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It is known that the dispersion of colloidal particles in porous media is determined
by medium structure, pore-scale flow variability and diffusion. However, much less is
known about how diffusiophoresis, that is, the motion of colloidal particles along salt
gradients, impacts large-scale particle dispersion in porous media. To shed light on this
question, we perform detailed pore-scale simulations of fluid flow, solute transport and
diffusiophoretic particle transport in a two-dimensional hyper-uniform porous medium.
Particles and solute are initially uniformly distributed throughout the medium. The
medium is flushed at constant flow rate, and particle breakthrough curves are recorded
at the outlet to assess the macroscopic effects of diffusiophoresis. Particle breakthrough
curves show non-Fickian behaviour manifested by strong tailing that is controlled by
the diffusiophoretic mobility. Although diffusiophoresis is a short-time, microscopic
phenomenon owing to the fast attenuation of salt gradients, it governs macroscopic colloid
dispersion through the partitioning of particles into transmitting and dead-end pores. We
quantify these behaviours by an upscaled analytical model that describes both the retention
and release of colloids in dead-end pores and the observed long-time tailings. Our results
suggest that diffusiophoresis is an efficient tool to control particle dispersion and filtration
through porous media.
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1. Introduction

Natural and engineered porous media are typically characterised by complex porous
structures with stagnant flow regions that are not accessible by advection (Bear 1988).
Understanding how nano-sized and micro-sized colloidal particles, for example fine
powders, contaminants or biological materials, are transported along with nutrients or
dissolved solutes through porous media is not only of fundamental interest but also
important for technological applications such as groundwater remediation (Kahler &
Kabala 2019), the design of water filtration systems (Shin et al. 2017; Miele, de Anna &
Dentz 2019) and microfluidics for biomedical applications (Rasmussen, Pedersen & Marie
2020).

Diffusiophoresis (DP), that is, the motion of microscopic colloidal particles driven by
local gradients of salt concentration (Derjaguin et al. 1947), has been demonstrated both
theoretically (Prieve et al. 1984; Anderson 1989; Velegol et al. 2016; Ault, Shin & Stone
2018) and experimentally (Abécassis et al. 2008; Palacci et al. 2010; Kar et al. 2015;
Shin et al. 2016; Battat et al. 2019; Singh et al. 2020) as a particle manipulation tool
in simple microfluidic set-ups. The physical mechanisms that drive this physicochemical
phenomenon can be broken down to two components: chemiphoresis that occurs due the
osmotic pressure gradient along the surface of a charged particle (at the scale of the
particle) and electrophoresis arising due to the difference in the diffusivities between the
cation and the anion in the electrolyte solution (Prieve et al. 1984; Anderson 1989; Velegol
et al. 2016). Note that DP for uncharged colloidal particles occurs via chemiphoresis alone
(Derjaguin et al. 1947). Diffusiophoresis has been used to induce particle focusing (Shi
et al. 2016), separation (Shin et al. 2017; Shin, Warren & Stone 2018; Rasmussen et al.
2020; Jotkar & Cueto-Felgueroso 2021), banding (Staffeld & Quinn 1989) and trapping
(Singh et al. 2020).

Recent works have studied the impact of DP on colloid transport in microfluidic
channels connected to cavities filled with hydrogel (Doan et al. 2021; Sambamoorthy &
Chu 2023) or biofilm (Somasundar et al. 2023), or in a channel connected to a nano-porous
medium (Lee et al. 2020). In this paper, we focus on more complex geometries in
order to assess the impact of DP on hydrodynamic dispersion and particle filtration
in disordered porous media. We consider an intricate porous structure characterised by
dead-end pores (DEPs) that are connected via a network of percolating channels or
transmitting pores (TPs). Such DEP–TP structures lead to anomalous transport of passive
tracers (Bordoloi et al. 2022). To date, a fundamental understanding of the impact of
microscopic interactions of DP and the complexity and disorder of the porous medium on
particle transport is missing. We address this question using detailed numerical pore-scale
simulations and analytical modelling to elucidate how DP couples with the medium
structure to alter macroscopic particle transport. We provide a direct link between the
colloidal diffusiophoretic mobility and salt Péclet number to predict, without any fitting
parameter, the macroscopic colloidal transport at all times.

2. Numerical simulations

We study a fluid-saturated porous system where a particle suspension gets displaced by a
continuously injected salt solution. This particular system mimics a cleanup scenario of an
initially contaminated geological or biological porous medium. Nevertheless, the observed
transport mechanisms, and the results on particle dispersion, can be transferred to other
scenarios. The velocity experienced by each transported particle results from advection in
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Impact of diffusiophoresis on dispersion in porous media

the flow field u, which is controlled by the medium structure and imposed flow rate (Dentz
et al. 2011; de Anna et al. 2017; Dentz, Icardi & Hidalgo 2018), and from DP.

2.1. Governing equations
In the thin Debye layer limit, for dilute solutions with valence symmetric mono-valent
solutes, that is, for Z : Z electrolytes with Z = 1, like LiCl and NaCl, the diffusiophoretic
drift is proportional to the gradient of the logarithm of the solute concentration s

udp = Γp∇ ln s (2.1)

and the diffusiophoretic mobility Γp is approximately a constant. For completeness, we
mention that in the finite Debye layer limit Γp is proportional to the logarithm of the
solute concentration (Kirby & Hasselbrink 2004). Here, we consider dilute solutions in
the thin Debye layer limit, for which Γp is given by (Prieve et al. 1984; Anderson 1989)

Γp = ε(kBT)2

μ(Ze)2

{
β

Zeζ
kBT

+ 4 ln
[

cosh
(

Zeζ
4kBT

)]}
, (2.2)

where ε is the dielectric permittivity of the medium, μ is the dynamic viscosity of the
solution, kB is the Boltzmann constant, T is the absolute temperature, Z is the valence of
the constituent ions of the solute, ζ is the zeta potential of the particle, e is the proton
charge and β = (D+ − D−)/(D+ + D−) measures the difference in diffusivity D+ of
the cation and D− of the anion. The prefactor in (2.2) at room temperature is equal to
ε(kBT)2/μ(Ze)2 = 470 μm2 s−1. Expression (2.2) is valid for valence symmetric Z : Z
electrolytes. Note that Γp depends implicitly on the particle size because ζ is affected
by the absolute surface charge and size of the particle. The logarithmic dependence of
the diffusiophoretic drift udp on the solute concentration gradients ∇s allows for rapid
and efficient particle motion, even in low concentration areas. Positive values of Γp refer
to upward particle migration along the direction of the concentration gradient, whereas
negative values indicate downward migration along the concentration gradient.

In the low Reynolds number limit (Re � 1), the fluid–solute–particle dynamics is
governed by the Stokes equation and the equation of continuity for fluid flow assuming
an incompressible fluid

−∇p + μ∇2u = 0, (2.3a)

∇ · u = 0, (2.3b)

where μ is the dynamic viscosity of the fluid. The advection-diffusion equations for solute
and particle transport are (Ault et al. 2018)

∂s
∂t

+ ∇ · us = Ds∇2s, (2.3c)

∂c
∂t

+ ∇ · (u + udp)c = Dp∇2c, (2.3d)

where u is the two-dimensional velocity field, p is the pressure, s is the solute concentration
and c is the particle concentration, Ds and Dp are the diffusion coefficients of solute
and particles. Typically, solutes diffuse much faster than particles such that Ds � Dp.
The volumetric flux through the porous medium is denoted by U such that the average
pore velocity is ū = U/φ. The advection time over the mean pore length λ is defined by
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τv = λ/ū. We define the dimensionless position vector, pressure, time, velocity, volumetric
flux and diffusiophoretic mobility as

x = x′λ, p = p′ μū
λ

, t = t′τv, u = u′ū, U = U′ū, Γp = Γ ∗
p Ds. (2.4a–f )

With these definitions, (2.3a)–(2.3d) can be written as

−∇′p′ + ∇2u′ = 0, (2.5a)

∇ · u′ = 0, (2.5b)

∂s
∂t′

+ ∇′ · u′s = 1
Pes

∇′2s, (2.5c)

∂c
∂t′

+ ∇′ ·
(

u′ + Γ ∗
p

Pes
∇′s

)
c = 1

Pep
∇′2c, (2.5d)

where we used (2.1). The Péclet numbers, Pes = ūλ/Ds and Pep = ūλ/Dp compare the
characteristic diffusion time scales τDs = λ2/Ds and τDp = λ2/Dp with the advection time
τv . Our study focuses on the interaction of pore-scale heterogeneity and DP while we
ignore the interactions between the particles and the solid grains.

2.2. Porous medium
We consider a two-dimensional porous medium of length L = 167λ and width W = 100λ
shown in figure 1. The medium characterised by DEPs of different size connected to a
network of TPs, was generated using a solid-state de-wetting process (Salvalaglio et al.
2020; Bordoloi et al. 2022). It exhibits a complex pore structure interspersed among
disordered solid grains. The medium is statistically homogeneous with a porosity of φ =
0.39, and a narrow pore-size distribution of mean λ = 30 μm. Solutes typically diffuse and
dissipate gradients within pores over time scales shorter than the time τL = L/ū needed to
elute a pore volume (also referred to as the mean breakthrough time). The junctures of TPs
and DEPs serve as excellent candidates to retain gradients of solute concentration, which
in turn trigger DP.

2.3. Numerical set-up
The domain is initially saturated with solute at uniform concentration si = 0.1 mM and
particles at uniform concentration ci = 0.1 mM. While ci may be unrealistically large,
the specific value is not important here because particle concentration in the following is
normalised by ci. Thus, the results can be scaled to any desired (more realistic) initial
value. Interactions of the particles with the solid matrix are not considered. At time
t > 0, a sharp front of solute concentration sH = 10 mM is injected such that the ratio
χ = si/sH = 10−2. Fluid flow is solved for no-slip boundary conditions at the fluid–solid
boundary on the surface of the solid grains (see figure 1), by imposing the constant
volumetric flux U′ = φ at the left vertical boundary and constant pressure p′ = 0 at the
right boundary. For the solution of the solute and particle transport equations (2.3c) and
(2.3d), constant flux is imposed at the inlet boundary, and zero gradient at the outlet. We
use a finite element scheme to solve for the system of (2.3). For all the simulations shown
here, the unstructured mesh is built using 197 723 triangular elements, the maximum
size of which is 1 × 10−4 and minimum is 9 × 10−6. This corresponds to maximum and
minimum resolutions of 3.33λ and 0.3λ, respectively. An implicit second-order backward
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Figure 1. Hyper-uniform porous structure characterised by DEPs and TPs. Computational domain with white
spaces indicating solid grains (bottom).

differentiation formulation with adaptive time stepping is used. We have checked that
these results are numerically converged by performing simulations with up to 2 695 109
triangular elements with maximum and minimum element sizes of 1 × 10−4 and 6 × 10−6,
respectively.

The dimensionless simulation parameters are listed in table 1. For a realistic solute
diffusion coefficient of Ds = 103 μm2 s−1, this simulation scenario corresponds to Dp =
1 μm2 s−1, U = 25 μm s−1, Γp ∈ [−1.2, 0.6] × 103 μm2 s−1 and valence of the Z : Z
electrolyte of Z = 1 with a prefactor in (2.2) of ε(kBT)2/μ(Ze)2 = 470 μm2 s−1. Note
that salt diffusion coefficients are typically of the order of 103 μm2 s−1, for instance,
for LiCl and NaCl, Ds = 1600 μm2 s−1 and Ds = 1400 μm2 s−1, respectively. The
value Dp = 1 μm2 s−1 corresponds to spherical colloidal particles with diameters of
approximately 500 nm at standard room temperature (T = 300 K), according to the
Stokes–Einstein relation. To give a few examples, in some of the recent experiments
conducted in microfluidic channels (Battat et al. 2019; Singh et al. 2020), polystyrene
colloidal particles were driven by DP arising due to gradients in monovalent solutes like
NaCl and LiCl. Typical values for the diffusiophoretic mobility are |Γp| � 1000 μm2 s−1

(Williams et al. 2024).

3. Results and discussion

3.1. Diffusiophoretic particle trapping/extraction
Figure 2 shows the temporal evolution of the particle concentration field without DP
(Γ ∗

p = 0), and for diffusiophoretic trapping (Γ ∗
p < 0), and extraction (Γ ∗

p > 0). In the
absence of DP, the majority of the particles get dispersed through the TPs, leaving behind
a small fraction of particles that accumulate within the DEPs, where the flow is stagnant,
organised in convection rolls and described by closed streamlines (Bordoloi et al. 2022).
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L Domain length 167 λ
W Domain width 100 λ
φ Porosity 0.39
U′ Volumetric flux at inlet φ

Pes Solute Péclet number 1.923
Pep Particle Péclet number 1923
Γ ∗

p Diffusiophoretic mobility [−1.2, 0.6]
χ = si/sH Initial contrast in the salt concentration imposed 0.01

Table 1. Domain dimensions and parameters used in the numerical simulations.

Particle extraction Γp
∗ > 0

Particle trapping Γp
∗ < 0

No DP Γp
∗ = 0

(c)

(b)

(a)
t ~ 90τν t ~ 180τν t ~ 540τν t ~ 1.7 × 103τν

1 0 –
1

–
2

–
3

–
4

–
5

Figure 2. Temporal evolution of the dimensionless particle distributions log(c/ci) for (a) trapping, (b) no DP
and (c) extraction cases. White spaces indicate solid grains. Flow is from left to right. Note that τL/τv ≈ 167
such that these plots correspond to times 0.5τL, 1τL, 3τL, and 10τL, approximately.

The only mechanism through which these localised particles can escape into the TPs is
diffusion, the time scale of which is typically orders of magnitude larger than τL.

The injection of a sharp front of solute at a higher concentration results in local gradients
of solute concentration that drive DP within the DEPs. For Γ ∗

p < 0, that is, when particles
migrate from high to low solute concentrations, DP leads to the trapping of particles inside
the DEPs, as shown in figure 2(a).

When Γ ∗
p > 0, DP leads to particle mobilisation out of the DEPs because the particles

move towards the higher solute concentration zones in the TPs. This is seen in the particle
distributions shown in figure 2(c), where the particles within the DEPs rapidly escape the
DEPs and leave the domain from the right outlet. Figure 3 shows the time evolution of the
solute concentration at a point within a DEP close to the bottom of the DEP. The increase
or decrease of concentration due to DP occurs on the time scale τDs , which here is smaller
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101 102

t/τv

103 104

10–1
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c i

100
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1
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2
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5

Particle extraction
Γp > 0

Particle trapping

Γp < 0

No DP

Γp = 0

Figure 3. Temporal evolution of dimensionless particle concentration (c/ci) at an arbitrary point (indicated by
the arrow) within a DEP shown in the inset for Γ ∗

p < 0 (blue, trapping), Γ ∗
p = 0 (black, no DP) and Γ ∗

p > 0
(red, extraction). The particle concentrations shown in the inset are the same as in figure 2. Note that time here
is non-dimensionalised by τv , where τL/τv ≈ 167.

than τDp by a factor of 103. Thus, the action of DP on mass transfer between TPs and DEPs
is limited to relatively short initial times.

3.2. Breakthrough curves
Figure 4(a) shows the distribution of arrival times of particles at the outlet, also known as
breakthrough curves. Similar to Bordoloi et al. (2022), we observe two distinct transport
regimes for all the cases. At times of the order of τL, particles at the outlet are produced
by advection and dispersion from the TPs. For times t � τL, the arrival time distribution
deviates from the exponential decay predicted under the classical dispersion framework
(denoted by the dotted curve in figure 4a) and displays a power law tailing. This is
attributed to the particles that are initially trapped within the DEPs which can only
escape the closed streamlines via diffusion, the time scale of which is typically large of
the order of τDp � τv (here, Pe = 1923). For Γ ∗

p < 0, a larger number of particles are
trapped initially in the DEP, which manifests in a stronger tailing than the case without DP
(indicated by black). For Γ ∗

p > 0, particles are extracted from the DEP at initial times, and
thus the tailing is weaker than for Γ ∗

p ≤ 0. Note that, albeit unphysical, extreme values of
|Γ ∗

p | are chosen for the breakthrough curves in figure 4(a) to demonstrate the exaggerated
effects of DP. The range of physically relevant values was discussed earlier in § 2.

The arrival time distribution computed using numerical simulations is predicted
analytically by modelling this distribution as the superposition of the residence time
distributions in the TPs and DEPs (Bordoloi et al. 2022)

F(t′) = (1 − α)F0(t′) + α

∫ ∞

0
dτ

g(t′/τ)

τ
fD(τ ), (3.1)

where α is the effective fraction of particles in the DEPs after particle redistribution due to
DP at the short initial time interval, as discussed in the previous section. The first term on
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101 102 103

t/τv

104

10-4

F(t)
10-2

100
(a) (b)

Advection-dispersion

equation

Particle extraction

Γp > 0

No DP

Particle trapping

Γp < 0

–1.0 –0.5 0 0.5 1.0
0

0.1

α 0.2

0.3

0.4

No DP α0

Particle trapping

Γp
∗ < 0

Particle extraction

Γp
∗ > 0

Γp
∗

Figure 4. (a) Arrival time distribution F(t) at the outlet for (blue circles) Γ ∗
p = Γp/Ds = −1.2, (black

diamonds) 0 and (orange circles) 0.6. The dotted grey line indicates classical prediction under the
advection-dispersion framework in (3.2), where the hydrodynamic dispersion is fitted to be Dh = 7.43. Solid
lines correspond to the travel-time model in (3.1). Note that time here is made dimensionless using τv , where
τL/τv ≈ 167. (b) Effective trapped particle fraction α in the DEPs from the (symbols) numerical data, and
(solid line) the analytical expression (3.7) for �∗

0 = 1.6/Pep.

the right side of (3.1) describes transport in the TP by the solution of a one-dimensional
advection-dispersion equation characterised by the mean flow velocity ū = U/φ and a
constant hydrodynamic dispersion coefficient D′

h. The breakthrough curve at x′ = L′ for a
uniform distribution of particles in 0 < x′ < ∞ is then given by (Kreft & Zuber 1978)

F0(t′) = 1 − erfc

⎛
⎝L′ − U′t′/φ√

4D′
ht′

⎞
⎠ − D′

hφ

U′

exp
[
(L′ − U′t′)2

4D′
ht′

]
√

4D′
ht′

. (3.2)

The dimensionless hydrodynamic dispersion coefficient is obtained by fitting (3.2) to the
numerical data. We find D′

h = 7.43. The dimensional dispersion coefficient is given by
Dh = UλD′

h/φ. The second term on the right side of (3.1) corresponds to the breakthrough
curve of the effective fraction α of particles in DEPs. The function g(t′) is given by the
Gamma distribution

g(t′) = t′−2/3 exp(−t′)
Γ (1/3)

, (3.3)

which denotes the residence time distribution in a DEP whose characteristic diffusion
time is τΛ = 1. The function fD(τ ) denotes the distribution of (dimensionless) diffusion
times τΛ = Λ2Pep within DEPs of (dimensionless) depth Λ, which is obtained from the
distribution fΛ of depths through the map Λ → Λ2Pep. Equation (3.1) is used to model
the numerical breakthrough curves by adjusting the effective trapped particle fraction α

for different values of Γ ∗
p .

As we see in figure 4(a), expression (3.1) is able to capture the early and late behaviours
of the numerical breakthrough curves, but underestimates the arrival time distribution at
intermediate times. This is due to the fact that expression (3.2) accounts for heterogeneity
in the TPs by a constant hydrodynamic dispersion coefficient. This assumes that the
characteristic advection times along TPs are much smaller than the mean arrival time at the
outlet. The intermediate tailing observed here indicates that the heterogeneity of the TPs
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gives rise to larger advection times. While these effects can be quantified systematically
in the framework of continuous time random walks (Dentz et al. 2018), we do not account
for them in the current model because we focus here on the impact of DP on the long-time
tailing of colloids, which is caused by mass transfer between TPs and DEPs. Figure 4(b)
shows α vs Γ ∗

p . For Γ ∗
p < 0 particles are trapped in the DEPs by DP as the medium is

flushed. Thus, for Γ ∗
p < 0, α is larger than the trapped particle fraction α0 for the no-DP

case (Γ ∗
p = 0). The tailing of the breakthrough, which is caused by particle retention in

DEPs, is stronger than for Γ ∗
p = 0. For Γp > 0, particles are extracted from the DEPs

when the medium is flushed. Thus, the effective trapped particle fraction is α < α0. As a
consequence, the tailing is weaker than for the no-DP scenario. The physical role of DP
is to alter the effective trapped particle fraction α in the DEPs, and thus the tails of the
particle breakthrough curves. This behaviour is correctly captured by (3.1).

3.3. Analytical model to understand how DP controls particle transport
To understand how DP controls the macroscopic fate of the suspended particles, we now
estimate analytically the effective trapped particle fraction α. To this end, we consider a
single DEP of length �p connected to a TP with a width λ. We provide here an outline of
the derivation of the analytical model. Further details can be found in the Appendix A.
Note that, for clarity, the derivation is in dimensional terms, while the final result for the
effective trapped fraction α is again in dimensionless terms.

We assume that particle motion in the DEPs is dominated by the diffusiophoretic drift
when the salt gradients are large and represent particle transport by an advection equation.
This allows us, by integration, to determine the total mass mdp of particles in the DEPs as a
function of the particle concentration c0(t) and diffusiophoretic drift u0(t) at the interface
between TPs and DEPs

mdp = mi + w
∫ ∞

0
dt u0(t)c0(t), (3.4)

where mi is the initial particle mass and w the width of the interface between TP and
DEP. Note that α = α0mdp/mi, where α0 is the effective trapped particle fraction for the
no-DP case. In order to determine the diffusiophoretic drift at the interface, we estimate
the salt gradient at the interface. We find an analytical solution by using the fact that salt
transport in the DEPs is dominated by diffusion. From that and the definition (2.1) of the
diffusiophoretic drift, we obtain the expression

u0(t) = −Γp(1 − χ)√
4πDst

H(τDsπ − t), (3.5)

where H(t) denotes the Heaviside step function and τDs is the characteristic salt diffusion
time across the DEP. In order to estimate the particle concentration c0(t) at the interface,
we distinguish between particle extraction (Γp > 0) and particle trapping (Γp < 0). In the
former case, we set c0(t) = ci equal to the resident particle concentration in the TP because
the concentration of particles that are advected past the DEPs is constant. In the case of
trapping (Γp < 0), this is different. In this case, the particle concentration c0(t) at the
interface is determined by the balance of the diffusive flux of particles from the TP toward
the interface, and the diffusiophoretic flux from the interface into the DEP

− Dp
c0(t) − ci

�0
= u0(t)c0(t). (3.6)

The characteristic gradient scale �0 can be estimated by equating the advective flux past the
DEP and the diffusive flux toward it, which gives �0 ∼ Dp/U. Combining these relations,
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we obtain the following expression for α as a function of Γ ∗
p = Γp/Ds:

α = α0[1 − Γ ∗
p (1 − χ)]

+ H(−Γ ∗
p )

{
2Γ ∗

p
2(1 − χ)2Pep�

∗
0

πPes
ln

[
2Γ ∗

p (1 − χ)Pep�
∗
0

2Γ ∗
p (1 − χ)Pep�

∗
0 − πPes

]}
. (3.7)

The dimensionless gradient scale �∗
0 = �0/λ is inversely proportional to the particle Péclet

number such that we set �∗
0 = Σ/Pep with Σ a number of order one. The latter is the only

fitting parameter of the derived model, which fits the data perfectly for Σ = 1.6, as shown
in figure 4(b).

As mentioned above, for positive Γ ∗
p > 0 particles are extracted from the DEPs. In fact,

by setting α = 0 in expression (3.7), we find that particles are depleted from the DEPs for
diffusiophoretic mobilities that are larger than the critical value

Γ ∗
c = 1/(1 − χ), (3.8)

as shown in figure 4(b), where Γ ∗
c ∼ 1. This value corresponds to the extreme case of

extraction, where the particles in the DEP will be completely depleted, i.e. when α = 0. In
the opposite case of negative Γ ∗

p < 0, DP leads to the trapping of particles in the DEPs. As
Γ ∗

p decreases toward more negative values, the fraction α converges toward the asymptotic
value

α∞ = α0

(
1 + πPes

Σ

)
, (3.9)

which is obtained by taking the limit of Γ ∗
p → ∞. This result shows that the fraction of

trapped particles cannot grow without bound. This is due to the fact that, for strongly
negative diffusiophoretic mobilities, the rate at which particles are transferred to the
interface between TPs and DEPs becomes smaller than the rate at which particles can
be transferred into the DEPs by DP. In other words, the supply of particles to the interface
is finite and does not increase as Γ ∗

p decreases. The analytical model describes the full
dependence of α on Γ ∗

p , as shown in figure 4(b) for both extraction from and trapping in
DEPs, and thus seems to correctly capture the controls of DP on the macro-scale dispersion
of particles.

4. Conclusions

To summarise, we investigate the effects of diffusiophoresis on particle dispersion in
complex porous media. Using pore-scale simulations and analytical modelling, we have
quantified the microscopic interactions between DP and flow and transport through porous
media to show how this interplay impacts and governs the macroscopic fate of the
colloidal particles. More precisely, we have demonstrated how DP occurring locally and
microscopically with typically small time scales τDs , impacts the macroscopic particle
breakthrough curves. We show that the physical role of DP is to alter the effective trapped
particle fraction within the DEPs, referred to as α. This is quantified using a novel
analytical model derived in (3.7) to give a relation between α and the diffusiophoretic
mobility Γp. Despite being a localised and short-term phenomenon, DP affects the
long-term distribution of the particle arrival times by reorganising the local partitioning
of particles between the DEPs and TPs. Depending on the sign of Γp, DP can facilitate
particle mobilisation out of the DEPs or it may lead to particle entrapment within.
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The main implication of our results is that it is possible to access regions in the complex
pore space that were initially inaccessible by merely exploiting inherent salt concentration
landscapes. This suggests that DP can be used as a tool for controlling particle dispersion
and filtration in complex porous media.

The potential of DP to control particle migration in simple microfluidic channels
and cavities has been demonstrated and well established in the literature (Shin et al.
2016; Lee et al. 2020; Singh et al. 2020; Somasundar et al. 2023). However, despite
the ubiquity of engineered and natural porous media in environmental and industrial
applications, only little has been known about the impact of DP on macro-scale particle
dispersion in complex disordered media. Our work is a first step towards closing this gap
by shedding light on the impact of the interaction of DP, medium structure and flow
heterogeneity on large-scale particle migration. Therefore, this work not only advances
our fundamental understanding but also opens avenues for developing solutions to various
technological problems of socio-economic relevance including groundwater remediation
and microfluidics for biomedical applications, where DEPs are quite prevalent.

Lastly, it is important to note that this study considers the thin Debye layer limit,
and DP that arises from monovalent salts e.g. LiCl and NaCl. In practical scenarios it
is likely that the fluid composition is more complex. More investigations are required
to understand DP under the influence of multivalent (Wilson et al. 2020) multiple salts
(Alessio et al. 2021) and for finite Debye layer (Kirby & Hasselbrink 2004; Shin et al.
2016). In such scenarios, the diffusiophoretic mobility takes a more complex form than the
one studied here. Furthermore, the present study does not consider stirring effects arising
from diffusioosmosis, that is, bulk flow adjacent to the solid walls of the porous domain,
which may be expected if the solid walls are themselves charged. Also, it needs to be
pointed out that the model medium under consideration is two-dimensional with explicit
dead-end regions. While DEPs in three-dimensional granular media and sphere packs are
not likely to occur, they are an important transport-relevant medium property in many
three-dimensional porous rocks (Coats & Smith 1964; Fatt, Maleki & Upadhyay 1966)
and aggregated media (Philip 1968), and in general in porous materials characterised by a
bi-porous structure, such as woven fabrics (Shin et al. 2018). Thus, we expect the reported
results to be relevant also for particle transport in three-dimensional porous media.
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Appendix A. Detailed derivation of the analytical model

In this appendix, we elaborate on the derivation of the analytical model described in
(3.7), which gives the relation between the initial particle fraction α in the DEPs and
the diffusiophoretic mobility Γp. The main rationale behind this exercise is that the
only mechanism that alters the trapped fraction α of particles within the DEPs is
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Fluid advection

Diffusive layer of length �0

sH

si

x = 0

udp = Γp∂ ln s/∂x
s

x = �p

w = λ

λ

Figure 5. Illustration of the one-dimensional analytical model. A single DEP of length �p is connected to a
(vertical) TP with a width of λ. Typical solute concentration s and diffusiophoretic velocity udp profiles within
the DEP are shown here in red and blue, respectively. At short times, the diffusiophoretic drift is strongly
localised at the interface between TP and DEP.

the diffusiophoretic one. Using a simplified one-dimensional model, we first compute the
concentration profile and, consequently, the diffusiophoretic drift. Next, a flux balance is
performed at the intersection of the DEP and TP after which, an effective trapped particle
fraction α is estimated for a given Γp.

The arrival time distribution computed numerically for different values of
diffusiophoretic mobilities Γp is predicted using the one-dimensional statistical model in
(3.1) for different effective trapped particle fractions α within the DEPs. This suggests a
relation between Γp and α (see figure 4).

To understand and quantify this, we construct a one-dimensional model shown in
figure 5. We assume that particle transport in the DEP at short times is dominated by
the diffusiophoretic drift such that

∂c
∂t

+ ∂

∂x
udpc = 0. (A1)

The total mass of particles in the DEP is given by

mdp = w
∫ �p

0
dx c, (A2)

where w is the pore width. Since the only flux of particles toward or from the DEP is across
the DEP–TP junction, the temporal variability of the mass of particles in the DEP is equal
to the mass flux at x = 0 and controlled by DP. Spatial integration of (A1) according to
(A2) gives

∂mdp

∂t
= wudp(x = 0, t)c(x = 0, t), (A3)

where we set u0(t) = udp(x = 0, t) and c0(t) = c(x = 0, t). Note that we used that there is
no flux across the boundary at x = �p. Thus, the added or extracted mass is given by

mdp = mi + w
∫ ∞

0
dt u0(t)c0(t). (A4)
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In the following, we first determine the diffusiophoretic drift, then we deal with the cases
of extraction (Γp > 0) and addition of particles (Γp < 0) separately.

A.1. Diffusiophoretic drift
We focus here on estimating the drift udp. The Péclet number for salt (Pes = 0.75) is so
low that we can assume that diffusion dominates in the DEP. Thus, to obtain the salt
concentration s, we solve the diffusion equation

∂s
∂t

− Ds
∂2s
∂x2 = 0. (A5)

We consider the boundary conditions s = sH at x = 0 and ∂s/∂x = 0 at x = L. The initial
condition is s(x, t = 0) = si. In Laplace space we obtain the exact solution

s∗(x, σ ) = si

σ
+ (sH − si)

σ

cosh[(1 − x/�p)
√

στDs]
cosh(

√
στDs)

, (A6)

where τDs = �2
p/Ds and σ is the Laplace variable. The Laplace transform is defined in

Abramowitz & Stegun (1972).
The Laplace transform of the diffusiophoretic velocity at x = 0 is then given by

u∗
0(σ ) = −Γp(1 − χ)

tanh(
√

στDs)√
σDs

, (A7)

where we defined χ = si/sH . The integral of the drift from t = 0 to ∞ is given by∫ ∞

0
dt u0(t) = u∗

0(σ = 0) = −Γp(1 − χ)�p

Ds
. (A8)

This expression is used directly to estimate the total mass of trapped particles for the
extraction case, as argued below. For the trapping case, however, the full time dependence
of u0(t) is required, as can be seen from (A4). Thus, we approximate the salt concentration
profile in the DEP by the solution for a semi-infinite domain

s(x, t) = si + (sH − si) erfc(x/
√

4Dst). (A9)

Using this expression, the diffusiophoretic drift is given by

udp(x, t) = −Γp(sH − si)
exp (−x2/4Dst)

s(x, t)
√

πDst
. (A10)

The drift at x = 0 then is given by

u0(t) = −Γp(1 − χ)√
πDst

, (A11)

where we used that s(x = 0, t) = sH . This expression is valid for times larger than τDs =
�2

p/Ds, after which the salt gradient decays exponentially fast with time. Thus, the time
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integral (A8) over the drift can be written in terms of the approximate solution (A11) as

−
∫ τDs a

0
dt

Γp(1 − χ)√
πDst

= −
√

4
πa

Γp(1 − χ)�p√
Ds

. (A12)

In order to match the exact expression (A8), we set a = π/4 and use the following the
approximation:

u0(t) = −Γp(1 − χ)√
4πDst

H(τDsπ − t), (A13)

where H(t) denotes the Heaviside step function.

A.2. Extraction of particles
In the case Γp > 0, particles are extracted from the DEP. The particle concentration at
x = 0, that is, at the interface with the TP, is set equal to c0(t) = ci, the resident particle
concentration. Thus, we obtain, by integration of (A3), for the added particle mass

mdp = mi + ciw
∫ ∞

0
dt u0(t) = mi + ciwu∗

0(σ = 0) = mi − miΓp(1 − χ)

Ds
, (A14)

where mi = ciw�p is the initial particle mass and χ = si/sH . Note that we used expression
(A8) to arrive at this result. If α0 is the fraction of particle mass inside the DEP without
DP, then the fraction α of particles after DP is

α = α0
mdp

mi
. (A15)

Using (A14) and setting �p = λ (since the average pore length is approximately equal to
the average pore opening in the hyper-uniform porous medium considered), we obtain

α = α0[1 − Γ ∗
p (1 − χ)], (A16)

where Γ ∗
p = Γp/Ds is the dimensionless form of the diffusiophoretic mobility.

A.3. Trapping of particles
In the case Γp < 0, particles are trapped from the TP into the DEP. In order to determine
c0(t), we consider the balance of fluxes across the interface. For x < 0, that is within the
TP, the particle flux transverse to the flow direction is due to diffusion. For x > 0, that is,
in the DEP the particle flux is dominated by the diffusiophoretic drift. Thus, we can write

− Dp
c0(t) − ci

�0
= u0(t)c0(t), (A17)

where �0 is the concentration gradient scale. We assume that the particle concentration
in the flow past the interface between TP and DEP is constant and equal to the initial
concentration ci. We estimate �0 as the length scale at which the diffusive flux transverse
to the flow direction toward the interface is of the same order as the advective flux past the
interface, that is,

Uci ∼ Dp
ci

�0
. (A18)

From this relation, we obtain the estimate

�0 ∼ Dp

U
= �p

Pep
. (A19)

That is, particles within the layer of thickness �0 are available for trapping in the DEP.
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From (A17), we obtain for c0(t)

c0(t) = ci

1 + u0(t)�0

Dp

. (A20)

Inserting (A20) into (A4) gives

mdp = mi + w
∫ ∞

0
dt u0(t)

ci

1 + u0(t)�0

Dp

. (A21)

Note that, here, we use the approximation (A13) for u0(t) to derive an analytical expression
for mdp.

Inserting expression (A13) into the right side of (A21) gives

mdp = mi − w
∫ τDsπ/4

0
dt

Γp(1 − χ)√
πDst

ci

1 − Γp(1 − χ)�0√
πDstDp

. (A22)

We can further write

mdp = mi − wci

∫ τDsπ/4

0
dt

Γp(1 − χ)

√
πDst − Γp(1 − χ)�0

Dp

. (A23)

Integration of the latter gives

mdp = mi − w�pci

{
Γp(1 − χ)

Ds
− 2Γ 2

p (1 − χ)2�0

πDsDp�p
ln

[
2Γp(1 − χ)

2Γp(1 − χ) − πDp�p/�0

]}
.

(A24)
Thus, we obtain for α

α = α0

{
1 − Γp(1 − χ)

Ds
+ 2Γ 2

p (1 − χ)2�0

πDsDp�p
ln

[
2Γp(1 − χ)

2Γp(1 − χ) − πDp�p/�0

]}
. (A25)

We set �p = λ and define the dimensionless diffusiophoretic mobility and the
dimensionless diffusion layer scale as

Γ ∗
p = Γp

Ds
, �∗

0 = �0

λ
∼ 1/Pep. (A26a,b)

Thus, we can write expression (A26) in dimensionless form as

α = α0

{
1 − Γ ∗

p (1 − χ) + 2Γ ∗
p

2(1 − χ)2Pep�
∗
0

πPes
ln

[
2Γ ∗

p (1 − χ)Pep�
∗
0

2Γ ∗
p (1 − χ)Pep�

∗
0 − πPes

]}
.

(A27)
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