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Computing Jacobi forms

Nathan C. Ryan, Nicolás Sirolli, Nils-Peter Skoruppa and Gonzalo Tornaŕıa

Abstract

We describe an implementation for computing holomorphic and skew-holomorphic Jacobi forms
of integral weight and scalar index on the full modular group. This implementation is based on
formulas derived by one of the authors which express Jacobi forms in terms of modular symbols
of elliptic modular forms. Since this method allows a Jacobi eigenform to be generated directly
from a given modular eigensymbol without reference to the whole ambient space of Jacobi forms,
it makes it possible to compute Jacobi Hecke eigenforms of large index. We illustrate our method
with several examples.

1. Introduction

Jacobi forms play a central role in the theory of automorphic forms (for example, via the
Fourier–Jacobi expansion of orthogonal modular forms), in quantum field theory (where they
appear as characters of infinite-dimensional Lie algebras) and in algebraic geometry (where
they provide an indispensable tool for the construction of functions with prescribed behavior of
their divisors). A philosophical reason for this might be that any given space of scalar-valued
or vector-valued elliptic modular forms of integral or half-integral weight can be naturally
embedded into a space of Jacobi forms of integral weight and lattice index on the full modular
group [14].

In addition to their centrality and importance, they have the striking property that there
are various methods to compute their Fourier expansions or even to describe them by explicit
formulas. The main techniques to compute Jacobi forms are: theta blocks [5]; pullback of
Jacobi forms of lattice index of singular or critical weight, where the latter are essentially
invariants of Weil representations of SL(2,Z) [1]; the Taylor expansion of a Jacobi form around
z = 0 (see, for example, [13]); and modular symbols [9, 11, 12]. In this paper we describe an
implementation based on the latter.

Why do we focus on the modular symbol method? Theta blocks work nicely for small weights
and produce appealing explicit formulas, but miss more and more Jacobi forms the larger
the weight becomes. Similarly, it is not yet clear in what generality the most recent method
of pulling back singular and critical weight Jacobi forms of lattice index works. The Taylor
expansion method always works and is easy to implement but becomes computationally harder
as the index and, accordingly, the dimension of the spaces of Jacobi forms increase. In contrast,
the modular symbol method allows one to compute directly a desired Jacobi eigenform without
having to generate first a whole space of Jacobi forms and then cut it down in a second step to
the eigenspace one is looking for. More precisely, we start with a modular symbol representing
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an elliptic eigen-newform we are interested in. The articles referenced above that are related to
the modular symbol method propose closed formulas for the Jacobi newform associated to this
elliptic modular form. This allows, for example, for an automatic generation of Tunnell-like
formulas for (the squares of) the central values of the L-function attached to the twist of a
given elliptic curve over the rationals.

Whereas a ready-to-compute description of Jacobi forms in terms of modular symbols is
given in [12] for weight k = 2 (based on the results in [11]), the formulas in [9], which cover
weights k > 3, need some reformulation along the lines of [12]. Since the necessary steps for
this are not completely obvious we found it worthwhile to deduce and describe these steps in
detail in this note. The resulting formulas are summarized in Theorem 4.15.

The paper is organized as follows. We begin by discussing a couple of examples. After showing
the kind of data the algorithm can produce, we give some background to Jacobi forms and
then proceed to state and prove the mentioned formula we implemented. We then highlight
some details of our implementation and conclude with an Appendix of various tables as proof
of concept of our formulas and implementations. The implementation of the formula we derive
is available at [8].

2. Examples

We start with some examples that we computed via an implementation of (5.5). These two
examples are two whose correctness can be checked independently as they have been computed
elsewhere in the literature.

First, we construct the (unique up to normalization) holomorphic Jacobi cuspform φ2,37 of
weight 2 and index 37. The coefficients in this case are indexed by pairs of integers n, r so that
r2 < 4 · 37 · n. The n are the exponents of q = e2πiτ (τ ∈ H) and the r are the exponents of
ζ = e2πiz (z ∈ C):

φ2,37(τ, z) = q(−2 (ζ + ζ−1) + 4 (ζ2 + ζ−2) + 3 (ζ4 + ζ−4)

+ 3 (ζ5 + ζ−5)− 4 (ζ6 + ζ−6)− 4 (ζ7 + ζ−7)

− (ζ8 + ζ8) + 6 (ζ9 + ζ−9) + 3 (ζ11 + ζ−11) + 3 (ζ12 + ζ−12))

+ q2 ( 4 (ζ + ζ−1) + (ζ2 + ζ−2)− (ζ3 + ζ−3)− 6 (ζ4 + ζ−4)

− (ζ5 + ζ−5) + 2 (ζ6 + ζ−6)− 4 (ζ7 + ζ−7) + 6 (ζ8 + ζ−8)

+ (ζ11 + ζ−11)− 2 (ζ12 + ζ−12) + (ζ13 + ζ−13)

− 3 (ζ14 + ζ−14) + (ζ15 + ζ−15) + 2 (ζ16 + ζ−16)− (ζ17 + ζ−17))

+ . . . .

More coefficients can be found in Table A.1. These coefficients can be independently checked
by comparing them to [3, Table 4].

Second, we construct the holomorphic cuspform φ10,1 of weight 10 and index 1. In this case
the Fourier expansion is indexed by pairs of integers n, r so that r2 < 4 ·1 ·n, with the notation
otherwise as above:

φ10,1(τ, z) = q(−2 + (ζ + ζ−1))

+ q2 ( 36− 16 (ζ + ζ−1)− 2 (ζ2 + ζ−2))

+ q3 (−272 + 99 (ζ + ζ−1) + 36 (ζ2 + ζ−2) + (ζ3 + ζ−3))

+ . . . .

More coefficients can be found in Table A.3. These coefficients can be independently checked by
comparing them to the first coefficient in the Fourier–Jacobi expansion of the Siegel modular
cuspform of degree 2, weight 10, and level 1 (see, for example, [6, Maass form of weight 10]).
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3. Jacobi forms

The basic reference for holomorphic Jacobi forms is the book of Eichler and Zagier [3], whereas
for skew-holomorphic Jacobi forms we refer the reader to [10]. Denote by J−k,m and J+

k,m

the spaces of holomorphic and skew-holomorphic Jacobi forms of weight k and index m,
respectively. Thus Jεk,m, for ε = ±1 and integers k > 2 and m > 1, is the space of smooth and
periodic functions φ(τ, z) with τ ∈ H, z ∈ C, having a Fourier expansion of the form

φ(τ, z) =
∑

∆,r∈Z, ε∆>0
∆≡r2 mod 4m

cφ(∆, r)e2πi(((r2−∆)/4m)u+((r2+|∆|)/4m)iv+rz) (τ = u+ iv), (3.1)

where the coefficients cφ(∆, r) depend on r only modulo 2m (see [3, Theorem 2.2]), and such
that

φ

(
−1

τ
,
z

τ

)
e−2πim(z2/τ) = φ(τ, z) ·

{
τk if ε = −1,

τ̄k−1|τ | if ε = +1.

This transformation formula, used twice, implies that cφ(∆,−r) = (−1)k−1 ε cφ(∆, r). Also

note that there is a skew-linear involution  : Jεk,m → Jεk,m, given by φ(τ, z) 7→ φ(−τ ,−z),
which satisfies cφ(∆, r) = cφ(∆, r).

As mentioned above, the Fourier coefficients are indexed by pairs of integers (∆, r mod 2m)
with r2 ≡ ∆ (mod 4m) and ∆ 6 0 if φ is holomorphic and ∆ > 0 if φ is skew-holomorphic. We
remark that, for holomorphic Jacobi forms like φ2,37 and φ10,1 in § 2, we have (r2 −∆)/4m =
(r2 + |∆|)/4m and so an alternative is to use Fourier coefficients aφ(n, r) = cφ(r2 − 4mn, r)
indexed by pairs of integers n, r with r2 − 4mn 6 0 and obtain a Fourier expansion of the
form

φ(τ, z) =

∞∑
n=0

qn
( ∑
r264mn

aφ(n, r) ζr
)

(q = e2πiτ, ζ = e2πiz),

as illustrated by those two examples. However, in what follows it will be more convenient to
index the coefficients as in (3.1), which works for both holomorphic as well as skew-holomorphic
Jacobi forms.

A form in Jεk,m is cuspidal if c(0, r) = 0 for every r. For k = 2 and ε = +1 there are certain
trivial cuspforms. These are those Jacobi cuspforms for which c(∆, r) is non-zero at most if
∆ is a perfect square (see the definition of Tr0 in [11, p. 514]). Their Fourier coefficients are
trivial to compute.

We denote by Sεk,m the subspace of Jεk,m consisting of the cuspidal forms which are orthogonal
to the trivial cuspforms. Let Sε2k−2(m) denote the space of classical holomorphic modular
cuspforms of weight 2k− 2 for Γ0(m) whose L-functions have functional equation with sign ε.
The following result was proved in [15, Theorem 5] when ε = −1. For the case ε = 1 it was
announced in [10, Main Theorem]; its proof will be given in [2].

Theorem 3.2. Assume k > 2. For any fixed fundamental discriminant ∆0 and any fixed
integer r0 such that ∆0 ≡ r2

0 (mod 4m) and sgn ∆0 = ε, there is a Hecke equivariant map

S∆0,r0 : Sεk,m → Sε2k−2(m)

given by

S∆0,r0(φ) =
∑
n>1

(∑
d|n

(
∆0

d

)
cφ

(
n2

d2
∆0,

n

d
r0

))
qn (q = e2πiτ ).

Some linear combination of these maps is injective, and its image comprises all newforms in
Sε2k−2(m). Furthermore, S∆0,r0 sends newforms to newforms.
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We remark that the sum of the images of the maps S∆0,r0 can be explicitly described. It
consists of the certain space introduced in [15]. Moreover, the theorem remains valid also for
Eisenstein series φ (with a suitable definition of the constant term of S∆0,r0(φ)).

4. Formulas

In [12], a formula is given that takes as input a cuspidal modular symbol σ of weight 2, a
fundamental discriminant ∆0 and a square root r0 of ∆0 mod 4m, and produces the (∆, r)th
coefficient of a Jacobi form of weight 2 and index m associated to σ for every discriminant ∆
such that ∆ and ∆∆0 are not squares. The formula is given as a sum of terms involving the so-
called intersection numbers of two geodesics, one connecting the roots of indefinite quadratic
forms of discriminant ∆∆0 and one induced by σ.

In this section we state and prove an extension of the formula in [12] to weight k > 3. We
also make it more suitable for computation. We start by fixing some notation and defining the
intersection number.

4.1. A pairing for polynomials

Given a non-negative integer w, let GL(2,C) act on the space C[X,Y ]w of homogeneous
polynomials of degree w by

(A · P )(X,Y ) = P (A−1 (XY )).

We let P (α) = P (α, 1) for α ∈ C and P (∞) = P (1, 0). Note that (A · P )(Aα) = P (α).
Given P1 =

∑w
l=0 alX

lY w−l and P2 =
∑w
l=0 blX

lY w−l polynomials in C[X,Y ]w, let

[P1 | P2] =

w∑
l=0

(−1)l
(
w

l

)−1

al bw−l.

Proposition 4.1. The bilinear pairing [· | ·] satisfies the following properties.
(i) [(xY −X)w | P ] = P (x) for every P ∈ C[X,Y ]w and x ∈ C.
(ii) [P1 | P2] = (−1)w [P2 | P1].

(iii) [A · P1 | A · P2] = det(A)−w [P1 | P2] for every P1, P2 ∈ C[X,Y ]w and A ∈ GL(2,C).

Proof. The first and second assertions are clear. To prove the third assertion, it suffices
to consider matrices A of the form

(
a 0
0 a′
)
, (0 1

1 0) and (1 b
0 1). The first two cases are easy, so let

A = (1 b
0 1), with b ∈ C, and assume P1 = XsY w−s and P2 = XtY w−t. Then

[A · P1 | A · P2] = [(X − bY )s Y w−s | (X − bY )t Y w−t]

=

s∑
l=w−t

(−1)l
(
w

l

)−1(
s

l

)
(−b)s−l

(
t

w − l

)
(−b)t−w+l

= (−1)s
s! t!

w!

bs+t−w

(s+ t− w)!

s∑
l=w−t

(−1)t−w+l

(
s+ t− w
t− w + l

)

= (−1)s
s! t!

w!

bs+t−w

(s+ t− w)!

s+t−w∑
i=0

(−1)i
(
s+ t− w

i

)

=

(−1)s
(
w

s

)−1

if s+ t− w = 0,

0 otherwise

= [P1 | P2].
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4.2. Modular symbols and the intersection number

Let k > 2 be an integer. Following [16], we denote by M2 the free abelian group generated by
symbols {α, β} with α, β ∈ P1(Q), modulo the relations

{α, β}+ {β, γ}+ {γ, α} = 0,

and modulo any torsion. We let M2k−2 = M2 ⊗ Z[X,Y ]2k−4. Then M2k−2 is a GL(2,Z)-
module, via

A · ({α, β} ⊗ P ) = {Aα,Aβ} ⊗A · P.

Let m be a non-negative integer. We let M2k−2(m) denote the space of modular symbols of
weight 2k − 2 and level m, that is, the quotient of Γ0(m)-coinvariants of M2k−2. It has finite
rank. Furthermore, M2k−2(m) comes equipped with the action of Hecke operators. We denote
the subspace of new modular symbols by Mnew

2k−2(m).
Given P ∈ Z[X,Y ]2k−4 and A ∈ GL(2,Z), let [P,A] denote the Manin symbol

[P,A] = A · ({0,∞}⊗ P ) ∈M2k−2(m).

By [16, Proposition 8.3] these symbols span M2k−2(m). This implies that every modular
cuspform f ∈ S2k−2(m) induces a Hecke equivariant map

If : M2k−2(m) −→ C

[P,A] 7→
∫ i∞
0

(f |2k−2[A])(t)P (t, 1) dt.

Let Z[P1(Q)] denote the free abelian group generated by symbols (α) with α ∈ P1(Q), and
let B2k−2 = Z[P1(Q)] ⊗ Z[X,Y ]2k−4. Then B2k−2 is a GL(2,Z)-module via

A · ((α)⊗ P ) = (Aα)⊗A · P.

We define B2k−2(m) to be the quotient of Γ0(m)-coinvariants of B2k−2. We have a map of
GL(2,Z)-modules ∂ : M2k−2(m)→ B2k−2(m) induced by

{α, β} ⊗ P 7→ ((β)− (α))⊗ P.

We let S2k−2(m) = ker ∂, and we let Snew
2k−2(m) = S2k−2(m) ∩Mnew

2k−2(m).

For ε = ±1 we denote by Mε
2k−2(m) the subspace where g =

(−1 0
0 1

)
acts as multiplication

by (−1)k−1ε. Given σ ∈M2k−2(m), we denote

σε = σ + (−1)k−1 ε (g · σ) ∈Mε
2k−2(m).

Finally, we define Sε2k−2(m) = S2k−2(m) ∩Mε
2k−2(m).

Let Q ∈ Z[X,Y ]2 be a binary quadratic form with integral coefficients. We define an
intersection number map CQ : M2k−2 → Q by

CQ · {α, β} ⊗ P = 1
2 (sgnQ(α)− sgnQ(β)) [P | Qk−2]. (4.2)

By Proposition 4.1, we have that CA·Q · (A · σ) = CQ · σ for every A ∈ GL(2,Z) and every
σ ∈M2k−2.

Remark 4.3. Assume that Q has positive discriminant, and write Q = (uX+vY )(wX+tY )
with u, v, w, t ∈ R. We associate to Q the Heegner cycle

CQ = sgn(ut− vw){−v/u,−t/w} ⊗Qk−2.

https://doi.org/10.1112/S1461157016000346 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000346


210 n. c. ryan, n. sirolli, n.-p. skoruppa and g. tornaŕıa

Then CQ · σ can be interpreted as an intersection number on C[L] ⊗ Z[X,Y ]2k−4, where L
is the set of oriented hyperbolic lines in the Poincaré upper half plane, and where a symbol
{α, β} is identified with the hyperbolic line with α as ‘starting point’ and β as ‘end point’.
Furthermore, when k = 2 the intersection number CQ · CR agrees with the one introduced
in [12].

4.3. Formulas for Fourier coefficients of Jacobi forms

For the rest of this section we assume that (∆0, r0) is a fixed m-admissible pair, that is, ∆0 is
a fundamental discriminant and r0 is an integer such that ∆0 ≡ r2

0 (mod 4m). Furthermore,
we assume that sgn(∆0) = ε.

The key idea of [11] and [9] for obtaining explicit formulas for Jacobi forms in terms of
modular symbols is to consider the Hecke equivariant map

Σ∆0,r0 : Sεk,m
S∆0,r0−−−−−→ Sε2k−2(m) −→ Hom(M2k−2(m)⊗ C,C)

f 7→ If

and to dualize it. Identifying Sk,m with its dual space via the map φ 7→ 〈·, φ〉, we get a Hecke
equivariant map Σ∗∆0,r0

: M2k−2(m) ⊗ C→ Sεk,m that satisfies

〈φ, Σ∗∆0,r0(σ)〉 = Σ∆0,r0(φ)(σε) (4.4)

for every σ ∈M2k−2(m) and every φ ∈ Sεk,m. By Theorem 3.2, since the map which associates
its periods to a modular form is injective, some linear combination of the maps Σ∗∆0,r0

is
surjective. Furthermore, every newform in Sεk,m can be obtained from some σ ∈ Sε,new

2k−2 .
From here on assume that k > 3, and let

bk,m =
2√
ε

(
2ε

mi

)k−2

,

where i =
√
−1.

We denote Qm = {[ma, b, c] : a, b, c ∈ Z}, where [a, b, c] represents the binary quadratic
form aX2 + bXY + cY 2 ∈ Z[X,Y ]2. Denote by χm,∆0 : Qm → {0, 1,−1} the genus character
introduced in [4, Proposition 1]. Given integers ∆, r, we let

Qm(∆, r) = {[ma, b, c] ∈ Qm : b2 − 4mac = ∆, b ≡ r mod 2m}.

Note that if ∆ 6= � and [ma, b, c] ∈ Qm(∆, r) then ac 6= 0.
With this notation in mind, given A ∈ SL(2,Z), we let L A

∆0,r0
: H×C→ C[X,Y ]2k−4 be the

kernel map defined in [9]. For fixed x ∈ C the function L A
∆0,r0

(·)(x) belongs to Sεk,m, and its

(∆, r)th Fourier coefficient is given by bk,m CA
∆0,r0

(∆, r)(x), where CA
∆0,r0

(∆, r) ∈ R[X,Y ]2k−4

is given by

CA
∆0,r0(∆, r)(x) =

∑
Q∈Qm(∆∆0,rr0)

A−1·Q=[a,b,c], ac<0

χm,∆0(Q) sgn(a) (A−1 ·Q)(x)k−2

+
∑

Q∈Qm(∆∆0,rr0)

A−1·Q=[0,b,c], 06c<N

FQ(x)−
∑

Q∈Qm(∆∆0,rr0)

A−1·Q=[a,b,0], 06a<N

GQ(x)

+ Z A
∆0,r0(∆, r)(x). (4.5)

Here N is a certain non-negative integer; FQ(X), GQ(X) are certain polynomials over Q of
degree at most k − 1 (they have explicit descriptions which we do not need). Furthermore,
Z A

∆0,r0
(∆, r)(x) is a correction term which we describe below.

The following result is proved in [9, Proposition 4].
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Proposition 4.6. The map L A
∆0,r0

is a kernel map, in the sense that it satisfies

〈φ,L A
∆0,r0(·)(x)〉 = Σ∆0,r0(φ)([Px, A]ε) (4.7)

for every φ ∈ Sεk,m and x ∈ C, where Px = (xY −X)2k−4 ∈ C[X,Y ]2k−4.

Remark 4.8. In the statement of [9, Proposition 4] there is a tiny mistake: in the left-hand
side of (4.7) the kernel map L A

∆0,r0
appears evaluated in −x, but it should be x.

The following lemma relates Σ∗∆0,r0
to the kernel map introduced above.

Lemma 4.9. For every P ∈ Z[X,Y ]2k−4 and A ∈ SL(2,Z), we have that

Σ∗∆0,r0([P,A])(τ, z) = bk,m/bk,m
[P | L A

∆0,r0(τ, z)]. (4.10)

Proof. By (4.4) and (4.7) we have

〈φ,L A
∆0,r0(·)(x)〉 = Σ∆0,r0(φ)([Px, A]ε) = 〈φ, Σ∗∆0,r0([Px, A])〉

for every φ ∈ Sεk,m. Hence, Σ∗∆0,r0
([Px, A]) = (L A

∆0,r0
(·)(x)). By the definition given in [9,

Proposition 4], there exist φl ∈ Sεk,m with real Fourier coefficients such that L A
∆0,r0

(·)(x) =

bk,m
∑
l φl x

l for every x ∈ C. This implies that

(L A
∆0,r0(·)(x)) = bk,m/bk,m

L A
∆0,r0(·)(x) (4.11)

for every x ∈ C. Since P (x) = [Px | P ] for any polynomial P ∈ C[X,Y ]2k−4, we conclude that

Σ∗∆0,r0([Px, A])(τ, z) = bk,m/bk,m L A
∆0,r0(τ, z)(x) = bk,m/bk,m [Px | L A

∆0,r0(τ, z)].

Now (4.10) follows by linearity, since the polynomials Px generate C[X,Y ]2k−4.

For a pair of integers ∆, r, we let ξ∆,r : P1(Q)→ R be the map given by

ξ∆,r(α) = γ(ζm,∆∆0,rr0,α,∆0
(k − 1) + (−1)k−1 ε ζm,∆∆0,rr0,−α,∆0

(k − 1)),

where ζm,∆,r,α,∆0(s) denotes the Dirichlet series defined in [9, p. 67], and where γ ∈ R is as
in [9, Proposition 4] (with k replaced by k − 1). By properties of these Dirichlet series, the
function ξ∆,r satisfies ξ∆,r(Aα) = ξ∆,r(α) for every A ∈ Γ0(m).

For A ∈ SL(2,Z), the correction term Z A
∆0,r0

(∆, r) ∈ R[X,Y ] appearing in (4.5) is given by

Z A
∆0,r0(∆, r) = ξ∆,r(A0)X2k−4 − ξ∆,r(A∞)Y 2k−4.

Lemma 4.12. For each ∆, r there is a map Ξ∆,r : B2k−2(m)→ R satisfying

Ξ∆,r(∂[P,A]) = [P | Z A
∆0,r0(∆, r)]

for every P ∈ Z[X,Y ]2k−4 and A ∈ GL(2,Z).

Proof. The correspondence (α) ⊗ P 7→ −ξ∆,r(α)P (α) induces a map Ξ∆,r : B2k−2(m)→ R,
since ξ∆,r(Aα) = ξ∆,r(α) for every A ∈ Γ0(m).

Given P ∈ Z[X,Y ]2k−4 and A ∈ GL(2,Z), we have

Ξ∆,r(∂[P,A]) = Ξ∆,r(((A∞)− (A0))⊗A · P ) = ξ∆,r(A0)P (0)− ξ∆,r(A∞)P (∞)

= ξ∆,r(A0) [P | X2k−4]− ξ∆,r(A∞) [P | Y 2k−4]

= [P | Z A
∆0,r0(∆, r)],

where we used that [P | X2k−4] = P (0) and [P | Y 2k−4] = P (∞).
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Proposition 4.13. Let P ∈ Z[X,Y ]2k−4 and let A ∈ SL(2,Z). Let φ ∈ Sεk,m be given by

φ = 1/bk,m Σ∗∆0,r0
([P,A]). Then for every ∆ such that ∆∆0 6= �, we have

cφ(∆, r) =
∑

Q∈Qm(∆∆0,rr0)

A−1·Q=[a,b,c], ac<0

χm,∆0
(Q) sgn(a) [A · P | Qk−2] + Ξ∆,r(∂[P,A]). (4.14)

Proof. Since ∆∆0 is not a square, the second and third summands of CA
∆0,r0

(∆, r)(x) in
(4.5) are empty. Hence using Lemmas 4.9 and 4.12, and (4.5), we get that

cφ(∆, r) = [P | CA
∆0,r0(∆, r)]

=
∑

Q∈Qm(∆∆0,rr0)

A−1·Q=[a,b,c], ac<0

χm,∆0
(Q) sgn(a)[P | (A−1 ·Q)k−2] + Ξ∆,r(∂[P,A]).

Since by Proposition 4.1 we have that [P | (A−1 ·Q)k−2] = [A · P | Qk−2], this completes the
proof.

With these preliminary results and notation in hand, we now prove the main formula, which
extends [12, Theorem 3] to weights k > 3.

Theorem 4.15. Given σ ∈ M2k−2(m), let φ = −1/bk,m Σ∗∆0,r0
(σ). Then for every ∆ such

that ∆∆0 6= �, we have that

cφ(∆, r) =
∑

Q∈Qm(∆∆0,rr0)

χm,∆0(Q)CQ · σ + Ξ∆,r(∂σ). (4.16)

Remark 4.17. When σ is cuspidal we have that Ξ∆,r(∂σ) = Ξ∆,r(0) = 0, and hence the
right-hand side of (4.16) becomes simpler. In particular, we do not need to compute
the Dirichlet series appearing in the definition of ξ∆,r(α). For completeness, though, we observe
that, for level 1, these Dirichlet series are partial zeta functions of quadratic number fields,
and for higher levels, when certain congruences in the summation have to be observed, they
become partial ray class zeta functions. And so, in principle, the required special values could
be computed.

Remark 4.18. Each summand in the right-hand side of (4.16) is well defined for σ ∈M2k−2,
but not for σ ∈ M2k−2(m). However, since Γ0(m) acts on Qm(∆∆0, rr0), by the Γ0(m)-
invariance of both the intersection number and the genus character, the right-hand side of
(4.16) is well defined for σ ∈M2k−2(m).

Remark 4.19. The proof given is based on results that require the hypothesis k > 3 (for
example, [9, Proposition 4]). When k = 2, Theorem 4.15 is valid if we assume furthermore
that σ ∈ S2k−2(m) and that ∆ 6= �; this is proved in [12, Theorem 3].

Proof. We assume without loss of generality that σ = [P,A]. Let Q ∈ Qm(∆∆0, rr0), and
denote A−1 ·Q by [a, b, c]. Note that ac 6= 0, since disc(A ·Q) = discQ 6= �. Since Q(A0) = c
and Q(A∞) = a, we have

CQ · [P,A] = CQ · ({A0, A∞}⊗A · P ) =
sgn(c)− sgn(a)

2
[A · P | Qk−2].
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We have that sgn(c) − sgn(a) is non-zero if and only if ac < 0, and in that case it equals
−2 sgn(a). Hence

CQ · [P,A] =

{
−sgn(a) [A · P | Qk−2], ac < 0,

0 otherwise.

Summing over all Q ∈ Qm(∆∆0, rr0), we conclude that∑
Q∈Qm(∆∆0,rr0)

χm,∆0
(Q)CQ · [P,A] = −

∑
Q∈Qm(∆∆0,rr0)

A−1·Q=[a,b,c], ac<0

χm,∆0
(Q) sgn(a) [A · P | Qk−2].

The result now follows from Proposition 4.13.

5. Details on the implementation

In Theorem 4.15 we stated a formula for computing Fourier coefficients of Jacobi forms. In
this section we describe the practical issues related to carrying out computations using that
formula. In particular, we rewrite this formula without making explicit mention of intersection
numbers, we describe why the support for the infinite sums in the formula is finite and we
identify which quadratic forms we need to consider when computing with the formula. We also
describe a few auxiliary things we implemented. The code is available at [8].

Again for this section, we assume that (∆0, r0) is a fixed m-admissible pair and that
sgn(∆0) = ε.

5.1. Ready-to-compute formulas

The formulas above are appealing but not so useful for computation. In the following lemma
we give the formula that we implement for computing the intersection numbers appearing
in (4.16).

Given σ ∈M2k−2, using that {α, β} = {∞, β} − {∞, α}, we can write

σ =
∑
i

ni {∞, si} ⊗ Pi. (5.1)

Lemma 5.2. Let σ ∈ M2k−2 be as in (5.1), and let Q be a binary quadratic form with
integral coefficients such that discQ 6= �. Then

CQ · σ = sgnQ(∞)
∑

Q(∞)Q(si)<0

ni [Pi | Qk−2]. (5.3)

Proof. By definition of the intersection number map CQ we have that

CQ · σ =
∑
i

ni CQ · ({∞, si} ⊗ Pi) =
∑
i

ni
sgnQ(∞)− sgnQ(si)

2
[Pi | Qk−2].

Since discQ 6= �, we have Q(∞)Q(si) 6= 0, hence (sgnQ(∞)− sgnQ(si))/2 is non-zero if and
only if Q(∞)Q(si) < 0, and in that case it equals sgnQ(∞).

Proposition 5.4. Given σ ∈ S2k−2(m) as in (5.1), let φ = −1/bk,m Σ∗∆0,r0
(σ). Then for

every ∆ such that ∆∆0 6= � we have that cφ(∆, r) = c̃(∆, r) + (−1)k−1 ε c̃(∆,−r), where

c̃(∆, r) =
∑
i

ni
∑

Q∈Qm(∆∆0,rr0)
Q(∞)>0, Q(si)<0

χm,∆0(Q) [Pi | Qk−2]. (5.5)
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Proof. Combining Lemma 5.2 and Theorem 4.15, we get that

cφ(∆, r) =
∑
i

ni
∑

Q∈Qm(∆∆0,rr0)
Q(∞)Q(si)<0

sgnQ(∞)χm,∆0(Q) [Pi | Qk−2].

Splitting the inner sum above, it is enough to show that∑
Q∈Qm(∆∆0,rr0)
Q(∞)<0, Q(si)>0

−χm,∆0
(Q) [Pi | Qk−2] = (−1)k−1 ε

∑
Q∈Qm(∆∆0,−rr0)
Q(∞)>0, Q(si)<0

χm,∆0
(Q) [Pi | Qk−2].

This follows by considering the bijection between the supports given by Q 7→ −Q.

5.2. Quadratic forms in the support

The sums in (5.5) are indexed by indefinite quadratic forms in Qm(∆∆0, rr0) with Q(∞) > 0
and Q(s) < 0. The following lemma shows that these sets are finite, and also gives explicit
bounds for the coefficients of the quadratic forms that we need to consider.

Lemma 5.6. Let Dmax > 0. Let Q = [a, b, c] be a quadratic form with a > 0. Assume that
0 < discQ 6 Dmax. Further, let s = p/q ∈ Q and Q(s) < 0. Then

a 6
Dmax q

2

4
,

b−2as−
√
Dmaxc < b < d−2as+

√
Dmaxe,⌈

b2 −Dmax

4a

⌉
6 c <

⌈
b2 −D0

4a

⌉
,

where D0 = (b+ 2as)2.

Proof. By hypothesis, q2Q(s) is a negative integer. Furthermore, q2Q(s) = a(p+ bq/2a)2 −
Dq2/4a > −Dq2/4a, where D = discQ. In particular, −1 > −Dq2/4a, which proves the
first inequality. The inequalities involving b follow from the fact that (−b−

√
D)/2a < s <

(−b+
√
D)/2a. The lower bound on c follows easily from the bound on D. The upper bound

on c is equivalent to the inequality D0 < D. The latter follows from the fact that

D0 = D + 4a(as2 + bs+ c) = D + 4aQ(s).

5.3. Every coefficient can be computed

As mentioned before, in order to compute the coefficient c(∆, r), the formulas given by (5.5)
require that ∆∆0 6= �. A reasonable question to ask, then, is whether or not it is possible to
compute every coefficient of a given Jacobi form. The following lemma answers the question
in the affirmative.

Lemma 5.7. Given an m-admissible pair (∆, r) there exists an m-admissible pair (∆1, r1)
with ∆1 a negative fundamental discriminant such that ∆∆1 6= �.

Proof. Let (∆0, r0) be any m-admissible pair with ∆0 a negative, odd fundamental
discriminant. If ∆∆0 6= �, we are done. Otherwise, let p be a prime such that p ≡ 1
mod gcd(4m,∆0,∆). Let ∆1 = p∆0 and r1 = r0. Then ∆1 is square-free and ∆1 ≡ 1 mod 4,
whence it is a negative fundamental discriminant. Furthermore, ∆1 ≡ ∆0 ≡ r2

1 mod 4m, and
∆1∆ = p∆0∆ 6= �. Hence (∆1, r1) satisfies the required conditions.
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5.4. Choice of m-admissible pair

The starting point for the formula in Proposition 5.4 is a choice of m-admissible pair (∆0, r0).
We find ∆0 among the negative fundamental discriminants that are squares modulo 4m if
the form we are computing is holomorphic, and among the positive fundamental discriminants
that are squares modulo 4m if the form is skew-holomorphic. Once a ∆0 is chosen, we compute
all the square roots of ∆0 modulo 4m that are less than 2m. In practice we choose the smallest
∆0 we can in order to keep the support of the sums in (5.5) as small as possible.

5.5. Genus character

The last part of formula (5.5) we have not described is the genus character. We remark
that the implementation of the formula for the genus character χm,∆0

(Q) as described in
[4, Proposition 1] is straightforward.

5.6. Effectiveness of the implementation

In this section we make some brief comments about range of Jacobi forms we have computed
using our implementation of the formulas proved above and an idea of the time involved to
carry out some of the computations. Timings are summarized in Table 1. The computations
are done using Sage 6.7 [17] and the Cython code posted at [8]. The code was run on an Intel
2.7 GHz processor running RHEL 7.0.0.

Table 1. Timings for the computation of particular examples of Jacobi forms, not including the time
to compute the modular symbol. We do not identify which particular form in each space we compute,
but instead aim to illustrate how the timing depends on the weight and the index. We do point out
that if a form in the Appendix is an element of a space in this table, the timing reported is for that
form.

Sample time to compute c(∆, r) for |∆| < ∆max

Space ∆max for an element of the space (s)

S−
2,37 10 000 38.5

S+
2,11 10 000 32.7

S+
2,15 1 000 9.51

S+
2,389 10 000 37.2

S+
2,5077 100 745

S−
10,1 1 000 87.4

S−
40,1 100 7.51

S−
50,1 100 9.1

S−
100,1 100 20.8

In order to illustrate the effectiveness of our method, we fixed the weight at 2 and computed
expansions of forms in various indices. We also fixed the index at 1 and computed expansions
of forms of various weights. As Table 1 shows, were able to compute fairly quickly in weight 2
and fairly high index and in index 1 and fairly high weight.

Appendix. Tables of coefficients

In this article we have given formulas for the Fourier expansion of Jacobi forms. Consider a
Jacobi form φ of weight k and index m. Then φ has a Fourier expansion of the form
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φ(τ, z) =
∑

∆,r∈Z, ε∆>0
∆≡r2 mod 4m

cφ(∆, r) e2πi(((r2−∆)/4m)u+((r2+|∆|)/4m)iv+rz) (τ = u+ iv),

where ε = −1 if φ is holomorphic and ε = 1 if φ is skew-holomorphic. The way our formula
(5.5) works is that it produces the coefficients cφ(∆, r). We point out that the coefficients
cφ(∆, r) depend only on ∆ and r (mod 2m); if k is even and m = 1 or prime, they only
depend on ∆. Furthermore, they satisfy that cφ(∆,−r) = (−1)k−1 ε cφ(∆, r).

Table A.1. Coefficients c(∆, r) of the holomorphic Jacobi cuspform in S−
2,37 corresponding to the

modular symbol {∞,−1/23} − {∞,−1/32}+ {∞,−1/34} − {∞, 0} ∈ S−
2 (37). The data in the third

column are the result of using (5.5) with ∆0 = −4 and r = 12. The data in the fourth column are the
result of using (5.5) with ∆0 = −3 and r = 21. NA means that ∆∆0 = � and our formula does not
apply. The values of the coefficients agree with those in [3].

∆ r c−4,12(∆, r) c−3,21(∆, r)

−3 21 1 NA
−4 12 NA 1
−7 17 −1 −1
−11 27 1 1
−12 32 −1 NA
−16 24 NA −2
−27 11 −3 NA
−28 34 3 3
−36 36 NA −2
−40 16 2 2
−44 20 −1 −1
−47 29 −1 −1
−48 10 0 NA

Table A.2. Coefficients c(∆, r) of the skew-holomorphic Jacobi cuspform in S+
2,11 corresponding to

the modular symbol {∞,−1/9} − 2{∞,−1/8}+ {∞, 0} ∈ S+
2 (11).

∆ r c(∆, r)

1 1 1
4 2 −3
5 7 5
9 3 −2

12 10 5
16 4 4
20 8 5
25 5 0
33 11 0
36 6 6
37 9 5
44 0 0
45 1 0
48 2 10
49 7 −3
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Table A.3. Coefficients c(∆, r) of the holomorphic Jacobi cuspform in S−
10,1 corresponding to the

modular symbol {∞, 0} ⊗ X14Y 2 ∈ S−
18(1). These coefficients agree with the first coefficient of the

Fourier–Jacobi expansion of the Siegel modular cuspform of degree 2, weight 10, and level 1.

∆ r c(∆, r)

−3 1 −1
−4 0 2
−7 1 16
−8 0 −36
−11 1 −99
−12 0 272
−15 1 240
−16 0 −1056
−19 1 253
−20 0 1800
−23 1 −2736
−24 0 1464
−27 1 4284
−28 0 −12 544
−31 1 6816
−32 0 19008
−35 1 −27 270
−36 0 4554
−39 1 6864
−40 0 −39 880
−43 1 66 013
−44 0 26 928
−47 1 −44 064
−48 0 −12 544

Table A.4. Coefficients c(∆, r) of the skew-holomorphic Jacobi cuspform in S+
2,15 corresponding to the

modular symbol {∞, 1/5}+{∞,−1/2}−{∞,−2/5}−{∞, 0} ∈ S+
2 (15). The values of the coefficients

are consistent with those in [7].

∆ r c(∆, r)

1 1 1
1 11 1
4 2 −2
4 8 2
9 3 −2

16 4 0
16 14 0
21 9 8
24 12 8
25 5 0
36 6 4
40 10 0
45 15 0
49 7 −1
49 13 1
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Table A.5. Coefficients c(∆, r) of the skew-holomorphic Jacobi cuspform in S+
2,389 corresponding

to the unique rational newform in S+
2 (389), which in turn corresponds to the elliptic curve E with

Cremona label 389a1. Note that for a fundamental discriminant ∆, c(∆, r) vanishes if and only if the
twist E∆ has positive rank, in accordance with the Birch–Swinnerton-Dyer conjecture.

∆ r c(∆, r)

1 1 0
4 2 0
5 303 1
9 3 0

13 205 −1
16 4 0
17 79 −1
20 172 1
24 56 1
25 5 0
28 240 −1
36 6 0
41 279 −1
44 40 −1
45 131 −1
49 7 0
52 368 −1
64 8 0
65 125 0
68 158 3
69 153 −1
73 97 −1
76 290 1
77 323 1
80 344 0
81 9 0
85 181 −1
93 69 0
96 112 −2
97 137 1
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