -> Mu bf b) -> Mu bf b

augmentbf g k = g (In . (>>! (unIn . k)))

Here, (>>! (unIn . k)) is the right-sectioning of >>! with (unIn . k), i.e., is

the application of the infix operator >>! to its second argument. The function
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(In . (>>! (unIn . k))) thus returns (In (x >>! (unIn . k)) on input x.

Recalling that >>! acts as a generalised substitution operation (and ignoring the

isomporhisms In and unIn), we see that (In (x >>! (unIn . k)) essentially

replaces, according to k, the non-recursive data of type a in the structure x with

structures of type Mu bf b. The entire expression g (In . (>>! (unIn . k)))

thus applies the template g :: forall c. (bf a c -> c) -> c for constructing

“abstract” parameterised monadic structures to this specific replacement function.

Moreover, we can now see that augmentbf generalises buildMubf to allow an extra

input k :: a -> Mu bf b which is used to replace data of type a in the structure

generated by g with structures of type Mu bf b. Of course, buildMubf leaves data

of type a unchanged. Note that a -> Mu bf b is the type of a Kleisli arrow for

what we will see below is the monad Mu bf. It is the augment combinators’ ability

to consume Kleisli arrows – mirroring the bind operations’ ability to do so – that

precisely locates augment as a monadic concept. Indeed, as we now show, the bind

operation for Mu bf can be written in terms of the augment combinator for bf.

We have already observed that if bf is a bifunctor then Mu bf is a functor. But

if bf satisfies the stronger criteria on bifunctors necessary to ensure that it is a

parameterised monad, then Mu bf is actually an inductive monad. The relationship

between a parameterised monad bf and the induced monad Mu bf is captured in

the Haskell instance declaration

instance PMonad bf => Monad (Mu bf) where

return x = In (preturn x)

x >>= k = augmentbf g k where g h = cataMubf h x

Although not stated explicitly, this instance declaration entails that if bf satisfies

the semantic laws for a parameterised monad, then Mu bf is guaranteed to satisfy

the semantic laws for monads. Moreover, while Mu bf may support more than one

choice for monadic return and bind operations, the above instance declaration

uniquely determines a choice of monadic operations for Mu bf which respect the

structure of the underlying parameterised monad bf. By analogy with the situation

for inductive data types, we call a type of the form Mu bf a which is induced by a

parameterised monad bf in this way a parameterised monadic data type. Further, we

call an element of a parameterised monadic data type a parameterised monadic data

structure.

We now consider the relationship between augment, build, and bind. We have

seen above that the bind operation for the least fixed point of a parameterised monad

can be defined in terms of the associated augment combinator. It is also known that

the build combinators for specific data types can be defined as specialisations of

the augment combinators for those types, e.g., build g = augment g [] for lists.

The generic definitions given above allow us to show that this holds in general.

Using (4), we have

Theorem 6 (Ghani et al., 2004, 2005)

For every parameterised monad bf,

buildMubf g >>= k = augmentbf g k (6)
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Setting k = return and using the monad laws, we see that buildMubf is definable

from augmentbf, i.e., that

Corollary 1

For every parameterised monad bf,

buildMubf g = augmentbf g return

It is a well-known consequence of the monad laws that, for every monad m, the

equation fmap k = >>= (return . k) holds. Equation (6) thus shows that the

implementation of buildMubf in terms of augmentbf is similar to that of fmap in

terms of bind.

As already noted, equation (6) shows how augment combinators for parameterised

monads can be defined in terms of the bind operations for the monads which are

their fixed points. But since the bind operations for monads which are fixed points

of parameterised monads are defined in terms of the augment combinators for those

parameterised monads, equation (6) actually establishes that bind operations and

augment combinators are interdefinable. This observation provides support for our

assertion that the augment combinators are monadic by demonstrating that they

are interdefinable with, and hence are essentially optimisable forms of, the bind

operations for their associated monads. Equation (6) is very elegant indeed!

4.4 Examples

Examples of the monads and augment combinators derived from the parameterised

monads E, SumFunc (K’ i o), ProdFunc [], and H f for f b = b -> e from

Examples 13 through 16 appear below. In the interest of completeness we give the

correspondence between the generic combinators derived from the definition based

on parameterised monads and the specific combinators given for the expression

language in Example 2. The monadic interpretation of our augment combinators

makes it possible to generalise those of Johann (2002), which allow replacement only

of data stored in the non-recursive constructors of data types, to allow replacement

of data stored in recursive constructors of data types as well (see Example 19). It

also makes it possible to go well beyond algebraic data types, as is illustrated in

Example 20.

Example 17

If E is the parameterised monad from Example 13, then the monad induced by E is

the expression monad Expr from Example 2, whose return and bind operations are

defined below. Instantiating the generic definitions of the cataMubf and buildMubf

combinators for E, and then simplifying the results, gives the definitions in Figure 2,

while instantiating the generic definition of augmentbf and simplifying the result

gives
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augmentE :: (forall b. (a -> b) -> (Int -> b) ->

Ops -> b -> b -> b) -> b) ->

(a -> Expr c) -> Expr c

augmentE g v = g v Lit Op

See Appendix A for details. Using the above definitions, we can also instantiate the

generic derivations of the monad operations for Expr a from the operations for

the underlying parameterised monad E. The results coincide with the definitions in

Example 2:

return x = In (preturn x) = In (V x) = Var x

e >>= k = augmentE g k where g h l o = cataE h l o e

= g k Lit Op where g h l o = cataE h l o e

= cataE k Lit Op e

Example 18

If bf = SumFunc (K’ i o) is the parameterised monad from Example 14, then

the monad induced by bf is (essentially) the monad IntIO i o of interactive

input/output computations from Example 8. Instantiating the generic definitions

of the cataMubf, buildMubf, and augmentbf combinators for this choice of

parameterised monad bf, and then simplifying the results, yields the definitions

for cataf and buildf from Example 8, as well as

augmentbf :: (forall c. (a -> c) -> ((i -> c) -> c) ->

((b,c) -> c) -> c) -> (a -> IntIO i o b) -> IntIO i o b

augmentbf g k = g k Inp Outp

Using the above definitions, we can also instantiate the generic derivations of

the monad operations for IntIO i o from the operations for the underlying

parameterised monad bf. This gives

return x = Val x

intio >>= k = cataMubf k Inp Outp intio

Example 19

If bf = ProdFunc [] is the parameterised monad from Example 15, then the

monad induced by bf is that of rose trees from Example 11. Instantiating the generic

definitions of the cataMubf, buildMubf, and augmentbf combinators for

this choice of parameterised monad bf, and then simplifying the results,

gives

cataMubf :: (a -> [b] -> b) -> Rose a -> b

cataMubf n (Node x tas) = n x (map (cataMubf n) tas)

buildMubf :: (forall b. (a -> [b] -> b) -> b) -> Rose a

buildMubf g = g Node

augmentbf :: (forall c. (a -> [c] -> c) -> c) ->

(a -> Rose b) -> Rose b

augmentbf g k = g (\x t -> let Node y s = k x in Node y (t ++ s))
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As noted above, the appearance of t ++ s, rather than s ++ t, in the definition of

augmentbf is forced by the appearance of plus t s rather than plus s t in the

definition of the operation >>! for the parameterised monad bf given in Example 15.

The above cata and build combinators coincide with those in Peyton Jones et al.

(2002) and in Johann (2002). But, unlike the augment combinator in Johann (2002),

the augment combinator defined above allows replacement at “inner nodes” of rose

trees, i.e., allows replacements of data of type a with structures of type Rose b

for any b. The paper by Peyton Jones et al. (2001) does not contain an augment

combinator for rose trees.

Using the above definitions, we can also instantiate the generic derivations of the

monad operations for Rose from the operations for the underlying parameterised

monad bf. This gives

return x = Node x []

t >>= k = cataMubf (\x ts -> let Node y s = k x

in Node y (ts ++ s)) t

Example 20

If bf = H f with f b = b -> e is the parameterised monad from Example 16, then

the monad induced by bf is that of hyperfunctions given there. Instantiating the

generic definitions of the cataMubf, buildMubf, and augmentbf combinators for

this choice of parameterised monad bf, and then simplifying the results, gives

cataMubf :: ((b -> e) -> a) -> b) -> Hyp e a -> a

cataMubf h (Hyp k) = h (\g -> k (g . cataMubf h))

buildMubf :: (forall b. (((b -> e) -> a) -> b) -> b) -> Hyp e a

buildMubf g = g Hyp

augmentbf :: (forall b. (((b -> e) -> a) -> b) -> b)

-> (a -> Hyp e c) -> Hyp e c

augmentbf g k = g (\u -> Hyp (\f -> unHyp (k (u f)) f))

Using the above definitions, we can also instantiate the generic derivations of the

monad operations for Hyp e from the operations for the underlying parameterised

monad bf. This gives

return x = Hyp (\k -> x)

(Hyp h) >>= k = Hyp (\f -> unHyp (k (h (f . (>>= k)))) f)

4.5 Representing algebraic augment

In addition to providing (nontrivial) augment combinators for rose trees and other

types which were not previously known to have them, the results of Ghani et al.

(2004, 2005) also generalise the augment combinators of Johann (2002). At first

glance this does not appear to be the case, however, since the augment combinators

from Johann (2002) are derived for all algebraic data types, while the ones in Ghani

et al. (2004, 2005) are derived for types of the form Mu bf a where bf is a
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parameterised monad. Surely, one thinks, there are more algebraic types than

inductive monads arising as least fixed points of parameterised monads.

The key to resolving this apparent conundrum is the observation that, for each

algebraic data type, we can form a parameterised monad by bundling together all

the data associated with the non-recursive constructors of the algebraic type and

treating the result as a value, i.e., as the (single) parameter of a parameterised monad.

The augment combinator for the parameterised monad obtained in this way will

allow replacement of these values, thereby achieving the expressiveness of Johann’s

augment combinators for the original algebraic data type. We do not provide

a full treatment of this observation, but instead illustrate it with two examples,

namely Gill’s augment combinator for lists and Johann’s augment combinator for

expressions.

The list monad is not of the form Mu bf for any parameterised monad bf. In

particular, although the type [a] can be viewed as Mu L a for the standard list

bifunctor

data L a b = N | C a b

L cannot be endowed with parameterised monadic structure. As a result, the

construction captured in the instance declaration in Section 4.3 cannot be used

to impose a monadic structure on Mu L a. We can, however, see the list monad as

a particular instance of a fixed point of a parameterised monad. If we define

data L a e b = V e | C a b

then, for each type a, the type L a is a parameterised monad. The data type

L’ a e = Mu (L a) e can be thought of as representing lists of elements of type a

that end with elements of type e, rather than with the empty list. We therefore have

that [a] = L’ a (), where () is the one element type. The augment combinator

for this parameterised monad can take as input a replacement function of type

() -> L’ a (), i.e., can take as input another list of type a. This gives precisely the

functionality of Gill’s augment combinator for lists. Note the key step of generalising

the non-recursive constructor [] of lists to variables.

Johann’s augment combinator for expressions allows the replacement of both

variables and literals with other expressions. By contrast, the augment combinator

of Ghani et al. (2004, 2005) for the expression data type allows only the replacement

of variables with other expressions. However, the same approach used to derive

the standard augment combinator for lists works here as well. If we define the

parameterised monad

data Ex a b = Op op b b | Var a

then the type Expr a is Mu Ex (Plus a) where

data Plus a = Left a | Right Int

Here, any occurrences of the constructor Left can be thought of as the true variables

of Expr a, while any occurrences of the constructor Right can be thought of as its

literals.
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The augment combinator for Ex can take as input replacement functions of type

Plus t -> Mu Ex (Plus u), which replace both the literals and true variables with

expressions of type Expr u. This augment combinator is actually more general than

the one in Johann (2002), which forces the type of the variables being replaced

to be the same as that of the variables occurring in the replacement expressions.

This extra generality, while appearing small, is actually very useful in practice, e.g.,

in implementing map functions using augment. Once again, the key step in the

derivation here is the treatment of the non-recursive constructors as variables in the

parameterised monad. In general, however, it is an open question whether or not it

is possible, for an arbitrary given data type, to find a parameterised monad whose

fixed point can be specialised to give precisely that type.

Although Johann’s augment combinators can be derived from our monadic ones,

the distinction between recursive and non-recursive constructors may be more

intuitive for many programmers than the monadic distinction between values and

computations. Of course, when augment combinators based on both distinctions are

available, the programmer is free to choose between them. But a monadic augment

may be available even if an algebraic one is not.

5 Generalised short cut fusion

We have seen that parameterised monads are particularly well-behaved, in the sense

that their least fixed points are inductive monads which support cata, build, and

augment combinators. In this section we give the generic cata/augment fusion

rule from Ghani et al. (2004, 2005), and note that it can be specialised for each

parameterised monad. This rule generalises the cata/augment rules for lists and

expressions discussed in Section 4, as well as the ones in Johann (2002).

Theorem 7 (Ghani et al., 2005)

For every parameterised monad bf,

cataMubf h (augmentbf g k) (7)

= g (h . ((>>! (pmap (cataMubf h)) . unIn . k)))

The correctness, and indeed the derivation, of this rule is based on a categorical

interpretation of the augment combinators which reduces correctness to paramet-

ricity; see Ghani et al. (2004, 2005) for details. As with the generic cata/build

rules (3) and (4) from Section 3.2, the right-hand side of this rule is an application of

the abstract template g, but now the extra replacement function k must be blended

into the algebra h. The argument to g does this by first constructing the function

(pmap (cataMubf h)) . unIn . k, and then constructing the right-sectioning of

>>! with this function. The result can be understood intuitively as follows. If

h :: bf b d -> d

g :: forall c. (bf a c -> c) -> c

k :: a -> Mu bf b
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so that augmentbf g k produces a structure of type Mu bf b, then the right-

sectioning (pmap (cataMubf h)) applies cataMubf h to the recursively defined

substructures of type Mu bf b in the result, of type bf b (Mu bf b), returned

by unIn . k. The right-sectioning (>>! (pmap (cataMubf h)) . unIn . k) can

thus be thought of as replacing, according to k, the nonrecursive data of type a in

a structure of type bf a d with structures of type Mu bf b, and then converting

the result into a corresponding structure of type bf b d. The composition of this

function with h results in a function which produces from the structure of type

bf a d the final result of type d. In summary, the definition of augment shows that,

in the left-hand side of (7), the substitution function k is mixed with the constructor

function In to create a structure of type Mu bf b and then a cata consumes this

structure. On the other hand, the optimised right-hand side of (7) acts on the first

argument of the parameterised monad bf with the bind and on the second argument

with the cata (using >>! and pmap) to produce a function of type bf a d -> d

which g can consume. The essence of the optimisation is thus the blending of the

bind in with the cata.

As we have seen in Section 4.3, the bind operation of the least fixed point of a

parameterised monad bf can be defined in terms of the associated augment combin-

ator. The possibility of cata/bind fusion for Mu bf is therefore hardwired into the

very definition of parameterised monadic types. Moreover, since bind is the most

fundamental of monadic operations, and since data structures uniformly constructed

via binds are often uniformly consumed by catas, we expect to see many applications

of binds followed by catas in monadic code. For instance, patterns such as

eval (Add e1 e2) = do x <- eval e1

y <- eval e2

return (x + y)

whose right-hand sides desugar into sequences of binds, are fairly common in

monadic evaluators; of course, operations acting on more arguments will give rise

to even longer chains of binds. The intermediate data structures constructed by such

binds and consumed by such catas are eligible for elimination via (7) and, because

the augment representation of each bind is based on a cata, the fused optimisation

of a bind followed by a cata will itself be a cata. This has the important consequence

that not just a single bind followed by a cata, but in fact a whole sequence of binds

followed by a cata, can be optimised by a series of cata/augment fusions, each

(except the first) enabled by the one that came before. These will ripple backward, al-

lowing monadic code to intermingle and intermediate data structures to be eliminated

from computations. Indeed, if x :: m a, k1’ :: a -> m b, and k2’ :: b -> m c,

then as discussed at the end of Section 2 the intermediate structure of type m b

produced by x >>! k1’ in (x >>= k1’) >>= k2’ can be eliminated using (7). We

have

(x >>= k1’) >>= k2’

= augmentbf g2 k2’ where g2 h = cataMubf h (x >>= k1’)

= augmentbf g2 k2’ where g2 h = cataMubf h (augmentbf g1 k1’)

where g1 l = cataMubf l x
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= augmentbf g2 k2’ where

g2 h = g1 ((>>! (pmap (cataMubf h)) . unIn . k1’)))

where g1 l = cataMubf l x

= augmentbf g2 k2’ where

g2 h = cataMubf ((>>! (pmap (cataMubf h)) . unIn . k1’))) x

The first two steps of this derivation use the definition of >>= in terms of augmentbf

from the instance declaration in Section 4.3, the third step uses (7), and the last step

uses the definition of g1 from the inner where clause of the penultimate expression.

Fusion can also be performed on sequences (...((x >>= k1) >>= k2)...>>= kn)

of more than two binds. The resulting monolithic code avoids the construction of

intermediate structures and so is more efficient, even if less transparent, than its

modular equivalent.

We now illustrate fusion for particular data types using the generic rule (7).

The examples below are natural generalisations of the optimisation of sumSqs in

Section 3.1, which is typical of the applications found in the literature.

Example 21

To compute the list of free variables appearing in any expression, we can first

substitute for each variable node in the expression a new variable node consisting

of the singleton list containing the variable name, and then accumulate the contents

of these lists by recursively appending them. We have

freeVars :: Expr a -> [a]

freeVars e=cataE id (\i -> [])(\op -> (++))(subst (\x -> Var [x]) e)

The instantiation of the generic cata/augment rule for E simplifies to

cataE v l o (augmentE g k) = g (cataE v l o . k) l o

where cataE and augmentE are as in Example 17. Using this, together with the

representation

subst :: (a -> Expr b) -> Expr a -> Expr b

subst env e = augmentE (\v l o -> cataE v l o e) env

of subst in terms of augmentE, we can derive an equivalent version of freeVars in

which the intermediate expression produced by subst has been eliminated from the

modular computation:

freeVars e

= cataE id (\i -> []) (\op -> (++))

(augmentE (\v l o -> cataE v l o e) (\x -> Var [x]))

= (\v l o -> cataE v l o e)

(cataE id (\i -> []) (\op -> (++)) . (\x -> Var [x]))

(\i -> [])

(\op -> (++))

= (\v l o -> cataE v l o e) (\x -> [x]) (\i -> []) (\op -> (++))

= cataE (\x -> [x]) (\i -> []) (\op -> (++)) e
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Note that whereas the intermediate expressions in Examples 6 and 10 are of type

Expr b, the one in freeVars has a type of the more general form Expr c, where c

is [a].

Example 22

Consider again the monad of interactive input/output computations from Ex-

amples 14 and 18. The instantiation of the generic cata/augment rule for interactive

input/output computations simplifies to

cataMubf v inn out (augmentbf g k)

= g (cataMubf v inn out . k) inn out

where cataMubf and augmentbf are as in Example 18.

We use an example based on the game of hangman to demonstrate how this

fusion rule can be used to eliminate intermediate data structures from interactive

input/output computations. In the game of hangman there is an unknown word

which a player is trying to guess. At each turn, the player guesses a letter. If the

letter occurs in the unknown word, then the player is told where all occurrences

are. Otherwise, the player loses a life. The game is won if the player guesses all the

letters in the word, and it is lost if the player loses eleven lives.

We make a simple model of the game of hangman. More refined models than

ours exist, but our goal is to demonstrate fusion rather than make our model as

accurate as possible. We model the state of the game as a triple consisting of the

unknown word, the letters guessed so far, and the number of lives lost, and we use

an interactive input/output computation to represent the possible evolution of a

game of hangman. The inputs are characters, the outputs are the resulting states,

and the values returned record the current state of the game. Finally, a constant

represents the alphabet.

type GState = (String, String, Int)

type Game = IntIO Char GState GState

alphabet :: String

alphabet = "abcdefghijklmnopqrstuvwxyz"

The function member :: Eq a => a -> [a] -> Bool is the standard function

which determines whether or not an element of an equality type is a member of a

list of such elements. The function guess updates a state after a character has been

guessed. The functions won, lost, and over determine whether or not the current

state indicates that a game has been won or lost, or is over.

guess :: Char -> GState -> GState

guess c (w,g,n) = if member c g then (w,g,n+1)

else if not (member c w) then (w,c:g,n+1)

else (w,c:g,n)

won :: GState -> Bool

won (w,g,n) = and [member l g | l <- w]
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lost :: GState -> Bool

lost (w,g,n) = n >= 11

over :: GState -> Bool

over s = lost s || won s

We now turn our attention to our central task, namely constructing a game tree

for each game of hangman. Given an initial state of a game, we must construct

the new state which arises from outputting that initial state, and then repeatedly

inputting a character and outputting the resulting state until the game is over. We

use an auxiliary function turn to represent one iteration of this loop.

turn :: GState -> (GState -> b) -> ((Char -> b) -> b)

-> ((GState, b) -> b) -> b

turn s = \v inn out -> out (s, inn (\c -> v (guess c s)))

mkGame :: GState -> Game

mkGame s = if over s then Val s else augmentbf (turn s) mkGame

Here, turn s is an abstraction of the process of outputting the state s and then

inputting a character before finishing with the value of the resulting state. The

function mkGame s repeats this process until the current state indicates that the

game is over. Note the essential use of the augmentbf combinator with its non-

trivial substitution to iterate the turns.

The idea behind mkGame s is that, once a game tree is built, it is possible to

perform various analyses of it. We may be interested in the space of all possible

results in such a tree, in how large the search space of possible plays is, or in how

many wins there are in this search space, or in the list of traces showing how a game

developed.

To calculate the results of a game tree, for example, we can use cataMubf as

follows:

results :: Game -> [GState]

results = cataMubf v i o where v s = [s]

i f = concat [f c | c <- alphabet]

o (s,n) = n

The function rGame :: GState -> [GState] calculates the list of results in the

game tree which arises from the initial game state to its conclusion. That is,

rGame = results . mkGame. An optimised version of rGame which doesn’t con-

struct the intermediate structure of type Game can be obtained by cata/augment

fusion for interactive input/output computations:

rGame s

= cataMubf v i o

(if over s then Val s else augmentbf (turn s) mkGame)

= if over s then cataMubf v i o (Val s)

else cataMubf v i o (augmentbf (turn s) mkGame)
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= if over s then [s] else turn s (results . mkGame) i o

= if over s then [s] else o (s, i (\c -> rGame (guess c s)))

= if over s then [s] else i (\c -> rGame (guess c s))

= if over s then [s] else concat [rGame (guess c s) | c <- alphabet]

Here, the first equation is obtained using the definitions of results and mkGame, the

second by the distribution of cataMubf over the conditional, the third by applying

cata/augment fusion, and the remaining equations are obtained by inlining the

definitions of turn, o, and i appearing in the definition of results.

If we instead want to calculate the number of possible moves in the search

space associated with a game, then we can define pGame :: GState -> Int by

pGame = length . results . mkGame. The following optimised version can be

obtained using reasoning similar to that for rGame:

pGame s = if over s then 1

else sum [pGame (guess c s)) | c <- alphabet]

If we want to calculate the number of winning end states starting from a specific

initial game state, then we can use the modular program wGame :: GState -> Int

defined by

wGame = wins . mkGame

Here, wins :: Game -> Int is given by

wins = cataMubf v i o where v s = if lost s then 0 else 1

i f = sum [f c | c <- alphabet]

o (s,n) = n

The optimised form of wGame is the function wGame’ defined by

wGame’ s = if over s then (if lost s then 0 else 1)

else sum [wGame’ (guess c s)) | c <- alphabet]

Finally, if we want to calculate the list of traces through a game tree, then we can

do this with the function

outputs :: Game -> [[GState]]

outputs = cataMubf v i o where v s = [[s]]

i f = concat [f c | c <- alphabet]

o (s,n) = map (s:) n

Defining oGame :: GState -> [[GState]] to be the function which calculates the

list of traces from the evolution of a specific state as oGame = outputs . mkGame,

then we obtain the following optimised version which does not require the construc-

tion of an intermediate game tree:

oGame s = if over s then [[s]]

else map (s:) (concat [oGame (guess c s) | c <- alphabet])
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Over all, the construction of an intermediate game tree facilitates modular

programming, since many consumers can naturally be defined as catas. However,

this structure can be eliminated to optimise the resulting functions using the

cata/augment fusion rule for interactive input/output computations.

Example 23

Consider again the monad of rose trees from Examples 15 and 19. Such a tree can

be used to represent web pages with links to other web pages. Once again, our

intention is not to create a sophisticated model but rather to demonstrate fusion at

work. We represent a web page w with links to web pages w1,...,wn as the rose

tree Node w [w1,...,wn]. An example of such a tree is

root

research

paper2paper1

Letting bf = ProdFunc [] as in Example 19, and taking the combinators and

monad operations for rose trees to be as given there, we can define functions initWeb

and addWeb to initialize a web page, and add web pages ws = [w1,...,wn] to an

existing web page w, by

type Web = Rose String

initWeb :: Web

initWeb = buildMubf (\n -> n "home" [])

addWeb :: (String, [Web]) -> String -> Web

addWeb (w, ws) = \s -> if s == w then Node w ws else Node s []

respectively. We can use these functions to construct the web web2 depicted above

in successive steps by

web1 = initWeb >>= addWeb ("home", [Node "research" []])

web2 = web1 >>= addWeb ("research",

[Node "paper1" [], Node "paper2" []])

The function pages returns the prefix list of web pages stored in a rose tree:

pages :: Rose a -> [a]

pages = cataMubf (\w ws -> w : concat ws)

The instantiation of the generic cata/augment rule for rose trees is

cataMubf h (augmentbf g k)

= g (\x t -> let Node y s = k x in h y (t ++ map (cataMubf h) s))
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Using this fusion rule, we can optimise the function which returns the prefix list of

web pages in a web after the addition of new pages. Note that the choice of the

parameterised monad structure on bf = ProdFunc [] does not effect the definition

of pages, but does effect how web pages are added to an existing web.

First note that all directories constructed from initWeb using >>= can be expressed

in terms of augmentbf. Indeed,

initWeb = augmentbf (\n -> n "home" []) return

newWeb :: Web -> (String, [Web]) -> Web

newWeb oldWeb (page, links) = oldWeb >>= addWeb (page, links)

= augmentbf g (addWeb (page, links))

where g f = cataMubf f oldWeb

Thus, to get the prefix list of page names in a web structure we can let

mkws = \w ws -> w : concat ws

and write

results web

= cataMubf mkws (augmentbf g k)

= g (\x t -> let Node y s=k x in mkws y (t ++ map (cataMubf mkws)s))

for appropriate g and k. For example, we can prefix-collect the directory names in

web2 by taking

g1 f = cataMubf f initWeb

g2 f = cataMubf f web1

k1 = addWeb ("home", [Node "research" []])

k2 = addWeb ("research", [Node "paper1" [], Node "paper2" []])

foldsub :: (b -> [c] -> c) -> (a -> Rose b) -> a -> [c]-> c

foldsub h k x t = let Node y s = k x in h y (t ++ map (cataMubf h) s)

and computing

cataMubf mkws (augmentbf g2 k2)

= g2 (foldsub mkws k2)

= cataMubf (foldsub mkws k2) web1

= cataMubf (foldsub mkws k2) (augmentbf g1 k1)

= g1 (foldsub (foldsub mkws k2) k1)

= cataMubf (foldsub (foldsub mkws k2) k1) initWeb

= cataMubf (foldsub (foldsub mkws k2) k1)

(augmentbf (\n -> n "home" []) return)

= foldsub (foldsub (foldsub mkws k2) k1) return "home" []

= ["home", "research", "paper1", "paper2"]

The first, fourth, and seventh equalities are instances of fusion and the rest are

obtained by inlining and standard simplifications.
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Example 24

Rather than give another example in the same vein as previously, we add some

variety by establishing the potential for the optimisation of programs which ma-

nipulate hyperfunctions by reimplementing the interface for hyperfunctions given

in Launchnury et al. (2000). The original interface was based upon the following

operations:

run :: Hyp o o -> o

run (Hyp k) = k run

base :: o -> Hyp i o

base a = Hyp (\x -> a)

(<<) :: (i -> o) -> Hyp i o -> Hyp i o

f << fs = Hyp (\k -> f (k (fs)))

We can now reimplement this library using the combinators given in Example 20:

run = cataMubf (\c -> c id)

base a = buildMubf (\h -> h (\x -> a))

f << fs = buildMubf (\h -> h (\k -> f (k (cataMubf h fs))))

Correctness of the implementation of run is proved as follows:

run (Hyp k)

= cataMubf (\c -> c id) (Hyp k)

= (\c -> c id) (\g -> k (g . cataMubf (\c -> c id)))

= (\g -> k (g . cataMubf (\c -> c id))) id

= k (id . cataMubf (\c -> c id))

= k (cataMubf (\c -> c id))

= k run

Similar proofs exist for the other combinators. Code written using this interface can

now potentially be optimised.

The augment combinator for hyperfunctions turns out to be exactly the bind

operation >>= from Example 20 for the monad of hyperfunctions, and acts a kind

of “diagonaliser”. To see this, recall that inhabitants of type Hyp i o can be thought

of as streams of functions of type i -> o (Launchbury et al., 2000), and note that

the stream type has a monadic structure which flattens a stream of streams to the

stream whose nth element is the nth element of the nth stream.

As a final observation, we note that, in the instance declaration for parameterised

monadic data types in Section 4.3, we could have written the bind operation of the

monad Mu bf as

x >>= k = cataMubf (In . ( >>! (unIn . k))) x
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rather than in terms of augmentbf. There are, however, two reasons to not do

this. First, this definition of bind is significantly less clear than the one involving

augmentbf, and it goes against the practice of abstracting away from programming

details via high-level combinators. The second, bigger problem for the purpose of

optimisation is that, if a bind is followed by a consuming cata, then it might

not be possible to fuse the cata implementing the bind with this cata, since

not all compositions of catas can be fused. To get around this difficulty we

would be led to devise some kind of strategy for marking those compositions

which can be so fused, which would be tantamount to inventing the augment

combinators.

5.1 Measurements

We now demonstrate that the optimisations developed in this paper do indeed

improve the efficiency of programs by tracking and comparing the number of cells,

reductions, and garbage collections, as well as the execution times for several unfused

example programs and their fused counterparts.

We first considered the modular function wGame :: GState -> Int and its fused

version wGame’ :: GState -> Int. The definitions of all functions appearing here

are given in Example 22. We used an alphabet size of eight and a maximum of

five lives. For each word given below, we ran the fused and non-fused functions

on the game state consisting of the given word, no initial guesses and no lost

lives. We used the February 2000 version of Hugs98, running on a Compusys

Economist 865G workstation with 256M RAM and an Intel(R) Pentium(R) 4

CPU running at 2.40GHz, and obtained the following data on reductions and cells

used:

Word wGame’ wGame

reductions(M)/cells(M)/collections reductions(M)/cells(M)/collections

a 0.6 / 0.8 / 3 0.7 / 0.9 / 3

ab 5.3 / 6.7 / 28 5.8 / 7.3 / 30

abc 38 / 46 / 197 41 / 50 / 213

abcd 267 / 325 / 1369 2871 / 350 / 1473

To obtain timings we used Glasgow Haskell Compiler (GHC) version 6.4.1 running

on the same workstation. The flags +s and -fallow-undecidable-instances were

set (the latter to handle the monad instance declaration in Section 4.3), and the

optimsation level was set to -0. Under the same game configuration as above the

results were:
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Word wGame’ wGame

(seconds) (seconds)

a 0.08 0.09

ab 0.78 0.85

abc 6.09 6.81

abcd 46 51

These timings are the average over five runs and were obtained using GHC’s

getCPUTime command.

Next, we considered the problem of calculating the number of nodes in a rose tree

of integers constructed using augment (analogously to the way this combinator is

used to construct web pages in Example 23). Specifically, we compared the number

of reductions, number of cells, number of garbage collections, and execution times

for the modular program

nodes :: Int -> Int

nodes = number . mkRose

where

number :: Rose a -> Int

number = cataRose (\w ws -> 1 + sum ws)

mkRose :: Int -> Rose Int

mkRose n = if n == 0 then Node n []

else augmentRose

(layer n)

(\i -> if i >= n then Node n [] else mkRose i)

layer :: Int -> (Int -> [b] -> b) -> b

layer n l = l n [l x [] | x <- [1 .. n-1]]

The function call mkRose n constructs a tree whose root is labelled with n, and

which has the property that every node labelled x in the tree has as its immediate

descendents nodes labelled 1, ... ,x-1.

We then computed the same statistics for its fused version

fnodes :: Int -> Int

fnodes n = 1 + sum [fnodes x | x <- [1 .. n-1]]

Running the same version of GHC on the same workstation with the same flags set,

we obtained the following data:
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Input fnodes nodes

size reductions(M)/cells(M)/collections reductions(M)/cells(M)/collections

16 1.75 / 2.52 / 10 3.03 / 4.65 / 19

18 7.01 / 10.1 / 42 12.1 / 16.6 / 78

20 28.0 / 40.4 / 170 48.5 / 74.4 / 313

22 112 / 161 / 680 193 / 297 / 1255

We also obtained the following timings for these examples:

Input fnodes nodes

size (seconds) (seconds)

16 0.05 0.12

18 0.16 0.53

20 0.64 2.08

22 2.54 8.54

These improvements are larger than expected as the result of just fusion alone. In

fact, they are a product of the delicate interaction of fusion with inlining. More

specifically, inlining can enable fusion rules to fire, and the application of fusion

rules can create new opportunities for inlining which can be used to further simplify

programs. Both of these effects come into play in deriving the fused program fnodes.

Although our benchmarking is neither formal nor extensive, it suggests that

our fusion rules do improve programs. Indeed, whether measuring numbers of

reductions performed, numbers of cells used, numbers of garbage collections, or

time, an improvement of roughly 10% was achieved for each test case.

6 Related work

In addition to the literature on monads and program transformation cited above,

there are some additional papers relating to the interaction of these subjects.

• The work on generic build and augment combinators contributes to the fruit-

ful line of research into generic recursion combinators. Research in this area

has led, for example, to the generalisation of fold for lists to arbitrary mixed-

variance data types (Sheard and Fegaras, 1996; Meijer and Hutton, 1995).

While this paper is concerned with cata, build, and augment combinators for

fixed points of functors, structures arising as fixed points of mixed-variance

functors – such as µX.Nat + (X → X) – do not lie within its scope.

• Pardo (2001) also sought to understand fusion in the context of monadic com-

putation, but his goal was different from ours. Pardo investigated conditions

under which an expression of type M(µF), for M a monad and F a functor
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with least fixed point µF , can be fused with a function fold φ : µF → X

to produce an expression of type M(X). The crucial difference with Ghani

et al. (2004, 2005) is that Pardo considered the monad M an ambient structure

which was not to be eliminated by the fusion rule. The goal of Ghani et al.

(2004, 2005), on the other hand, is to eliminate the construction of precisely

such monadic structures.

• In a similar vein, Meijer & Jeuring (1995) develops a variety of fusion laws in

the monadic setting, including a short cut fusion law for eliminating interme-

diate structures of the form M(List X). However, as with Pardo (2001), the aim

is not to eliminate the monad, but rather to eliminate the list inside the monad.

• Jürgensen (2005) defined a fusion combinator based on the uniqueness of

the map from a free monad to any other monad. Thus, his technique

is really a different form of fusion from the one considered here and, in

particular, is not based upon writing consumers in terms of catamorphisms.

Since catamorphisms appear in the literature far more frequently than monad

morphisms, it is natural to want as well-developed a theory of catamorphism-

based fusion as possible, irrespective of other possibilities such as Jürgensen’s.

• Correctness proofs for the fusion rules presented in this paper rely on

sophisticated categorical concepts – in particular, strong dinaturality, which,

it has been suggested, is unsuitable for a general functional programming and

programming transformation audience. Since our aim is to reach precisely such

an audience, we refer the reader to Ghani et al. (2005) for correctness proofs

for the fusion rules given here. That paper extends the categorical account of

cata/build fusion given in Ghani et al., (2004).

7 Conclusion and future work

In this paper we have recalled the techniques of Ghani et al. (2004, 2005) for

defining build combinators for all inductive types, as well as for defining augment

combinators for all inductive monads – i.e., for all monads m with the property that,

for each type t, the type m t is an inductive type – arising as least fixed points of

parameterised monads. We have further demonstrated that augment is inherently an

inductive and monadic construct, and have seen that monads which arise as least

fixed points of parameterised monads give rise to a number of canonical data types

used in functional programming. We believe it will be difficult to find a mechanism

for defining inductive monads which is more general than taking fixed points of

parameterised monads, and therefore conclude that these results are about as general

as can be hoped for.

The categorical semantics of Ghani et al. (2005) reduces correctness of the fusion

rules given here to the problem of constructing parametric models which respect the

categorical semantics given there. An alternative approach to correctness is taken

in Johann (2002), where the operational semantics-based parametric model of Pitts

(2000) is used to validate the fusion rules for algebraic data types introduced in that

paper. Extending these techniques to tie the correctness of our monadic fusion rules

into an operational semantics of the underlying functional language is ongoing work
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in which we aim to show how to extend Pitts’ techniques to construct parametric

models which accommodate computation types.

We are also interested in developing the techniques required to generalise short

cut fusion to other commonly occurring data types in functional programming. We

are already writing a paper concerning short cut fusion for nested data types, and

have contemplated the possibility of generalising short cut fusion from monads to

arrows. The basic program is clear: first consider a general method for constructing

instances of the Arrow class via fixed points, and then employ the techniques in

Ghani et al. (2004, 2005) to derive, for each such fixed point, a build combinator

and an associated fusion rule.

Finally, rigorous benchmarking our fusion rules is an additional direction for

future work. This would be greatly facilitated by the development of a preprocessor

for automatically converting monadically structured functions into augment/cata

form, perhaps akin to that of Launchbury & Sheard (1995) for converting (some)

recursive programs into build/cata forms. However, as is standard practice, we

consider the development of such a preprocessor to be a line of research which is

independent of the development of the fusion rules themselves.

Acknowledgments

We thank Tarmo Uustalu and Varmo Vene for allowing us to prepare this archival

version of our joint ICFP’05 paper. We also thank Graham Hutton and the

anonymous reviewers for their helpful comments, and Conor McBride for several

useful discussions.

A Instantiating generic combinator definitions

In this appendix we show in detail the instantiation of the generic definitions of the

cataMubf, buildMubf, and augmentbf combinators for the parameterised monad

E from Examples 13 and 17. Instantiations for the other parameterised monads

appearing in this paper are similar.

Instantiating the definition of cataMubf for E gives

cataE :: (E a b -> b) -> Expr a -> b

cataE h (In e) = h (bmap id (cataE h) e)

= h (pmap ((cataE h) e) >>! (V . id))

= h (pmap ((cataE h) e) >>! V)

= h (pmap (cataE h) e)

= h (case e of V x -> V x

L i -> L i

O op e1 e2 -> O op (cataE h e1)

(cataE h e2))

Now, since In and unIn give a type isomorphism between Expr a and E a (Expr a),

we have
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In (V x) = Var x

In (L i) = Lit i

In (O op e1 e2) = Op op (In e1) (In e2)

and similarly for unIn. We can therefore write the above definition as

cataE :: (E a b -> b) -> Expr a -> b

cataE h e = h (case e of Var x -> V x

Lit i -> L i

Op op e1 e2 -> O op (cataE h e1)

(cataE h e2))

Finally, unbundling E a b into types a -> b, Int -> b, and Op -> b -> b -> b,

unbundling h :: E a b -> b into the functions v :: a -> b, l :: Int -> b,

and o :: Ops -> b -> b -> b, and then distributing the application of h over the

case expression, we can rewrite the definition for cataE one more time to get

cataE:: (a -> b) -> (Int -> b) -> (Ops -> b -> b -> b)-> Expr a -> b

cataE v l o (In e) = case e of Var x -> v x

Lit i -> l i

Op op e1 e2 -> o op (cataE o l v e1)

(cataE o l v e2)

which is precisely the definition of cataE from Figure 2.

Instantiating the definition of buildMubf for E gives

buildE :: (forall b. (E a b -> b) -> b) -> Expr a

buildE g = g In

Observing that the unbundled form of the type In :: E a (Expr a) -> Expr a

comprises the three functions Var :: a -> Expr a, Lit :: Int -> Expr a, and

Op :: op -> Expr a -> Expr a -> Expr a, we can rewrite this definition as

buildE :: (forall b. (a -> b) -> (Int -> b) ->

(Ops -> b -> b -> b) -> b) -> Expr a

buildE g = g Var Lit Op

Instantiating the definition of augmentbf for E and unbundling the argument to g

in the final step of the derivation similarly gives

augmentE :: (forall c. (E a c -> c) -> c) -> (a -> Expr b) -> Expr b

augmentE g k = g (In . (>>! unIn . k))

= g (In . \e -> case e of V x -> unIn (k x)

L i -> Lit i

O op e1 e1 -> Op op e1 e2)

= g (\e -> case e of V x -> k x

L i -> Lit i

O op e1 e1 -> Op op e1 e2)

= g k Lit Op

These definitions of buildE and augmentE coincide precisely with those in Ex-

ample 17.
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Meijer, E. and Hutton, G. 1995. Bananas in space: Extending folds and unfolds to exponential

types. In Functional Programming and Computer Architecture, Proceedings, ACM Press,

pp. 324–333.

Meijer, E. and Jeuring, J. 1995. Merging monads and folds for functional programming. In

Advanced Functional Programming, Proceedings, LNCS 925, Springer-Verlag, pp. 228–266.

Moggi, E. 1991. Notions of computation and monads. Information & Computation, 93(1),

55–92.

Pardo, A. 2001. Fusion of recursive programs with computational effects. Theoretical Computer

Science 260(1–2), 165–207.

Peyton Jones, S., Tolmach, A. and Hoare, T. 2001. Playing by the rules: Rewriting as an

optimization technique in GHC. In Haskell Workshop, Proceedings, ACM Press, pp. 203–

233.

Peyton Jones, S. L. editor. 2003. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.

Pitts, A. 2000. Parametric polymorphism and operational equivalence. Mathematical Structures

Computer Science 10, 1–397.

https://doi.org/10.1017/S0956796807006314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006314


776 N. Ghani and P. Johann

Plotkin, G. and Power, J. 2002. Notions of computation determine monads. In Foundations of

Software Science and Computation Structure, Proceedings, pp. 342–356.

Sheard, T. and Fegaras, L. 1993. A fold for all seasons. In Functional Programming Languages

and Computer Architecture, Proceedings, ACM Press, pp. 233–242.

Svenningsson, J. 2002. Shortcut fusion for accumulating parameters and zip-like

functions. In International Conference on Functional Programming, Proceedings, ACM Press,

pages 124–132, 2002.

Takano, A. and Meijer, E. 1995. Shortcut deforestation in calculational form. In Functional

Programming Languages and Computer Architecture, Proceedings, ACM Press, pp. 306–313.

Uustalu, T. 2003. Generalizing substitution. Theoretical Informatics & Applications 37(4), 315–

336.

Voigtländer, J. 2002. Concatenate, reverse and map vanish for free. In International Conference

on Functional Programming, Proceedings, ACM Press, pp. 14–25.

Wadler, P. 1992. The essence of functional programming. In Principles of Programming

Languages, Proceedings, ACM Press, pp. 1–14.

https://doi.org/10.1017/S0956796807006314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006314

