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Abstract

We develop a theory of commensurability of groups, of rings, and of modules. It allows

us, in certain cases, to compare sizes of automorphism groups of modules, even when

those are infinite. This work is motivated by the Cohen–Lenstra heuristics on class

groups.

1. Introduction

Often, when a mathematical object is drawn in some ‘random’ manner, the probability that

it is isomorphic to a given object is inversely proportional to the size of the automorphism

group of the latter. The Cohen–Lenstra heuristics [CL84, CM90], which make predictions on the

distribution of class groups of ‘random’ algebraic number fields, are, as we intend to show, a

special case of this rule, provided that one passes to Arakelov class groups. Now, Arakelov class

groups may have infinitely many automorphisms, so a difficulty arises in comparing the sizes of

their automorphism groups. This difficulty is resolved in the present paper. We will address the

number-theoretic implications in a later one.

Our main result, formulated as Theorem 1.2 below, expresses that, for certain pairs of

modules L and M over certain types of ring, one can meaningfully define the ratio of the size

of the automorphism group AutM of M to the size of AutL, even when their orders # AutM

and # AutL are infinite. If AutL can be naturally embedded in AutM as a subgroup of finite

index, then the ratio mentioned may be defined to be that index. Our approach consists of giving

a canonical definition of an ‘index of automorphism groups’, to be denoted by ia(L,M), in a

more general situation.

As a concrete example, we consider modules over group rings. Denote by Z the ring of

integers, by Q the field of rational numbers, by Q>0 the multiplicative group of positive rational

numbers, by R[G] the group ring of a group G over a ring R, and by (G : H) the index of a

subgroup H of a group G. By ‘module’ we shall always mean ‘left module’.

Theorem 1.1. Let G be a finite group, let V be a finitely generated Q[G]-module, and put

S = {L : L is a finitely generated Z[G]-module with Q⊗Z L ∼= V as Q[G]-modules}. Then there

exists a unique function ia : S × S → Q>0 such that:

(a) if L, L′, M , M ′ ∈ S and L ∼= L′, M ∼= M ′, then ia(L,M) = ia(L′,M ′);

(b) if L, M , N ∈ S, then ia(L,M) · ia(M,N) = ia(L,N);
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(c) if M ∈ S, and L ⊂M is a submodule of finite index, then with H = {σ ∈ AutM : σL = L}
and ρ : H → AutL mapping σ ∈ H to σ|L, one has

ia(L,M) =
(AutM : H) ·# ker ρ

(AutL : ρH)
.

To explain part (c), we remark that it is not hard to show that one has L ∈ S, and that the

three cardinal numbers (AutM : H), # ker ρ, (AutL : ρH) are finite (see § 7). Since these three

numbers may be thought of as the ratio of the sizes of AutM and H, of H and ρH, and of AutL

and ρH, respectively, one may think of the expression in part (c) as the ratio of the sizes of AutM

and AutL. The same argument shows that one has indeed ia(L,M) = (# AutM)/# AutL if

AutM and AutL are finite.

As an example, let G be the trivial group, and put n= dimQ V . Then each L ∈ S is isomorphic

to the direct sum of Zn with a finite abelian group L0, and AutL is isomorphic to a semidirect

product Hom(Zn, L0) o (AutL0 × GL(n,Z)), where both Hom(Zn, L0) and AutL0 are finite.

Writing M ∈ S similarly, and ‘cancelling’ GL(n,Z), one is led to believe that

ia(L,M) =
# Hom(Zn,M0) ·# AutM0

# Hom(Zn, L0) ·# AutL0
=

(#M0)n ·# AutM0

(#L0)n ·# AutL0
.

Making this informal argument rigorous (see Proposition 8.4), one discovers that if a function as

in Theorem 1.1 exists, it must be given by the formula just stated. However, that this formula

does define a function meeting all conditions, in particular part (c), is not obvious. Likewise,

for general G the uniqueness statement of Theorem 1.1 is easy by comparison to the existence

statement. Our proof of Theorem 1.1 is given in § 8.

There is little doubt that one can prove Theorem 1.1 using a suitable theory of covolumes of

arithmetic groups. Instead, we will give an entirely algebraic proof, obtaining the theorem as a

special case of a much more general result, of which the formulation requires some terminological

preparation.

Isogenies. A group isogeny is a group homomorphism f : H → G with # ker f < ∞ and

(G : fH) <∞, and its index i(f) is defined to be (G : fH)/# ker f . For a ring R, an R-module

isogeny is an R-module homomorphism that is an isogeny as a map of additive groups. A ring

isogeny is a ring homomorphism that is an isogeny as a map of additive groups. The index of

an isogeny of one of the latter two types is defined as the index of the induced group isogeny on

the additive groups.

Commensurabilities. IfX, Y are objects of a category C, then a correspondence fromX to Y in

C is a triple c= (W, f, g), whereW is an object of C and f : W →X and g : W → Y are morphisms

in C; we will often write c : X 
 Y to indicate a correspondence. A group commensurability is

a correspondence c = (W, f, g) in the category of groups for which both f and g are isogenies,

and the index i(c) of such an isogeny is defined to be i(g)/i(f). For a ring R, one defines

R-module commensurabilities and their indices analogously, replacing the category of groups by

the category of R-modules. Likewise, one defines ring commensurabilities and their indices.

Endomorphisms and automorphisms. Let R be a ring, and let c = (N, f, g) : L 
 M be a

correspondence of R-modules. We define the endomorphism ring End c of c to be the subring

{(λ, ν, µ) ∈ (EndL) × (EndN) × (EndM) : λf = fν, µg = gν} of the product ring (EndL) ×
(EndN)×(EndM). There are natural ring homomorphisms End c→ EndL and End c→ EndM

sending (λ, ν, µ) to λ and µ, respectively; we shall write e(c) : EndL 
 EndM for the ring
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correspondence consisting of End c and those two ring homomorphisms. Similarly, writing E×

for the multiplicative group of invertible elements of a ring E, we define the automorphism
group Aut c of c to be the group (End c)×, and we write a(c) : AutL 
 AutM for the group
correspondence consisting of Aut c and the natural maps Aut c→ AutL, Aut c→ AutM .

A domain is a non-zero commutative ring in which the product of any two non-zero elements
is non-zero. A ring is semisimple if all short exact sequences of modules over the ring split.

We can now formulate the general result that we announced.

Theorem 1.2. Let Z be an infinite domain such that for all non-zero m ∈ Z the ring Z/mZ
is finite, let Q be the field of fractions of Z, let A be a semisimple Q-algebra of finite vector
space dimension over Q, let R ⊂ A be a sub-Z-algebra with Q ·R = A, and let L, M be finitely
generated R-modules. Then:

(a) there is an R-module commensurability L
 M if and only if the A-modules Q ⊗Z L and
Q⊗Z M are isomorphic;

(b) if c : L 
 M is an R-module commensurability, then e(c) : EndL 
 EndM is a ring
commensurability, and a(c) : AutL
 AutM is a group commensurability;

(c) if c, c′ : L
M are R-module commensurabilities, then one has

i(e(c)) = i(e(c′)), i(a(c)) = i(a(c′)).

The proof of Theorem 1.2 is given in § 8. The essential statement is part (c).
The theorem shows that one can define ia(L,M) = i(a(c)), independently of c, if one has

Q⊗Z L ∼=A Q⊗ZM and c : L
M is an R-module commensurability. One deduces the existence
part of Theorem 1.1 from Theorem 1.2 by putting Z = Z, Q = Q, A = Q[G] and R = Z[G].
Other cases that may arise in applications include localisations and completions of Z in the rôle
of Z, and quotients of Z[G] in the rôle of R.

Isogenies, commensurabilities and their indices have many formal properties, and it is to these
that § 2 is devoted. Among other things, we define a notion of equivalence of correspondences
and, under certain conditions, the composition d◦c of two correspondences d and c. The index of
a commensurability depends only on its equivalence class, and it is multiplicative in composition
of commensurabilities. We introduce, for each object L in the category under discussion, a
group GL of which the elements are the equivalence classes of commensurabilities L 
 L.
The group GL plays an important rôle in the paper. It may be thought of as the automorphism
group of L in a ‘category of fractions’ [GZ67], which is obtained by formally inverting all isogenies
in our category. We also recall in § 2 an explicit construction of that category of fractions: the
morphisms are equivalence classes of skew correspondences, which are correspondences (W, f, g)
in which f is an isogeny.

Section 3, on ring isogenies, culminates in the following result, which is proved as
Theorem 3.8. We shall use it to pass from endomorphism rings of module commensurabilities to
automorphism groups.

Theorem 1.3. Let E→ F be a ring isogeny. Then the induced group homomorphism E×→ F×

is a group isogeny. If, in addition, the map E → F is surjective, then so is the induced map
E×→ F×.

In § 4 we prove a property of the rings R appearing in Theorem 1.2 that allows us to apply
the results of § 2 to the category of finitely generated R-modules.
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Theorem 1.4. Let R be a ring as in the statement of Theorem 1.2. Then R is left-noetherian
and right-noetherian.

For a proof, see Theorem 4.2. The point of Theorem 1.4 is that R is not required to be finitely
generated as a Z-module. As an aside, we characterise, in Theorem 4.5, the rings Z satisfying
the hypotheses of Theorem 1.2.

Section 5 furnishes the deus ex machina of the paper.

Theorem 1.5. Let B be a semisimple ring that is finitely generated as a module over its centre
Z(B). Then B×/(Z(B)×[B×, B×]) is an abelian group of finite exponent.

This is proved as Theorem 5.6. In fact, we prove an explicit version of Theorem 1.5. A
central simple algebra over a field k is a ring B that is simple in the sense that it has precisely
two two-sided ideals; that has centre equal to k; and that has finite dimension as a vector space
over k; it is a well-known result [CR81, (7.22)] that, under these conditions, that dimension is a
square.

Theorem 1.6. Let k be a field, and let B be a central simple algebra over k. Let the dimension of
B as a vector space over k be d2, where d is a positive integer. Then the group B×/(k×[B×, B×])
is abelian of exponent dividing d.

Our proof of Theorem 1.6 (see Theorem 5.5) makes use of Wedderburn’s factorisation theorem
for polynomials over division rings. Theorem 1.5 is an immediate consequence of Theorem 1.6.

In § 6 we place ourselves in the situation of Theorem 1.2, but replacing the semisimplicity
assumption on A by the condition that R be left-noetherian; by Theorem 1.4 this is a weaker
condition. We apply the construction of § 2 to the category of finitely generated R-modules, and
obtain a ‘category of fractions’ with the same objects, but with morphisms given by equivalence
classes of skew correspondences. Elaborating upon a well-known argument that is ascribed to
Serre, we prove that there is an equivalence of the latter category with the category of finitely
generated A-modules that sends an R-module L to the A-moduleQ⊗Z L. This has two important
consequences. The first is part (a) of Theorem 1.2, which is contained in Theorem 6.3. The second
is that, for a finitely generated R-module L, the group GL introduced in § 2 may be identified
with the group AutA(Q⊗Z L).

Section 7 uses the same hypotheses on A and R as § 6. It starts off with the proof that,
for any commensurability c : L 
 M of finitely generated R-modules, the correspondence
e(c) : EndL 
 EndM is a ring commensurability; by Theorem 1.3, one then also obtains a
group commensurability a(c) : AutL
 AutM . This proves part (b) of Theorem 1.2. Next, we
prove in Theorem 7.3 that, for commensurabilities c : L
M and d : M 
N of finitely generated
R-modules, one has

i(e(d ◦ c)) = i(e(d))i(e(c)), i(a(d ◦ c)) = i(a(d))i(a(c)).

This result at once allows us to reduce the proof of Theorem 1.2(c) to the special case that
L = M , and shows that i ◦ e and i ◦ a give rise to group homomorphisms GL → Q>0; the
statement of Theorem 1.2(c) is equivalent to these homomorphisms being trivial. If we write
B = EndA(Q⊗Z L), then § 6 enables us to identify GL with B× = AutA(Q⊗Z L) and to prove
that the homomorphisms are trivial on the subgroup Z(B)× of B×.

In § 8, the assumption that A be semisimple is brought back in. It implies that the ring B
just defined is also semisimple. Since the group homomorphisms i◦ e and i◦a are not only trivial
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on Z(B)× ⊂ B×, but also on the commutator subgroup [B×, B×], Theorem 1.2(c) becomes an
immediate consequence of Theorem 1.5. We give an example to show that, unlike parts (a) and
(b), part (c) of Theorem 1.2 may fail if R is left-noetherian, but A is not semisimple. In the same
section, we prove Theorem 1.1 by putting R = Z[G]; as far as we are aware, this special case of
Theorem 1.2 is essentially as hard as the general case.

2. Isogenies and commensurabilities

This section is devoted to formal properties of isogenies and commensurabilities, and of their
indices.

We begin by recalling a basic notion from category theory, for which we refer to [Lan02, ch.

I, § 11]. Let L
f
→M

g
← N be a diagram in a category C. We say that (L×M N, p0, p1) is a fibre

product of L and N over M if L
p0
← L ×M N

p1
→ N is a diagram in C with the property that

fp0 = gp1, and with the universal property that for any diagram L
h
← X

j
→ N that satisfies

fh = gj, there exists a unique morphism i : X → L×M N such that h = p0i and j = p1i. When
a fibre product exists, it is unique up to a unique isomorphism, so in that case we may speak
of the fibre product of L and N over M . In the category Grp of groups, the fibre product of

L
f
→M

g
← N exists, and it is given by

L×M N = {(l, n) ∈ L×N : f(l) = g(n)},
with p0 and p1 being the projection maps to L and N , respectively.

Throughout this section C will denote a category in which for every diagram L
f
→ M

g
← N

the fibre product of L and N over M exists, equipped with a functor C → Grp that preserves
fibre products. The main examples we have in mind are the category of groups with the identity
functor, the category of rings with the functor that sends a ring to its underlying additive group,
and the category of finitely generated left R-modules for a left-noetherian ring R, with the
functor that sends an R-module to its underlying abelian group.

An isogeny in C is a morphism that becomes an isogeny in Grp. A commensurability in C
is a correspondence in C that becomes a commensurability in Grp. We will often think of an
isogeny f : L→M as a special case of a commensurability, which we will denote by cf , namely
cf = (L, id, f) : L
M .

The index i(f) of an isogeny f in C is defined to be the index of the image of f in Grp, and
the index of a commensurability is defined analogously, as in the introduction.

For each of the results 2.1–2.6 below, it will be clear that it holds for C if it holds for Grp.
We will therefore tacitly assume that C = Grp in the proofs of those results.

Proposition 2.1. Let L, M , N be objects in C and let h be the composition of two morphisms

L
f
→ M

g
→ N . If two of f , g, h are isogenies, then so is the third. Moreover, we then have

i(h) = i(g)i(f).

Proof. We have an exact sequence of pointed sets

1→ ker f → kerh→ ker g→M/fL→ N/hL→ N/gM → 1,

in which each map has the property that all its non-empty fibres have equal cardinality. Hence,
any term that sits between two finite sets in the above sequence is itself finite. The first assertion
of the proposition easily follows. Moreover, if all terms in the sequence are finite, then the
alternating product of their cardinalities is one, which proves the second assertion. 2
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Definition 2.2. Let c = (X, f, g) : L
M and d = (Y, h, j) : M 
 N be correspondences in C.
We define the composition of c with d by

d ◦ c = (X ×M Y, f ◦ p0, j ◦ p1) : L
 N,

where p0, p1 are the canonical morphisms from X ×M Y to X, respectively Y .

Remark 2.3. It follows from the universal property of fibre products, and a routine diagram
chase, that composition of correspondences is associative up to canonical isomorphism.

Proposition 2.4. Let X
g
→M

h
← Y be morphisms in C, and suppose that h is an isogeny. Let

(W = X ×M Y, p0, p1) be the fibre product of X and Y over M . Then:

(a) the morphism p0 is an isogeny;

(b) if the image of g in Grp has finite kernel, then so does the image of p1;

(c) if g is an isogeny, then so is p1.

Proof. We first prove part (a). We have

ker p0 = {(1, y) ∈ X × Y : h(y) = g(1) = 1} ∼= kerh,

which is finite by assumption. Further, the kernel of g : X → M/hY is equal to p0W , so
(X : p0W ) 6 (M : hY ), which is also finite. So p0 is an isogeny.

Similarly, ker p1
∼= ker g, which proves part (b). Finally, part (c) is symmetric in X and Y ,

and so follows from part (a). 2

Definition 2.5. A skew correspondence is a correspondence c = (X, f, g) in which f is an
isogeny.

Proposition 2.6. If c : L 
 M and d : M 
 N are skew correspondences, respectively
commensurabilities, then d◦c : L
N is a skew correspondence, respectively a commensurability.
Moreover, if c and d are commensurabilities, then we have

i(d ◦ c) = i(d)i(c).

Proof. The first two assertions follow immediately from Propositions 2.4 and 2.1. The third
follows from Proposition 2.1 and a routine diagram chase, which we leave to the reader. 2

We will now use skew correspondences in order to construct a category Cskew in which all
isogenies are invertible. One can show that the class I of isogenies in our category C ‘admits a
calculus of right fractions’ in the language of Gabriel and Zisman [GZ67, ch. I, § 2]; our Cskew is
nothing but their ‘category C[I−1] of fractions’.

Definition 2.7. Let c = (X, f, g) : L 
 M and d = (Y, h, j) : L 
 M be two correspondences.
We say that c and d are equivalent if there exists a commensurability (W,p, q) : X 
 Y such
that fp = hq and gp = jq. We will call such a commensurability an equivalence between c and d.

Proposition 2.8. Being equivalent in the sense of Definition 2.7 is an equivalence relation.

Proof. The relation is clearly symmetric. Reflexivity is also clear, since an equivalence between
(X, f, g) and itself is given by (X, id, id) : X 
 X. Transitivity follows from Proposition 2.6. 2
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Note that Definition 2.7 describes the smallest equivalence relation on the set of
correspondences L
M for which (X, f, g) is equivalent to (W, fp, gp) whenever p : W → X is
an isogeny.

Definition 2.9. The inverse of a correspondence c = (X, f, g) : L
 M is defined to be c−1 =
(X, g, f) : M 
 L.

Lemma 2.10. Let c, c′ : L
M and d : M 
 N be correspondences. Then:

(a) the correspondence (d ◦ c)−1 : N 
 L is equivalent to the composition c−1 ◦ d−1;

(b) if c is equivalent to c′, then c−1 : M 
 L is equivalent to (c′)−1.

Proof. The proof is easy, and is left to the reader. 2

Proposition 2.11. Let c, c′ : L
 M and d, d′ : M 
 N be correspondences. Suppose that c is
equivalent to c′, and d is equivalent to d′. Then d ◦ c is equivalent to d′ ◦ c′.

Proof. Let c = (X, f, g), d = (Y, h, j).
First, we prove the proposition in the special case that d′ = d, and c′ = (W, fp, gp), where

p : W → X is an isogeny. Let (X×M Y, p0, p1) be the fibre product of the diagram X
g
→M

h
← Y ,

and let (W×MY, p′0, p′1) be the fibre product of the diagram W
gp
→M

h
← Y . Thus, d◦c = (X×MY,

fp0, jp1), and d ◦ c′ = (W ×M Y, fpp′0, jp
′
1) : L 
 N . Since gpp′0 = hp′1, the universal property

of fibre products guarantees the existence of a unique map i : W ×M Y → X ×M Y with the
property that pp′0 = p0i and p′1 = p1i:

W ×M Y
p′0

zz
i
�� p′1

��

W

p

��

X ×M Y

p0
zz

p1
$$

X

f{{ g
%%

Y

hzz
j ##

L M N.

Moreover, it is easy to see that (W ×M Y, p′0, i) is the fibre product of the diagram

W
p
→ X

p0
← X ×M Y . It follows from Proposition 2.4 that i is an isogeny, which proves that d ◦ c

is equivalent to d ◦ c′.
Now, we prove the proposition in the special case that d = d′, and c′ is arbitrary. Write ∼ for

the equivalence relation between correspondences. Let c′ = (X ′, f ′, g′), and let (W,p, q) : X 
 X ′

be an equivalence between c and c′. Since p is an isogeny, we have c ∼ (W, fp, gp) = (W, f ′q, g′q),
and since q is an isogeny, we have (W, f ′q, g′q) ∼ c′. We deduce from the special case of the
proposition that we just proved that d ◦ c ∼ d ◦ (W, fp, gp) ∼ d ◦ c′.

Now, we prove the general case. By Lemma 2.10 and by the special case we just proved, we
have

(d ◦ c)−1 ∼ c−1 ◦ d−1 ∼ c−1 ◦ (d′)−1 ∼ (d′ ◦ c)−1.

It therefore follows from Lemma 2.10(b), that d◦c ∼ d′ ◦c. By the special case of the proposition
that we proved already, we also have d′ ◦ c ∼ d′ ◦ c′, and the proposition follows. 2
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Proposition 2.12. If c and d are two equivalent commensurabilities, then i(c) = i(d).

Proof. This is an immediate consequence of Proposition 2.1. 2

The term ‘inverse’ is justified by the following result.

Proposition 2.13. Given a commensurability c = (X, f, g) : L 
 M , the composition c−1 ◦ c :
L
 L is equivalent to the commensurability (L, id, id), and the composition c ◦ c−1 : M 
M is
equivalent to the commensurability (M, id, id).

Proof. First, we prove the assertion on c−1 ◦ c. By definition, c−1 ◦ c = (X ×M X, fp0, fp1) :

L
 L, where (X×MX, p0, p1) is the fibre product of the diagram X
g
→M

g
←X. By the universal

property of the fibre product, we have a unique map i : X → X ×M X with the property that
p0i = p1i = id: X → X:

X

i

��
f

}}

X ×M X

p0

yy

p1

%%
X

f
��

g

%%

L
id

yy

id

%%

X

f
��

g

yy
L M L.

Since g is an isogeny, it follows from Proposition 2.4 that p0 is an isogeny. By Proposition 2.1,
the morphism i is also an isogeny, so (X, i, f) : X ×M X 
 L defines an equivalence between
c−1 ◦ c and (L, id, id).

The claim for c ◦ c−1 follows by applying the result just proved to c−1 in place of c. 2

Definition 2.14. We define Cskew to be the category with the same objects as in C, and
where, for objects L, M , the morphisms from L to M are the equivalence classes of skew
correspondences L 
 M . We also define Ccom to be the category with the same objects, and
where the morphisms from L to M are the equivalence classes of commensurabilities L 
 M .
It follows from Remark 2.3 and Propositions 2.8 and 2.11, that these are indeed categories, i.e.
that composition of morphisms is well-defined and associative.

Proposition 2.13 implies that Ccom is a (generally large) groupoid, i.e. every morphism in
Ccom is an isomorphism. In fact, we have the following sharper result.

Proposition 2.15. The category Ccom is the maximal subgroupoid of Cskew.

Proof. Let c = (X, f, g) : L 
 M be a skew correspondence, and let d = (Y, h, j) : M 
 L be
a two-sided inverse in Cskew. So d ◦ c is equivalent to the commensurability (L, id, id) : L 

L, while c ◦ d is equivalent to (M, id, id) : M 
 M , and in particular both compositions are
commensurabilities. We wish to prove that g is then necessarily an isogeny, and for this it is
enough to assume that C = Grp.

Let (Y ×LX, p0, p1) be the fibre product of the diagram Y
j
→ L

f
←X, and let (X×M Y, p′0, p′1)

be the fibre product of the diagram X
g
→M

h
← Y . Since c◦d is a commensurability, the morphism
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gp1 is an isogeny, so (M : gX) is finite. Also, since d◦ c is a commensurability, the morphism jp′1
is an isogeny, so ker p′1 is finite. But ker p′1 = {(x, 1) ∈ X × Y : g(x) = h(1) = 1} ∼= ker g. So g is
an isogeny, as claimed. 2

Theorem 2.16. Let L be an object in C. Then, the set GL of equivalence classes of
commensurabilities L 
 L forms a group under composition, and the map i induces a group
homomorphism GL→ Q>0.

Proof. The first assertion follows from the fact that GL = HomCcom(L,L). The second assertion
follows from Propositions 2.6 and 2.12. 2

3. Ring isogenies

In the present section we prove that an isogeny of rings induces an isogeny of multiplicative
groups.

We begin by recalling some standard ring theoretic facts, which can be found in [Lam01].

Definition 3.1. The Jacobson radical of a ring E, denoted by J(E), is the intersection of the
maximal left ideals of R.

Proposition 3.2. Let E be a ring, and y ∈ E. Then the following are equivalent:

(a) y ∈ J(E);

(b) y is contained in every maximal right ideal of E;

(c) y annihilates every simple left E-module;

(d) y annihilates every simple right E-module;

(e) 1− xyz ∈ E× for all x, z ∈ E.

Proof. See [Lam01, § 4]. 2

Lemma 3.3. Let I be a two-sided ideal of E with I ⊂ J(E). Then the map E× → (E/I)× is
surjective. Moreover, u ∈ E is a unit if and only if u+ I is a unit in E/I.

Proof. Let u+ I be a unit in E/I, and let v + I be its inverse. Then we have uv, vu ∈ 1 + I ⊂
1+J(E) ⊂ E×, so u has both a right inverse, namely v(uv)−1, and a left inverse, namely (vu)−1v.
It follows that u is a unit in E. 2

A ring is called simple if it has exactly two two-sided ideals. A ring E is called semisimple if
all short exact sequences of left E-modules split.

Any semisimple ring is a finite direct product of simple rings. If E is a semisimple ring, then
the opposite ring Eopp is also semisimple. A left-artinian ring is semisimple if and only if its
Jacobson radical is zero. If E is an arbitrary ring, then J(E/J(E)) = 0. In particular, if E is
left-artinian, then E/J(E) is semisimple. All of these facts can be found in [Lam01, §§ 3 and 4].

The next lemma is also proved as [Len85, Lemma 2.6]. We give an alternative proof.

Lemma 3.4. Let E and F be rings, let E→ F be a surjective ring homomorphism, and suppose
that E is left-artinian. Then the induced group homomorphism E×→ F× is surjective.
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Proof. First, suppose that E is semisimple. Then E can be written as the product of finitely
many simple rings. Since the kernel of E→ F is a two-sided ideal of E, it must be a subproduct,
and F may then be identified with the complementary subproduct. Surjectivity of E×→ F× is
now obvious.

We pass to the general case. Denote by I the image of J(E) in F , which is a two-sided ideal
of F . The map E→ F induces a surjective ring homomorphism E/J(E)→ F/I, where the ring
E/J(E) is semisimple, so by the first part of the proof the induced map (E/J(E))×→ (F/I)× is
surjective. By Lemma 3.3, the map E×→ (E/J(E))× is also surjective, so the map E×→ (F/I)×

induced by the composed ring homomorphism E→ F/I is surjective as well. Now let v ∈ F×, and
choose u ∈ E× that maps to v+ I ∈ (F/I)×. Then the image w of u in F satisfies w ≡ v mod I,
so w−1v belongs to the image 1 + I of 1 + J(E) in F . Let x ∈ 1 + J(E) map to w−1v. Then ux
maps to ww−1v = v, and we have ux ∈ E× because u ∈ E× and x ∈ 1 + J(E) ⊂ E×. This proves
surjectivity of E×→ F×, as required. 2

Lemma 3.5. Let E be a ring, and let I, J ⊂ E be two-sided ideals. Then the kernel of the
natural ring homomorphism E→ (E/I)× (E/J) equals I ∩J , and its image is the fibre product
E/I ×E/(I+J) E/J .

The proof is straightforward, and is left to the reader.

Lemma 3.6. Let E → F be a surjective ring isogeny. Then the induced group homomorphism
E×→ F× is surjective.

Proof. Let I be the kernel of the isogeny E → F . Then I is finite, and we may identify F with
E/I. Write End I for the endomorphism ring of the additive group of I. Let J and R, respectively,
be the kernel and the image of the ring homomorphism E → End I sending a ∈ E to the map
x 7→ ax. Then R, being a subring of End I, is a finite ring, J is a two-sided ideal of E, and we
have a ring isomorphism E/J → R. By Lemma 3.5, the combined map E→ F×R induces a ring
isomorphism ϕ : E/(I∩J)→ F×E/(I+J)R. Now we first prove that the map (E/(I∩J))×→ F×

is surjective. Let u ∈ F×. Write v for the image of u in (E/(I+J))×. Since R is finite and hence
left-artinian, by Lemma 3.4 we can choose w ∈ R× mapping to v ∈ (E/(I + J))×. Then (u,w)
belongs to F××(E/(I+J))× R

× = (F ×E/(I+J)R)×, so ϕ−1(u,w) is a unit of E/(I ∩J) that maps
to u ∈ F×. This proves that (E/(I ∩ J))×→ F× is surjective. From (I ∩ J) · (I ∩ J) ⊂ JI = 0 it
follows that for each x ∈ I ∩ J the element 1 + x has inverse 1− x and therefore belongs to E×;
this implies I ∩ J ⊂ J(E), so by Lemma 3.3 the map E× → (E/(I ∩ J))× is surjective. The
composed map E×→ F× is then surjective as well. 2

Part (a) of the following lemma also appears as [Lew67, Lemma 1]. We give a new proof
here.

Lemma 3.7. Let E be a subring of a ring F such that the index (F : E) of additive groups is
finite. Then:

(a) the ring F has a two-sided ideal I with I ⊂ E for which the ring F/I is finite;

(b) the index (F× : E×) is finite.

Proof. (a) Put I = {x ∈ F : FxF ⊂ E}. Then I is a two-sided ideal of F that is contained in E,
and we proceed to show that I has finite index in F . Put J = {x ∈ F : Fx⊂ E and xF ⊂ E}. Then
we have I ⊂ J ⊂ E ⊂ F . Denote by D the finite abelian group F/E, by EndD its endomorphism
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ring, and by (EndD)opp the ring opposite to EndD. Both of these rings are finite. The natural
left and right E-module structures on D induce a ring homomorphism E→ (EndD)×(EndD)opp

of which J is the kernel. It follows that J is a two-sided ideal of E of finite index in E. There is
a well-defined group homomorphism

J → Hom(D ⊗Z D,D)

x 7→ ((y + E)⊗ (z + E) 7→ yxz + E)

for x ∈ J , y, z ∈ F . Its kernel is I, and since D ⊗Z D is finite, the group J/I is finite. Because
each of F/E, E/J , J/I is finite, the ring F/I is finite. This proves part (a).

(b) Let I be as in part (a). Then F/I and (F/I)× are finite, so the kernel K (say) of the
natural group homomorphism F× → (F/I)× has finite index in F×. If x ∈ K, then x−1 ∈ K,
so both x and x−1 are in 1 + I, which is contained in E. This proves K ⊂ E×, so E× has finite
index in F× as well. This proves part (b). 2

We can now prove Theorem 1.3 of the introduction, which reads as follows.

Theorem 3.8. Let E→ F be a ring isogeny. Then the induced group homomorphism E×→ F×

is a group isogeny. If, in addition, the map E → F is surjective, then so is the induced map
E×→ F×.

Proof. The last assertion is Lemma 3.6. For the first assertion, let I and D be the kernel,
respectively the image of the map E → F . Then the kernel of E× → D× is contained in 1 + I
and therefore finite, and by Lemma 3.6 the image is all of D×. Hence, E× → D× is a group
isogeny. Further, the inclusion map D× → F× is obviously injective, while by Lemma 3.7(b)
the index of D× in F× is finite. Hence, D× → F× is a group isogeny. By Proposition 2.1, the
composed map E×→ F× is also a group isogeny. 2

4. Residually finite domains

This section is devoted to some properties of infinite domains all of whose proper quotients are
finite.

Lemma 4.1. Let Z be a domain such that for all non-zero m ∈ Z the ring Z/mZ is finite, let
Q be the field of fractions of Z, let V be a finite dimensional Q-vector space, and let L be a
sub-Z-module of V . Then for all non-zero m ∈ Z the Z-module L/mL is finite of order dividing
#(Z/mZ)dimQ V , with equality if L is finitely generated and Q · L = V .

Proof. Let m ∈ Z be non-zero. First suppose that L is finitely generated. Let S ⊂ L be a
finite subset that generates it as a Z-module, let T ⊂ S be a maximal subset that is linearly
independent over Q, and let M ⊂ L be the Z-module generated by T . Then M is Z-free of
rank #T , so M/mM is finite of order #(Z/mZ)#T 6 #(Z/mZ)dimQ V , with equality if T is a
Q-basis of V or, equivalently, if Q · L = V . By maximality of T , we can, for each s ∈ S, choose
a non-zero element ms ∈ Z such that mss ∈M , and m′ =

∏
s∈Sms is then a non-zero element of

Z satisfying m′L ⊂ M . Because M/m′M is finite, its subgroup m′L/m′M is finite as well, and
since the latter group is isomorphic to L/M and to mL/mM , we find that L/M and mL/mM
are finite of the same order. The group L/mM is finite of order #(L/M) ·#(M/mM), so L/mL
is also finite, of order

#(L/M) ·#(M/mM)

#(mL/mM)
= #(M/mM) = #(Z/mZ)#T 6 #(Z/mZ)dimQ V ,

with equality if Q · L = V .
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Passing to the general case, let U be the set of finitely generated sub-Z-modules L′ of L,
which is a directed partially ordered set by inclusion. Then L is the injective limit of all
L′ ∈ U , and L/mL is the injective limit of the modules L′/mL′, all of which have order
dividing #(Z/mZ)dimQ V . The injective limit has then also order dividing the same number.
This completes the proof of Lemma 4.1. 2

We now prove Theorem 1.4.

Theorem 4.2. Let Z be a domain such that for all non-zero m ∈ Z the ring Z/mZ is finite, let
Q be the field of fractions of Z, let A be a semisimple Q-algebra of finite vector space dimension
over Q, and let R ⊂ A be a sub-Z-algebra with Q · R = A. Then R is left-noetherian and
right-noetherian.

Proof. Let I be a left ideal of R. Then Q · I is a left A-ideal, so by semisimplicity of A it is
a direct summand of the left A-module A. Thus, the endomorphism ring of the latter module
contains an idempotent with image Q · I. Since the endomorphisms of the left A-module A
are the right multiplications by elements of A, it is equivalent to say that we can choose an
idempotent e ∈ A with Ae = Q ·I. We have e ∈ Q ·I, so we can choose a non-zero element m ∈ Z
with me ∈ I. Multiplying the chain of inclusions Rme ⊂ I ⊂ R by e on the right, which when
restricted to I is just the identity map, we obtain Rme ⊂ I ⊂ Re, where Rme = mRe because m
is central. By Lemma 4.1, the group Re/mRe is finite, so I/Rme is finite as well. Hence, I is, as
a left R-module, generated by me together with a finite set, and is therefore finitely generated.
This proves that R is left-noetherian. Applying this result to Aopp and Ropp, we find that R is
right-noetherian as well. 2

Example 4.3. If we assume Z 6= Q, then the semisimplicity condition on A is actually necessary
for the conclusion of Theorem 4.2 to be valid for all R. To see this, assume that A is not
semisimple, or equivalently that J(A) 6= 0, and choose a sub-Z-algebra T ⊂ A that is finitely
generated as a Z-module and satisfies Q·T = A. Then the ring R = T+J(A) is not left-noetherian
because J(A) is not finitely generated as a left R-ideal. If it were, then the non-zero Q-vector
space J(A)/J(A)2 would be finitely generated as a T -module and, hence, as a Z-module, which
for Z 6= Q is impossible.

Lemma 4.4. Let Z be an infinite commutative ring. Suppose that there exists a faithful Z-module
M with the property that for all non-zero m ∈ Z, M/mM is finite. Then Z is a domain.

Proof. Let a, b ∈ Z be non-zero. We have an exact sequence of Z-modules

M/bM
a
→M/abM →M/aM → 0.

The left and right terms are finite by assumption, so M/abM is finite. But since Z is infinite,
and M is a faithful module, M is also infinite, and so ab 6= 0. 2

The following result gives a description of the rings Z that occur in Theorem 1.2.

Theorem 4.5. Let Z be an infinite commutative ring. Then the following assertions are
equivalent:

(a) for each non-zero m ∈ Z, the ring Z/mZ is finite;

(b) the ring Z is a domain, and each non-zero prime ideal p of Z is finitely generated as an
ideal and has finite index in Z;
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(c) either Z is a field, or it is a one-dimensional noetherian domain with the property that for
every maximal ideal m of Z the field Z/m is finite.

Proof. First we prove that assertion (a) implies assertion (b). From assertion (a) it follows, by
Lemma 4.4 applied to M = Z, that Z is a domain. Now let p be a non-zero prime ideal, and let
m ∈ p be non-zero. Then we have mZ ⊂ p ⊂ Z, and since Z/mZ is finite, the index of p in Z is
finite and p/mZ is finite. Hence, p is generated by m together with a finite set, and is therefore
finitely generated.

Now we prove that assertion (b) implies assertion (c). By [Coh50, Theorem 2], each
commutative ring of which every prime ideal is finitely generated is noetherian. Hence, assertion
(b) implies that Z is noetherian. If p is a non-zero prime ideal, then Z/p is a finite domain, and
therefore a field. Hence, each non-zero prime ideal is maximal, so Z has Krull dimension 0 or 1;
in the former case it must be a field.

Finally, suppose that assertion (c) holds. Then, we will deduce assertion (a) by showing that
for any non-zero ideal I of Z, the ring Z/I is finite. Suppose that there exists a non-zero ideal I
in Z such that Z/I is infinite. Since Z is noetherian, we may, without loss of generality, assume
that I is maximal among ideals with this property. So Z/I is infinite, but its quotient by any
non-zero ideal is finite. It follows from Lemma 4.4, applied to M = Z/I, that Z/I is a domain,
so I is a prime ideal of Z. It is also non-zero, so assertion (c) implies that I is maximal, and
therefore that Z/I is finite, which is a contradiction. 2

5. On the units of semisimple rings

By a division ring we mean a ring D with the property D× = D\{0}. If D is a division ring and
n is a positive integer, then M(n,D) denotes the ring of n by n matrices over D. If G is a group,
then Gab denotes the maximal abelian quotient of G.

Lemma 5.1. Let n be a positive integer, let D be a division ring, and for x ∈ D× and
j ∈ {1, . . . , n}, let δj(x) ∈ M(n,D) be the diagonal matrix with jth entry equal to x and all
other entries equal to 1. Then each map δj is a group homomorphism D×→M(n,D)×, they all
induce the same group homomorphism δ̄ : D×ab→ M(n,D)×ab, and if n 6= 2 or #D 6= 2, then δ̄ is
surjective.

Proof. It is clear that each δj is a group homomorphism, and that for each x all δj(x) are
conjugate to each other, so all δj induce the same map D×ab→M(n,D)×ab. It is evidently surjective
if n = 1.

For i, j ∈ {1, . . . , n}, i 6= j, and x ∈ D, let Bij(x) ∈M(n,D) be the matrix obtained from the
unit matrix by replacing the (i, j)-entry by x; then one has Bij(x) ∈ M(n,D)×. The subgroup
of M(n,D)× generated by all Bij(x) is denoted by SLn(D).

By [Art57, ch. IV, Theorem 4.1], we have M(n,D)× = SLn(D) · δn(D×). Each Bij(x) is
a transvection of the right D-vector space Dn in the sense of [Art57, ch. IV, Definition 4.1].
Assume now that n > 2 or #D 6= 2. Then by [Art57, ch. IV, § 2] each transvection belongs to
[M(n,D)×,M(n,D)×], so SLn(D) ⊂ [M(n,D)×,M(n,D)×], and therefore

M(n,D)× = [M(n,D)×,M(n,D)×] · δn(D×).

This implies that δ̄ is surjective. 2
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Lemma 5.2. Let n be a positive integer, let D be a division ring and for each x ∈ D×

let ι(x) ∈ M(n,D)× be x times the identity matrix. Then ι is a group homomorphism
D×→ M(n,D)×, and the group

M(n,D)×/(ι(D×) · [M(n,D)×,M(n,D)×])

is abelian of exponent dividing n.

Proof. It is clear that ι is a group homomorphism. If we have n = #D = 2, then M(n,D)× is
a non-abelian group of order six, in which case M(n,D)×ab has order two and the conclusion of
the lemma is valid. Assume now that n 6= 2 or #D 6= 2, so that the map δ̄ from Lemma 5.1 is
surjective.

Denote by ῑ : D×ab → M(n,D)×ab the map induced by ι. For each x ∈ D× one has
ι(x) =

∏n
j=1 δj(x) and therefore ῑ(x) = δ̄(x)n, so the surjectivity of δ̄ yields

ῑ(D×ab) = δ̄(D×ab)n = (M(n,D)×ab)n,

and the lemma is proved. 2

The following result is due to Wedderburn [Wed21].

Theorem 5.3. Let D be a division ring with centre Z(D), let a ∈ D and let f ∈ Z(D)[X] be an
irreducible polynomial with leading coefficient 1 such that f(a) = 0. Put l = deg f . Then there
exist b1, b2, . . . , bl ∈ D× such that in D[X] one has

f = (X − b1ab−1
1 ) · · · · · (X − blab−1

l ).

Proof. See [Lam01, Theorem 16.9]. 2

Lemma 5.4. Let D be a division ring that has finite vector space dimension m2 over its centre
Z(D), where m is a positive integer. Then the group D×/(Z(D)× · [D×, D×]) is abelian of
exponent dividing m.

Proof. Since D×/(Z(D)× · [D×, D×]) is a quotient of D×ab, it is an abelian group. Let a ∈ D×.
It will suffice to show that the image ā of a in the quotient D×/(Z(D)× · [D×, D×]) has order
dividing m. The subfield Z(D)(a) of D is contained in a maximal subfield of D, and each maximal
subfield of D is an extension field of Z(D) of degree m, by [CR81, (7.22)]. Hence, we have
[Z(D)(a) : Z(D)] = l for some divisor l of m, and a is a zero of an irreducible polynomial
f ∈ Z(D)[X] of degree l with leading coefficient 1. Using Theorem 5.3 we find b1, . . . , bl ∈ D×
such that b1ab

−1
1 · · · · · blab−1

l = (−1)lf(0) ∈ Z(D)×. Mapping this identity to the abelian group
D×/(Z(D)× · [D×, D×]) we obtain āl = 1, so ām = 1, as required. This proves Lemma 5.4. 2

We can now prove Theorem 1.6 and deduce Theorem 1.5. We recall the statements.

Theorem 5.5. Let k be a field and let B be a central simple algebra over k. Let the dimension of
B as a vector space over k be d2, where d is a positive integer. Then the group B×/(k×[B×, B×])
is abelian of exponent dividing d.

Proof. By [Bou12, § 14, Theorem 1], there are a positive integer n and a division ring D with
Z(D) = k such thatB is, as an algebra over k, isomorphic to M(n,D). ThenD has finite degreem2

over k, and nm = d. By Lemma 5.4, the cokernel of the natural group homomorphism k×→ D×ab
has exponent dividing m, and by Lemma 5.2 the cokernel of the natural group homomorphism
D×ab → M(n,D)× has exponent dividing n. It follows that the cokernel of the natural group
homomorphism k×→ M(n,D)×ab has exponent dividing nm = d. 2
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Theorem 5.6. Let B be a semisimple ring that is finitely generated as a module over its centre
Z(B). Then B×/(Z(B)×[B×, B×]) is an abelian group of finite exponent.

Proof. In the case the semisimple ring B is simple, our hypothesis that it be finite over its centre
implies that it is a central simple algebra over Z(B), and the assertion follows from Theorem 5.5.
Generally, by [Lam01, ch. 1, Theorem 3.5] the ring B is a product of finitely many semisimple
rings that are simple, and the result follows from the case we just did. 2

6. Skew correspondences as morphisms

As announced in the introduction, in this section we elaborate upon an argument of Serre
(see e.g. [SPA16, Tag 0B0J]) to prove an equivalence between two categories of modules. The
main result of the section is Theorem 6.5. We will need the notion of a skew correspondence
(Definition 2.5), and the constructions of the categories Cskew and Ccom (Definition 2.14).

Notation 6.1. The following assumptions will be in force throughout the present section: Z is
an infinite commutative ring that satisfies the equivalent conditions of Theorem 4.5, with field
of fractions Q; further, A is a Q-algebra of finite vector space dimension over Q, and R is a
left-noetherian sub-Z-algebra of A with the property that Q ·R = A. By an R-module we shall
always mean a left R-module. We call a module finite if its cardinality is finite. If L is a finitely
generated R-module, let Ltors denote the set of all elements of L that have a non-zero annihilator
in Z. Since the image of Z in R is central, Ltors is a sub-R-module.

We remark that the hypotheses of § 2 on the category C are satisfied for the category of
finitely generated R-modules. We will tacitly use this fact throughout the rest of the paper.

Lemma 6.2. Let L be a finitely generated R-module, and let U be a sub-R-module. Then U is
finite if and only if it is contained in Ltors.

Proof. First, we show that Ltors is finite. Since R is left-noetherian, Ltors is finitely generated
as an R-module. So there exists a non-zero m ∈ Z that annihilates Ltors, and Ltors is then a
finitely generated module over the ring R/mR, which is finite by Lemma 4.1. This proves one
implication.

For the converse, let U ⊂ L be a finite sub-R-module. Then for each x ∈ U , the set {zx : z ∈ Z}
is finite, so the annihilator of x in Z has finite index in Z; in particular it is non-zero, since Z is
assumed to be infinite, so x ∈ Ltors. 2

Theorem 6.3. Let L, M be two finitely generated R-modules. Then there exists an isogeny of
R-modules L→M if and only if there exists a commensurability of R-modules L
M , and if
and only if there exists an isomorphism of A-modules Q⊗Z L ∼= Q⊗Z M .

Proof. First, suppose that f : L → M is an isogeny. Then cf = (L, id, f) : L 
 M is a
commensurability.

Next, suppose that we have a commensurability (X, f, g) : L 
 M . Then the kernels
and cokernels of f , g are finite R-modules, and so are Z-torsion modules by Lemma 6.2.
They are therefore annihilated by the functor Q ⊗Z −, so the maps Q ⊗Z f and Q ⊗Z g
are isomorphisms.
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Finally, suppose that we have an isomorphism φ : Q⊗ZL→ Q⊗ZM of A-modules. It follows
from Lemma 6.2 that the quotient map L→ L̄ = L/Ltors is an isogeny. Since L̄ is Z-torsion free,
it embeds into Q ⊗Z L, and similarly for M̄ . By ‘clearing denominators’, we can find non-zero
elements m1, m2 ∈ Z such that m1φ(L̄) is contained in M̄ ⊂ Q ⊗Z M , and φ(L̄) contains
m2M̄ . Since M̄/m1m2M̄ is finite by Lemma 4.1, it follows that m1φ : L̄ → M̄ is an isogeny.
Let m3 ∈ Z be a non-zero element that annihilates Mtors. Then m3M is canonically isomorphic
to M̄ , and since M/m3M is finitely generated and torsion, Lemma 6.2 implies that the embedding
M̄ ∼= m3M ⊂M is an isogeny. The composition of the three isogenies L→ L̄→ M̄ →M is an
isogeny by Proposition 2.1, as claimed. 2

Lemma 6.4. Let L, M be finitely generated R-modules, and let (X, f, g) and (Y, h, j) : L
 M
be equivalent skew correspondences. Let Q⊗Z f denote the map of A-modules Q⊗ZL→ Q⊗ZM
induced by f , and similarly for g, h, j. Then (Q⊗ g) ◦ (Q⊗ f)−1 = (Q⊗ j) ◦ (Q⊗ h)−1.

Proof. Let (W,p, q) : X 
 Y be an equivalence between (X, f, g) and (Y, h, j). Since p and q are
isogenies, Lemma 6.2 implies that Q⊗Z p and Q⊗Z q are both invertible. Moreover, we have

Q⊗Z f = (Q⊗Z h) ◦ (Q⊗Z q) ◦ (Q⊗Z p)−1,

Q⊗Z g = (Q⊗Z j) ◦ (Q⊗Z q) ◦ (Q⊗Z p)−1,

so (Q⊗ g) ◦ (Q⊗ f)−1 = (Q⊗ j) ◦ (Q⊗ h)−1. 2

Let RMod, respectively AMod denote the category of finitely generated R-modules,
respectively finitely generated A-modules. By Lemma 6.4, we may define a functor F from

RModskew to AMod by sending an R-module L to the A-module Q ⊗Z L, and an equivalence
class of skew correspondences represented by (X, f, g) : L 
 M to the map of A-modules
(Q ⊗ g) ◦ (Q ⊗ f)−1 : Q ⊗Z L → Q ⊗Z M . The verification that F respects composition of
morphisms, and thus does define a functor, is easy and is left to the reader.

Theorem 6.5. The functor F : RModskew → AMod is an equivalence of categories.

To prove the theorem, we will show in the next three lemmas that the functor F has dense
image, is full, and is faithful.

Lemma 6.6. Any element of AMod is isomorphic to F(L) for some R-module L.

Proof. Let V be an A-module with finite generating set S. Let L be the sub-R-module of V
generated by S over R. Then the A-module F(L) is isomorphic to V . 2

Lemma 6.7. Let L, M be finitely generated R-modules and let φ : F(L)→ F(M) be a morphism
of A-modules. Then there exists a skew correspondence c : L
M such that F(c) = φ.

Proof. Let L̄ be the image of L in Q ⊗Z L and let M̄ be the image of M in Q ⊗Z M . By
Lemma 6.2, the natural map f : L→ Q ⊗Z L gives rise to a commensurability cL = (L, id, f) :
L 
 L̄, and similarly we have a commensurability cM : M 
 M̄ . Since L̄ and M̄ are finitely
generated as R-modules, and since M̄ generates Q ⊗Z M over Q, we may choose a non-zero
m ∈ Z such that mφ(L̄) is contained in M̄ . Let g be the inclusion mφ(L̄) ⊂ M̄ , and define
the correspondence cφ = (L̄,m, gmφ) : L̄ 
 M̄ . It follows from Lemma 4.1 that cφ is a skew
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correspondence. By Proposition 2.6, the composition c = c−1
M ◦ cφ ◦ cL : L 
 M is also a skew

correspondence, and it is easy to see that F(c) = φ. 2

Lemma 6.8. Let L, M be finitely generated R-modules and let c, d : L 
 M be two skew
correspondences such that F(c) = F(d). Then c and d are equivalent.

Proof. Let c = (X, f, g) and d = (Y, h, j). We will show that c and d are equivalent by showing
that the fibre product (X ×L⊕M Y, p0, p1) : X 
 Y is a commensurability.

First, assume that the images of f , g, h and j are Z-torsion free. Then f and g factor
through X/Xtors, and similarly for h and j. By Lemma 6.2, the quotient maps X → X/Xtors

and Y → Y/Ytors are isogenies, so after replacing c and d by equivalent commensurabilities, we
may assume that X and Y are Z-torsion free. It then follows from Lemma 6.2 that f , g, h and
j are injective. Since F(c) = F(d), we have

(Q⊗Z g) ◦ (Q⊗Z f)−1 = (Q⊗Z j) ◦ (Q⊗Z h)−1,

and it follows that the canonical injection X ×L⊕M Y → X ×L Y is an isomorphism. By
Proposition 2.6, the fibre product (X ×L Y, p0, p1) : X 
 Y of the diagram X → M ← Y is
a commensurability, which proves this special case of the lemma.

We now prove the general case. By applying Lemma 6.2 with U = f(X)tors, and similarly
for g, h and j, we may choose a non-zero m ∈ Z such that the images of mf , mg, mh and mj
are Z-torsion free. It is easy to see that c is equivalent to (X,mf,mg) and d is equivalent to
(Y,mh,mj). So the general case follows from the special case above. 2

Proof of Theorem 6.5. The result follows by combining Lemmas 6.6–6.8. 2

Recall from Theorem 2.16 that if L is a finitely generated R-module, we let GL denote the
group of equivalence classes of commensurabilities L
 L under composition. It may be viewed
as the full subgroupoid of RModcom whose only object is L.

Corollary 6.9. Let L be a finitely generated R-module. Then the map GL→ AutA(Q⊗Z L),
(X, f, g) 7→ (Q⊗ g) ◦ (Q⊗ f)−1 is a group isomorphism.

Proof. By Proposition 2.15, the category RModcom is the maximal subgroupoid of RModskew.
So Theorem 6.5 implies that the functor F induces an equivalence of categories from RModcom

to the category whose objects are the finitely generated A-modules, and whose morphisms are
the A-module isomorphisms. The corollary follows by restricting F to the full subgroupoid GL
of RModskew. 2

7. Automorphisms of commensurabilities

It is in the present section that we construct ring and group commensurabilities out of module
commensurabilities. Here we retain the assumptions of Notation 6.1.

Let c = (N, f, g) : L
M be a correspondence of R-modules. In the introduction we defined
the endomorphism ring of c to be End c = {(λ, ν, µ) ∈ (EndL)× (EndN)× (EndM) : λf = fν,
µg = gν}. We also recall the correspondence e(c) = (End c, p0, p1) : EndL 
 EndM , given
by sending (λ, ν, µ) ∈ End c to λ and µ, respectively, and the induced correspondence of
automorphism groups a(c) : AutL 
 AutM . If f : L → M is an isogeny, we let cf be the
commensurability (L, id, f) : L
M , as in § 2.
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Lemma 7.1. Let f : L → M be an isogeny of finitely generated R-modules. Then the
correspondence e(cf ) : EndL
 EndM is a commensurability of rings.

Proof. We first show that p1 has finite kernel. We have

ker p1 = {(λ, λ, 0) ∈ EndL× EndL× EndM : fλ = 0} ∼= Hom(L, ker f),

which is finite since L is finitely generated and ker f is finite by assumption.
Next, we show that the image of p1 has finite additive index in EndM . The modules

Ltors and M/f(L) are finite, so by Lemma 6.2 there exist non-zero m1,m2 ∈ Z such that
m1 annihilates Ltors and m2 annihilates M/f(L). Thus, f : m1L→ m1M is injective, and the
image contains m1m2M , so f−1 defines a homomorphism m1m2M → m1L. Given µ ∈ EndM ,
we may therefore define λ : L → L, x 7→ f−1(m1m2µ(f(x))), which has the property that
(λ, λ,m1m2µ) ∈ End cf . So the image of p1 contains m1m2 EndM , which has finite additive
index in EndM by Lemma 4.1. This proves that p1 is an isogeny.

We now show that the image of p0 has finite additive index in EndL. Given any λ ∈ EndL,
we may define µ : M →M , y 7→ f(λ(f−1(m1m2y))), where m1,m2 are as before. We then have
(m1m2λ,m1m2λ, µ) ∈ End cf . So the image of p0 contains m1m2 EndL, which has finite additive
index in EndL by Lemma 4.1.

Finally, we show that p0 has finite kernel. We have

ker p0 = {(0, 0, µ) ∈ EndL× EndL× EndM : µf = 0}
∼= Hom(M/f(L),M) ∼= Hom(M/f(L),Mtors),

where the last isomorphism follows from Lemma 6.2 and the assumption that M/f(L) is finite.
Invoking Lemma 6.2 again, it follows that ker p0 is finite, so p0 is an isogeny. 2

Theorem 7.2. Let L, M be finitely generated R-modules. Then for any commensurability c =
(X, f, g) : L 
 M , the correspondence e(c) : EndL 
 EndM is a ring commensurability, and
the induced correspondence a(c) : AutL
 AutM is a group commensurability.

Proof. The correspondence e(c) is canonically isomorphic to the composition of e(cf )−1 : EndL

EndX with e(cg) : EndX 
 EndM . The correspondences e(cf ) and e(cg) are commensurabilities
by Lemma 7.1, so e(c) is a commensurability by Proposition 2.6. The assertion on a(c) follows
from Theorem 3.8 by passing to the unit groups. 2

Theorem 7.3. Let c : L
M , d : M 
 N be commensurabilities of R-modules. Then:

(a) the ring commensurability e(d◦c) : EndL
 EndN is equivalent (see Definition 2.7) to the
composition of ring commensurabilities e(d)◦ e(c), and the group commensurability a(d◦ c)
is equivalent to the composition a(d) ◦ a(c);

(b) we have

i(e(d ◦ c)) = i(e(d))i(e(c)),

i(a(d ◦ c)) = i(a(d))i(a(c)).

Proof. (a) Write c = (X, f, g) : L
M , d = (Y, h, j) : M 
 N . We claim that there is an isogeny

i : End c×EndM End d→ End(d ◦ c)
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that makes the following diagram of endomorphism rings commute:

End c×EndM End d

i

��|| ##
End c

�� ""

End(d ◦ c)

|| ##

End d

|| ��
EndL EndM EndN,

where all unlabelled morphisms are those defined in the introduction.
An element of End c×EndM End d is a pair of triples

((λ, ξ, µ), (µ′, υ, ν)),

λ ∈ EndL, ξ ∈ EndX, µ, µ′ ∈ EndM, υ ∈ EndY, ν ∈ EndN,

satisfying λf = fξ, µg = gξ, µ′h = hυ, νj = jυ, and the fibre product condition in fact demands

that µ = µ′.

An element of End(d ◦ c) is a triple (λ′, ζ ′, ν ′) ∈ EndL× End(X ×M Y )× EndN satisfying

λ′fp0 = ζ ′fp0, ν ′jp1 = jp1ζ
′, where p0, p1 are the canonical projection maps from X ×M Y to

X, respectively Y . Define

i : End c×EndM End d → End(d ◦ c)
((λ, ξ, µ), (µ, υ, ν)) 7→ (λ, (ξ, υ), ν).

A routine verification, which we leave to the reader, shows that the image of i is indeed contained

in End(d ◦ c).
To see that this definition of i makes the above diagram of endomorphism rings commute is

also routine, and will also be omitted. It remains to check that i is an isogeny. The correspondence

e(d) ◦ e(c) : EndL 
 EndN consists of End c ×EndM End d, together with the maps to EndL

and EndN . By Theorem 7.2, the correspondences e(c) and e(d) are commensurabilities, so

by Proposition 2.6 the correspondence e(d) ◦ e(c) is a commensurability. In particular, the

morphism End c×EndM End d→ EndL is an isogeny. Also, End(d◦ c)→ EndL is an isogeny by

Theorem 7.2. The fact that i is an isogeny therefore follows from Proposition 2.1. This proves

our claim.

The isogeny i defines an equivalence between e(d ◦ c) and e(d) ◦ e(c). This proves part (a) for

endomorphism rings. By passing to the unit groups and applying Theorem 3.8 to the isogeny i,

we also obtain part (a) for automorphism groups.

Part (b) immediately follows from part (a) by Propositions 2.12 and 2.6. 2

Proposition 7.4. Let L, M be finitely generated R-modules and let c, d : L 
 M be two

commensurabilities. If c is equivalent to d, then e(c) is equivalent to e(d), and a(c) is equivalent

to a(d).
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Proof. Let c = (X, f, g) and d = (Y, h, j). First, assume that an equivalence between c and d is

given by an isogeny p : Y → X, so that we have the following commutative diagram:

Y

p

��

h

��

j

!!
L X

g //foo M.

As before, write cf = (X, id, f) : X 
 L, and define cg, cp similarly. Then d is canonically

isomorphic to (cg ◦ cp) ◦ (c−1
p ◦ c−1

f ). By Theorem 7.3, the commensurability e(d) is equivalent to

e(cg) ◦ e(cp) ◦ e(cp)
−1 ◦ e(c−1

f ). By Proposition 2.13, the composition e(cp) ◦ e(cp)
−1 is equivalent

to (EndX, id, id) : EndX 
 EndX. So by Proposition 2.11 the commensurability e(cg) ◦ e(cp) ◦
e(cp)

−1 ◦ e(c−1
f ) is equivalent to e(cg)◦ (EndX, id, id)◦ e(c−1

f ), which is canonically isomorphic to

e(cg)◦e(c−1
f ). Applying Theorem 7.3 again, we find that e(cg)◦e(c−1

f ) is equivalent to e(cg ◦c−1
f ).

Finally, cg ◦ c−1
f is canonically isomorphic to c, and the special case of the proposition follows.

Passing to the general case, let (W,p, q) : X 
 Y be an equivalence between c and d. Since

p is an isogeny, c is equivalent to (W, fp, gp), and since q is an isogeny, d is equivalent to

(W,hq, jq) = (W, fp, gp). The result therefore follows from the special case we just did. 2

Let Rng denote the category of rings, and Grp the category of groups. Theorem 7.3 and

Proposition 7.4 imply that there is a functor from RModcom to Rngcom that takes an R-module

L to the ring EndL, and an equivalence class of R-module commensurabilities, represented by

a commensurability c, to the equivalence class of ring commensurabilities represented by e(c).

Further, Theorem 3.8 shows that we have the functors + and × from Rngcom to Grpcom which

take a ring to the additive, respectively multiplicative group of the ring. Finally, Propositions 2.12

and 2.6 imply that we have the functor i from Grpcom to the group Q>0, thought of as a groupoid

with one object. To summarise, we have the functors of groupoids

RModcom
End // Rngcom

+ //
×
// Grpcom

i // Q>0. (7.5)

Let L be a finitely generated R-module and let V denote the A-module Q ⊗Z L. The

isomorphism of Corollary 6.9 and the functors (7.5) then induce group homomorphisms

AutA V ∼= GL → Q>0,

c 7→ i(e(c))

c 7→ i(a(c)).

(7.6)

Lemma 7.7. Let L be a finitely generated R-module, write L̄ = L/Ltors and let f : L → L̄

denote the quotient map. Then the isomorphism in RModcom given by the commensurability

(L, id, f) : L
 L̄ induces an isomorphism GL → GL̄ that commutes with the maps GL → Q>0

and GL̄→ Q>0 defined in (7.6).

Proof. Let t denote the commensurability L
id
← L → L̄. Then the isomorphism GL → GL̄ is

given by composition on the right with t and on the left with t−1. It follows from Theorem 7.3,

Propositions 2.6 and 2.12 that this isomorphism commutes with the maps (7.6). 2
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Proposition 7.8. Let L be a finitely generated R-module and denote the A-module Q ⊗Z L
by V . Let α be an element of Z(EndA V )× ⊂ AutA V ∼= GL. Then its image in Rngcom under

the first functor of (7.5) is the identity morphism on EndL.

Proof. By Lemma 7.7, we may assume that L is Z-torsion free. Thus, L injects into V = Q⊗Z L.

For any sub-R-module U of V , write EU = {φ ∈ EndA V : φU ⊂ U}. Then the injection L� V

induces a map EndR L→ EndA V , which is injective and whose image is exactly EL.
Let α ∈ AutA V be arbitrary. Then the isomorphism AutA V ∼= GL identifies α with the

equivalence class of commensurabilities represented by c = (L∩α−1L, i, α) : L
 L, where i : L∩
α−1L→ L is the inclusion map. We have

End c = {(λ0, λ1) ∈ EndA V × EndA V : λ0 ∈ EL ∩ Eα−1L, λ1 ∈ EαL ∩ EL, λ0 = α−1λ1α } .

The commensurability e(c) is then of the form (End c, p0, p1) : EndL 
 EndL, where

p0 : (λ0, λ1) 7→ λ0 and p1 : (λ0, λ1) 7→ λ1 = αλ0α
−1.

It follows that if α is an element of Z(EndA V )×, then p0 and p1 are equal. In this case,

the commensurability (End c, id, p0) : End c 
 EndL defines an equivalence between e(c) and

(EndL, id, id) : EndL
 EndL, the identity morphism on EndL in Rngcom. 2

The following result is an immediate consequence of Proposition 7.8.

Corollary 7.9. The two group homomorphisms AutA V → Q>0 of (7.6) factor through

AutA V/Z(EndA V )×.

Remark 7.10. The computation in the proof of Proposition 7.8 shows that the group

homomorphism i ◦ e : AutA V → Q>0 is given by

α 7→ (EL : EαL ∩ EL)

(EL : EL ∩ Eα−1L)
,

and analogously for i ◦ a.

8. The case of semisimple algebras

In this section, we prove our main results. We begin with Theorem 1.2. We recall the statement.

Theorem 8.1. Let Z be an infinite domain such that for all non-zero m ∈ Z the ring Z/mZ

is finite, let Q be the field of fractions of Z, let A be a semisimple Q-algebra of finite vector

space dimension over Q, let R ⊂ A be a sub-Z-algebra with Q ·R = A and let L, M be finitely

generated R-modules. Then:

(a) there is an R-module commensurability L
 M if and only if the A-modules Q ⊗Z L and

Q⊗Z M are isomorphic;

(b) if c : L 
 M is an R-module commensurability, then e(c) : EndL 
 EndM is a ring

commensurability, and a(c) : AutL
 AutM is a group commensurability;

(c) if c, c′ : L
M are R-module commensurabilities, then one has

i(e(c)) = i(e(c′)), i(a(c)) = i(a(c′)).
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Proof. By Theorem 4.2, the ring R is left-noetherian, so the assumptions of Notation 6.1

are satisfied. Parts (a) and (b) of the theorem therefore follow from Theorems 6.3 and 7.2,

respectively.

We now prove part (c). Let c, c′ : L
M be R-module commensurabilities. By Theorem 7.3,

the assertion of part (c) is equivalent to the statement that

i(e(c−1 ◦ c′)) = i(a(c−1 ◦ c′)) = 1.

So we may, without loss of generality, assume that L = M , and it suffices to show that the

homomorphisms

i ◦ e, i ◦ a: AutA V ∼= GL→ Q>0

defined in (7.6) are trivial. Here V denotes the A-module Q⊗Z L.

Let B denote the Q-algebra EndA V , so that GL = B×. Since Q>0 is abelian, both

homomorphisms i ◦ e and i ◦ a factor through B×/[B×, B×]. By Corollary 7.9, they also factor

through B×/Z(B)×. Since A is a semisimple ring, and since V is a finitely generated A-module, it

follows that V is a finite direct sum of simple modules, so by Schur’s lemma B is a direct product

of matrix rings over division rings, and in particular a semisimple ring. By Theorem 5.6, the

quotient B×/(Z(B)×[B×, B×]) is an abelian group of finite exponent. Since Q>0 is torsion-free,

any homomorphism B×/(Z(B)×[B×, B×])→ Q>0 must be trivial. 2

Example 8.2. The following example demonstrates that if we replace the semisimplicity

assumption on A by the condition that R be left-noetherian, then the conclusion of

Theorem 1.2(c) need no longer hold.

Let R =
(Z Z

0 Z
)
, and A = Q⊗Z R. Let L be a free R-module of rank one, set V = Q⊗Z L and

B = EndA V . We have EndL ∼= Ropp, and similarly

B× ∼= (Aopp)× ∼=
(
Q× 0
Q Q×

)
.

Recall from (7.6), that i ◦ e defines a group homomorphism from B× to Q>0, which factors

through B×/(Z(B)× · [B×, B×]). The map
(
a 0
b c

)
7→ c/a defines an isomorphism of this quotient

with Q×. For α =
(

1 0
0 c

)
, one easily computes, using Remark 7.10, that i(e(α)) = i(a(α)) = |c|. It

follows that both i ◦ e and i ◦ a map
(
a 0
b c

)
to |c/a|, and are therefore far from trivial.

We now deduce Theorem 1.1.

Theorem 8.3. Let G be a finite group, let V be a finitely generated Q[G]-module, and put

S = {L : L is a finitely generated Z[G]-module with Q⊗Z L ∼= V as Q[G]-modules}. Then there

exists a unique function ia : S × S → Q>0 such that:

(a) if L, L′, M , M ′ ∈ S and L ∼= L′, M ∼= M ′, then ia(L,M) = ia(L′,M ′);

(b) if L, M , N ∈ S, then ia(L,M) · ia(M,N) = ia(L,N);

(c) if M ∈ S, and L ⊂M is a submodule of finite index, then with H = {σ ∈ AutM : σL = L}
and ρ : H → AutL mapping σ ∈ H to σ|L, one has

ia(L,M) =
(AutM : H) ·# ker ρ

(AutL : ρH)
.

344

https://doi.org/10.1112/S0010437X1600823X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600823X


Commensurability of automorphism groups

Proof. Existence immediately follows from Theorem 8.1: for L,M ∈ S, we may define
ia(L,M) = i(a(c)) for any commensurability c : L 
 M . In particular, property (c) follows by
taking the commensurability c = (L, id, i) : L
M , where i : L→M is the inclusion map, and

noting that in this case, a(c) is the commensurability AutL
ρ
← H � AutM .

To show uniqueness, observe that the conditions of the theorem imply that the function ia,
if it exists, is uniquely determined by its values on Z-free modules. Indeed, if m1 and m2 are the
exponents of the Z-torsion submodule of L, respectively of M , then condition (b) requires that

ia(m1L,L) ia(L,M) = ia(m1L,m2M) ia(m2M,M).

Condition (c) determines the values of ia(m1L,L) and ia(m2M,M), so ia(L,M) is determined
by ia(m1L,m2M). Clearly, the modules m1L and m2M are both Z-free.

But if L, M are Z-free, and Q⊗Z L ∼=Q[G] Q⊗ZM , then there exists an embedding L�M
with finite index, in which case ia(L,M) is determined by conditions (a) and (c). 2

The first interesting case of Theorem 1.1 is already when G is the trivial group, so that
finitely generated Z[G]-modules are just finitely generated abelian groups.

Proposition 8.4. Let L, M be finitely generated abelian groups. Then:

(a) there exists a commensurability L
M if and only if L and M have the same rank;

(b) if L ∼= Zn ⊕ L0 and M ∼= Zn ⊕M0, where L0 and M0 are finite abelian groups, then

ia(L,M) =
(#M0)n ·# AutM0

(#L0)n ·# AutL0
.

Proof. Part (a) immediately follows from Theorem 1.2(a).
We now prove part (b). First we compute ia(Zn, L). The split exact sequence

0→ L0→ L
f
→ Zn→ 0

induces a surjective map

AutL→ AutL0 ×AutZn,

whose kernel is easily seen to be canonically isomorphic to Hom(Zn, L0). It follows that if c
is the commensurability (L, f, id) : Zn 
 L, then the map Aut c → AutL is an isomorphism,
while the map Aut c→ AutZn is onto, with kernel of cardinality # Hom(Zn, L0) ·# AutL0 =
(#L0)n ·# AutL0. Hence, ia(Zn, L) = i(a(c)) = (#L0)n ·# AutL0.

It follows from the above computation that

ia(L,M) =
ia(Zn,M)

ia(Zn, L)

=
(#M0)n ·# AutM0

(#L0)n ·# AutL0
,

as claimed. 2
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