A HECKE ACTION ON $G_{1} T$-MODULES

NORIYUKI ABE©
Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
(abenori@ms.u-tokyo.ac.jp)

(Received 22 April 2022; revised 9 March 2023; accepted 10 March 2023;
first published online 28 April 2023)

Abstract

We construct an action of the affine Hecke category on the principal block $\operatorname{Rep}_{0}\left(G_{1} T\right)$ of $G_{1} T$-modules where G is a connected reductive group over an algebraically closed field of characteristic $p>0, T$ a maximal torus of G and G_{1} the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-JantzenSoergel.

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic $p>0$. One of the most important goals in representation theory is to describe the characters of irreducible representations. In the case of rational representations of G, Lusztig gave a conjecture which gives the characters of irreducible representations of G in terms of Kazhdan-Lusztig polynomials of the affine Weyl group for $p>h$, where h is the Coxeter number. Thanks to the works of Kazhdan-Lusztig [KL93, KL94a, KL94b], Kashiwara-Tanisaki [KT95, KT96] and Andersen-Jantzen-Soergel [AJS94], this is proved for p large enough. An explicit bound on p is known by Fiebig [Fie12].

However, as Williamson [Wil17] showed, Lustzig's conjecture fails for many p. Therefore, we need a new approach for such p. Riche-Williamson [RW18] gave such an approach, and now we explain it. Assume that $p>h$. Let $\operatorname{Rep}_{0}(G)$ be the principal block of the category of rational representations of G. For each affine simple reflection s, we have the wall-crossing functor $\theta_{s}: \operatorname{Rep}_{0}(G) \rightarrow \operatorname{Rep}_{0}(G)$. The Grothendieck group of $\operatorname{Rep}_{0}(G)$ is isomorphic to the anti-spherical quotient of the group algebra of the affine Weyl group. Here, the action of the affine Weyl group on a representation is given by $[M](s+1)=\left[\theta_{s}(M)\right]$ for $M \in \operatorname{Rep}_{0}(G)$ and a simple affine reflection s. Riche-Williamson [RW18] conjectured the existence of a categorification of this anti-spherical quotient. More precisely, they conjectured that there is an action of \mathcal{D} on $\operatorname{Rep}_{0}(G)$ where \mathcal{D} is

2020 Mathematics subject classification: 20G05, 22E47
(C) The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
the diagrammatic Hecke category defined by Elias-Williamson [EW16]. Assuming this conjecture, they proved that the anti-spherical quotient of \mathcal{D} is a graded version of the category of tilting modules in $\operatorname{Rep}_{0}(G)$. In particular, one can describe the character of indecomposable tilting modules in terms of p-Kazhdan-Lusztig polynomials. Recently this description was proved by Achar-Makisumi-Riche-Williamson [AMRW19] when $p>h$, and for any p by Riche-Williamson [RW22]. We note that if $p \geq 2 h-2$, then characters for irreducible modules are described by characters of tilting modules [And98]. We also remark that Sobaje [Sob20] gave for all p an algorithm to calculate the characters of irreducible modules by the characters of indecomposable tilting modules.
Achar-Makisumi-Riche-Williamson also proved a big part of the conjecture, but not a full statement. In the case of $G=\mathrm{GL}_{n}$, the original conjecture is proved by RicheWilliamson [RW18]. Recently, the conjecture is proved by Bezrukavnikov-Riche [BR22] for $p>h$.
In this paper, we consider the $G_{1} T$-version of this conjecture, where $T \subset G$ is a maximal torus and G_{1} is the Frobenius kernel of G. Namely, we define an action of the category \mathcal{D} on the principal block of $G_{1} T$-modules.
Next, we state our main theorem. We remark that we have an object $B_{s} \in \mathcal{D}$ for any affine simple reflection s (see the next subsection for the details). Assume that $p>h$. Let $\operatorname{Rep}_{0}\left(G_{1} T\right)$ be the principal block of the category of $G_{1} T$-modules.

Theorem 1.1 (Theorem 3.31). The category \mathcal{D} acts on $\operatorname{Rep}_{0}\left(G_{1} T\right)$, where $B_{s} \in \mathcal{D}$ acts as the wall-crossing functor for any affine simple reflection s.

Kaneda (private communication) proved this theorem for GL_{n} using the arguments of Riche-Williamson [RW18].
Let X^{\vee} be the cocharacter group of T and set $X_{\mathbb{K}}^{\vee}=X^{\vee} \otimes_{\mathbb{Z}} \mathbb{K}$. Let $S=\operatorname{Sym}\left(X_{\mathbb{K}}^{\vee}\right)$ be the symmetric algebra of $X_{\mathbb{K}}^{\vee}$. This is a graded algebra via $\operatorname{deg}\left(X_{\mathbb{K}}^{\vee}\right)=2$. Andersen-JantzenSoergel defined a combinatorial category $\mathcal{K}_{\text {AJS }}$. This category is an S-linear category with a grading. We define a category $\mathbb{K} \otimes_{S} \mathcal{K}_{\text {AJS }}^{\mathrm{f}}$ with the same objects as $\mathcal{K}_{\mathrm{AJS}}$; however, the space of morphisms is defined as $\operatorname{Hom}_{\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}}^{\mathrm{f}}}(M, N)=\mathbb{K} \otimes_{S} \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}}}(M, N(i))$, where $N(i)$ denotes the grading shift (the upperscript f means forgetting the gradings). Let $\operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right)$ be the category of projective objects in $\operatorname{Rep}_{0}\left(G_{1} T\right)$. Andersen-Jantzen-Soergel constructed a functor $\mathcal{V}: \operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right) \rightarrow \mathbb{K} \otimes_{S} \mathcal{K}_{\text {AJS }}^{\mathrm{f}}$ and proved that it is fully faithful. They also determined the essential image of \mathcal{V}, and using this functor, they proved Lusztig's conjecture for large p.
In order to obtain an action of \mathcal{D} on $\operatorname{Rep}_{0}\left(G_{1} T\right)$, it is sufficient to define an action on $\operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right)$ (see 3.7). Therefore, by the results of Andersen-Jantzen-Soergel, it is sufficient to construct the action of \mathcal{D} on the essential image of \mathcal{V}. The main obstructions to do it are the following.
(1) Elias-Williamson defined \mathcal{D} via generators and relations. Since the relations are very complicated, it is hard to check that the action is well-defined.
(2) The category $\mathcal{K}_{\text {AJS, } P}$ contains only "local" information. Hence, it is difficult to construct the action directly.

1.1. The category \mathcal{S} Bimod

We use the category \mathcal{S} Bimod [Abe21] instead of the category \mathcal{D}. The category \mathcal{S} Bimod is equivalent to the category \mathcal{D}. We recall the definition of \mathcal{S} Bimod. Let $W_{\text {aff }}$ be the affine Weyl group attached to G and $\operatorname{Frac}(S)$ the field of fractions of S. An object M in \mathcal{S} Bimod is a graded S-bimodule and submodules $M_{x}^{\operatorname{Frac}(S)} \subset M \otimes_{S} \operatorname{Frac}(S)\left(x \in W_{\text {aff }}\right)$ with the property $M \otimes_{S} \operatorname{Frac}(S)=\bigoplus_{x \in W_{\text {aff }}} M_{x}^{\mathrm{Frac}(S)}$ and $m f=\bar{x}(f) m$ for $f \in S$ and $m \in M_{x}^{\operatorname{Frac}(S)}$. Here, \bar{x} is the image of x in the finite Weyl group. For $M, N \in \mathcal{S}$ Bimod, we have the tensor product $M \otimes N=M \otimes_{S} N$ with the decomposition $(M \otimes N) \otimes_{S} \operatorname{Frac}(S)=\bigoplus_{x \in W_{\text {aff }}}$ $(M \otimes N)_{x}^{\operatorname{Frac}(S)}$, where $(M \otimes N)_{x}^{\operatorname{Frac}(S)}=\bigoplus_{y z=x} M_{y}^{\operatorname{Frac}(S)} \otimes_{\operatorname{Frac}(S)} N_{z}^{\operatorname{Frac}(S)}$. A homomorphism $M \rightarrow N$ is a degree zero S-bimodule homomorphism which sends $M_{x}^{\operatorname{Frac}(S)}$ to $N_{x}^{\operatorname{Frac}(S)}$ for any $x \in W_{\text {aff }}$.

Let X be the character group of T. An alcove is a connected component of $X \otimes_{\mathbb{Z}} \mathbb{R} \backslash$ $\bigcup_{t} H_{t}$, where t runs through the affine reflections in $W_{\text {aff }}$, and H_{t} is the fixed hyperplane of t. We fix an alcove A_{0} and let $S_{\text {aff }}$ be the reflections with respect to the walls of A_{0}. Then, $\left(W_{\mathrm{aff}}, S_{\mathrm{aff}}\right)$ is a Coxeter system. For each $s \in S_{\mathrm{aff}}$, put $S^{s}=\{f \in S \mid s(f)=f\}$. Then, the S-bimodule $S \otimes_{S^{s}} S(1)$ has, when tensored by $\operatorname{Frac}(S)$, a unique decomposition as described above such that $\left(S \otimes_{S^{s}} S(1)\right)_{w}^{\mathrm{Frac}(S)} \neq 0$ only when $w=e, s$. Let B_{s} be this object. Now \mathcal{S} Bimod consists of the objects M which are direct summands of direct sums of objects of the form $B_{s_{1}} \otimes \cdots \otimes B_{s_{l}}(n)$ where $s_{1}, \ldots, s_{l} \in S_{\text {aff }}$ and $n \in \mathbb{Z}$. It is proved in [Abe21] that the category $\mathcal{S B}$ Bimod is equivalent to the diagrammatic Hecke category defined by Elias-Williamson. As shown in [EW16, Abe21], this gives a categorification of the Hecke algebra of the affine Weyl group; namely, the split Grothendieck group of \mathcal{S} Bimod is isomorphic to the Hecke algebra.

1.2. Another combinatorial category

We also give another realization of the category of Andersen-Jantzen-Soergel $\mathcal{K}_{\text {AJS }}$ [AJS94]. As in [Lus80], we use the combinatorics of alcoves to define the category. Let \mathcal{A} be the set of alcoves. We fix a positive system Δ^{+}of the root system Δ of G. Then, this defines an order on $\mathcal{A}\left[\right.$ Lus80]. Recall that we have fixed $A_{0} \in \mathcal{A}$. The action of $W_{\text {aff }}$ on $X \otimes_{\mathbb{Z}} \mathbb{R}$ induces the action of $W_{\text {aff }}$ on \mathcal{A} such that the map $w \mapsto w\left(A_{0}\right)$ gives a bijection $W_{\mathrm{aff}} \rightarrow \mathcal{A}$.

Set $S^{\emptyset}=S\left[\left(\alpha^{\vee}\right)^{-1} \mid \alpha \in \Delta\right]$. We define the category $\widetilde{\mathcal{K}}^{\prime}$ as follows. An object of $\widetilde{\mathcal{K}}^{\prime}$ is a graded S-bimodule M with a decomposition $S^{\emptyset} \otimes_{S} M=\bigoplus_{A \in \mathcal{A}} M_{A}^{\emptyset}$, such that $m f=$ $\bar{x}(f) m$ for $m \in M_{A}^{\emptyset}, f \in S^{\emptyset}, x \in W_{\text {aff }}$ such that $A=x\left(A_{0}\right)$ and \bar{x} is the image of x in the finite Weyl group. A morphism $f: M \rightarrow N$ is a degree zero S-bimodule homomorphism, such that $f\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \geq A} N_{A^{\prime}}^{\emptyset}$. We will also define some subcategories of $\widetilde{\mathcal{K}}^{\prime}$. Particularly, the category denoted by $\widetilde{\mathcal{K}}_{P}$ plays an important role in our construction. Since it is technical, we do not say anything about its definitions in the Introduction, but instead refer to Definition 2.16. We only note that, for each $A \in \mathcal{A}$, the module $M_{\{A\}}=(M \cap$ $\left.\bigoplus_{A^{\prime} \geq A} M_{A^{\prime}}^{\emptyset}\right) /\left(M \cap \bigoplus_{A^{\prime}>A} M_{A^{\prime}}^{\emptyset}\right)$ is graded free for $M \in \widetilde{\mathcal{K}}_{P}$.

We define an action \mathcal{S} Bimod on $\widetilde{\mathcal{K}}^{\prime}$ as follows. Let $B \in \mathcal{S}$ Bimod and note that we have a submodule $B_{x}^{\emptyset} \subset B \otimes_{S} S^{\emptyset}$, such that $B_{x}^{\emptyset} \otimes_{S^{\emptyset}} \operatorname{Frac}(S)=B_{x}^{\operatorname{Frac}(S)}$. Let $M \in \widetilde{\mathcal{K}}^{\prime}$.

Then, we define $M * B$ by $M * B=M \otimes_{S} B$ as a graded S-bimodule and $(M * B)_{w\left(A_{0}\right)}^{\natural}=$ $\bigoplus_{x \in W_{\text {aff }}} M_{w x^{-1}\left(A_{0}\right)}^{\emptyset} \otimes_{S^{\emptyset}} B_{x}^{\emptyset}$ for $w \in W_{\text {aff. }}$. We can prove that the above action of \mathcal{S} Bimod on $\widetilde{\mathcal{K}}^{\prime}$ induces a well-defined action also on $\widetilde{\mathcal{K}}_{P}$ (Proposition 2.24). Therefore, the split Grothendieck group $\left[\widetilde{\mathcal{K}}_{P}\right]$ of $\widetilde{\mathcal{K}}_{P}$ has a structure of [SBimod]-module defined by $[M][B]=$ $[M * B]$. Hence, $\left[\widetilde{\mathcal{K}}_{P}\right]$ is a module of the Hecke algebra. This category satisfies the following.

Theorem 1.2 (Theorem 2.35, 2.40). We have the following.
(1) For each $A \in \mathcal{A}$, we have an indecomposable module $Q(A) \in \widetilde{\mathcal{K}}_{P}$, such that $Q(A)_{\{A\}} \simeq S$ and $Q(A)_{\left\{A^{\prime}\right\}} \neq 0$ implies $A^{\prime} \geq A$.
(2) Any object in $\widetilde{\mathcal{K}}_{P}$ is isomorphic to a direct sum of $Q(A)(n)$ for $A \in \mathcal{A}$ and $n \in \mathbb{Z}$.
(3) The split Grothendieck group $\left[\widetilde{\mathcal{K}}_{P}\right]$ is isomorphic to a certain submodule \mathcal{P}^{0} of the periodic Hecke module (the submodule was introduced in [Lus80]).

1.3. A relation with a work of Fiebig-Lanini

Fiebig-Lanini [FL15] had a similar work (earlier than this work) and defined a certain category. Logically, results in this paper do not depend on their work. However, in the proofs in this paper, we borrow many ideas from their work. Moreover, in subsection 2.9, we prove that our category $\widetilde{\mathcal{K}}_{P}$ is equivalent to the category of Fiebig-Lanini. The author thinks it is possible to establish the theory on top of the theory of Fiebig-Lanini, but the existence of a Hecke action does not easily follow from their theory.

1.4. Relations with representation theory

The category $\widetilde{\mathcal{K}}_{P}$ is not the category we really need. We modify this category as follows. Objects in \mathcal{K}_{P} are the same as those in $\widetilde{\mathcal{K}}_{P}$, and the space of homomorphisms is defined by

$$
\operatorname{Hom}_{\mathcal{K}_{P}}(M, N)=\operatorname{Hom}_{\tilde{\mathcal{K}}_{P}}(M, N) /\left\{\varphi: M \rightarrow N \mid \varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}\right\}
$$

We prove that the action of $B \in \mathcal{S}$ Bimod on \mathcal{K}_{P} is well-defined.
Theorem 1.3 (Proposition 3.3, Theorem 3.9). We have the following.
(1) The object $Q(A)$ is also indecomposable as an object of \mathcal{K}_{P}.
(2) We have $\left[\mathcal{K}_{P}\right] \simeq\left[\widetilde{\mathcal{K}}_{P}\right]$. Hence $\left[\mathcal{K}_{P}\right]$ is also isomorphic to \mathcal{P}^{0}.

We also define a functor $\mathcal{F}: \mathcal{K}_{P} \rightarrow \mathcal{K}_{\text {AJS }}$. Recall that we have a wall-crossing functor $\vartheta_{s}: \mathcal{K}_{\mathrm{AJS}} \rightarrow \mathcal{K}_{\mathrm{AJS}}$ for each $s \in S_{\mathrm{aff}}$, see [Fie11, 5.3].

Theorem 1.4 (Proposition 3.14, 3.26). Let $M \in \mathcal{K}_{P}$. We have the following.
(1) We have $\mathcal{F}\left(M * B_{s}\right) \simeq \vartheta_{s}(\mathcal{F}(M))$ for each $s \in S_{\text {aff }}$.
(2) The functor \mathcal{F} is fully faithful.

Let $\mathcal{K}_{\mathrm{AJS}, P}$ be the essential image of \mathcal{F}. We define $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}$ and $\mathbb{K} \otimes_{S} \mathcal{K}_{P}^{\mathrm{f}}$ in the same way as $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}}^{\mathrm{f}}$. One of the main results in [AJS94] says that $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}} \simeq$
$\operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right)$ (see 3.7). Since the action of $\mathcal{S B i m o d}$ on $\mathcal{K}_{P} \simeq \mathcal{K}_{\mathrm{AJS}, P}$ gives an action on $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}$, we now get the action of $\mathcal{S} \operatorname{Bimod}$ on $\operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right)$. We can extend this action to $\operatorname{Rep}_{0}\left(G_{1} T\right)$ (see 3.7).

Let A_{0} be the alcove containing ρ / p where ρ is the half sum of positive roots. We have an equivalence $\mathbb{K} \otimes_{S} \mathcal{K}_{P}^{\mathrm{f}} \simeq \mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}} \simeq \operatorname{Proj}\left(\operatorname{Rep}_{0}\left(G_{1} T\right)\right)$ and $Q(A)$ corresponds to $P\left(\lambda_{A}\right)$, where $\lambda_{w\left(A_{0}\right)}=p w(\rho / p)-\rho$ for $w \in W_{\text {aff }}$ and $P\left(\lambda_{A}\right)$ is the projective cover of the irreducible representation with highest weight λ_{A}. Let $Z(\mu) \in \operatorname{Rep}\left(G_{1} T\right)$ be the baby Verma module with highest weight μ and $(P(\lambda): Z(\mu))$ the multiplicity of $Z(\mu)$ in a Verma flag of $P(\lambda)$. By the constructions, we have the following.

Theorem 1.5 (Corollary 3.36). The multiplicity $\left(P\left(\lambda_{A}\right): Z\left(\lambda_{A^{\prime}}\right)\right)$ is equal to the rank of $Q(A)_{\left\{A^{\prime}\right\}}$.

In 3.9, we discuss Lusztig's conjecture on irreducible characters of rational representations. We give a proof of the conjecture based on the theory developed in this paper.

2. Our combinatorial category

We shall use a different notation than the Introduction. In particular, we do not fix the alcove A_{0}. So, we distinguish two actions (from the right and left) of $W_{\text {aff }}$ on \mathcal{A} as in [Lus80]. We will also work in a more general situation than in the Introduction. Forget every notation and the assumptions from the Introduction. Notation used in the main body of this paper will be explained.

2.1. Notation

Let $\left(X, \Delta, X^{\vee}, \Delta^{\vee}\right)$ be a root datum. Let \mathcal{A} the set of alcoves, namely the set of connected components of $X_{\mathbb{R}} \backslash \bigcup_{\alpha \in \Delta, n \in \mathbb{Z}}\left\{\lambda \in X_{\mathbb{R}} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle=n\right\}$ where $X_{\mathbb{R}}=X \otimes_{\mathbb{Z}} \mathbb{R}$. Let W_{f} be the finite Weyl group and $W_{\text {aff }}^{\prime}=W_{\mathrm{f}} \ltimes \mathbb{Z} \Delta$ the affine Weyl group with the natural surjective homomorphism $W_{\text {aff }}^{\prime} \rightarrow W_{\mathrm{f}}$. For each $\alpha \in \Delta$ and $n \in \mathbb{Z}$, let $s_{\alpha, n}: X \rightarrow X$ be the reflection with respect to $\left\{\lambda \in X_{\mathbb{R}} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle=n\right\}$. As in [Lus80], let S_{aff} be the set of $W_{\text {aff }}^{\prime}$-orbits on the set of faces. Then, for each $s \in S_{\text {aff }}$ and $A \in \mathcal{A}$, we denote $A s$ as the alcove $\neq A$, which has a common face of type s with A. The subgroup of $\operatorname{Aut}(\mathcal{A})$ (permutations of elements in $\mathcal{A})$ generated by $S_{\text {aff }}$ is denoted by $W_{\text {aff }}$. Then, $\left(W_{\text {aff, }} S_{\text {aff }}\right)$ is a Coxeter system isomorphic to the affine Weyl group. The Bruhat order on $W_{\text {aff }}$ is denoted by \geq. We shall consider the right action of $W_{\text {aff }}$ on \mathcal{A}.

We give related notation and also some facts. If we fix an alcove A_{0}, then $W_{\text {aff }}^{\prime} \simeq \mathcal{A}$ via $w \mapsto w A_{0}$ and $W_{\text {aff }}^{\prime}$ acts on \mathcal{A} by $\left(w\left(A_{0}\right)\right) x=w x\left(A_{0}\right)$. This gives an isomorphism $W_{\mathrm{aff}}^{\prime} \simeq W_{\mathrm{aff}}$. The facts stated below are obvious from this description.

Let Λ be the set of maps $\lambda: \mathcal{A} \rightarrow X$ such that $\lambda(x A)=\bar{x} \lambda(A)$ for any $x \in W_{\text {aff }}^{\prime}$ and $A \in \mathcal{A}$, where $\bar{x} \in W_{\mathrm{f}}$ is the image of x. We write $\lambda_{A}=\lambda(A)$ for $\lambda \in \Lambda$ and $A \in \mathcal{A}$. For each $A \in \mathcal{A}, \lambda \mapsto \lambda_{A}$ gives an isomorphism $\Lambda \xrightarrow{\sim} X$, and the inverse of this isomorphism is denoted by $\nu \mapsto \nu^{A}$. The group $W_{\text {aff }}$ acts on Λ by $(x(\lambda))(A)=\lambda(A x)$.

Let $\Lambda_{\text {aff }}$ be the set of $\lambda \in \Lambda$ such that $\lambda_{A} \in \mathbb{Z} \Delta$ for any, or equivalently, some $A \in \mathcal{A}$. For $\lambda \in \Lambda_{\text {aff }}$ and $A \in \mathcal{A}$, we define $A \lambda=A+\lambda_{A}$. Then, for $\lambda_{1}, \lambda_{2} \in \Lambda_{\text {aff }},\left(A \lambda_{1}\right) \lambda_{2}=$ $\left(A+\left(\lambda_{1}\right)_{A}\right) \lambda_{2}=A+\left(\lambda_{1}\right)_{A}+\left(\lambda_{2}\right)_{A+\left(\lambda_{1}\right)_{A}}$. Since elements in Λ are constant on $\mathbb{Z} \Delta$-orbits,
we have $\left(\lambda_{2}\right)_{A+\left(\lambda_{1}\right)_{A}}=\left(\lambda_{2}\right)_{A}$. Hence, $\left(A \lambda_{1}\right) \lambda_{2}=A+\left(\lambda_{1}+\lambda_{2}\right)_{A}$; namely, $(A, \lambda) \mapsto A \lambda$ gives an action of $\Lambda_{\text {aff }}$ on \mathcal{A}. Therefore, we get $\Lambda_{\text {aff }} \hookrightarrow \operatorname{Aut}(\mathcal{A})$ and the image is contained in $W_{\text {aff }}$. Thus, we may regard $\Lambda_{\text {aff }}$ as a subgroup of $W_{\text {aff }}$.
Let $\lambda \in \Lambda$ and $A, A^{\prime} \in \mathcal{A}$ and assume that A, A^{\prime} are in the same $\Lambda_{\text {aff-orbit. Namely, }}$ there exists $\mu \in \Lambda_{\mathrm{aff}}$ such that $A=A^{\prime} \mu=A^{\prime}+\mu_{A^{\prime}}$. Since elements in Λ are constant on $\mathbb{Z} \Delta$-orbits, we get $\lambda_{A^{\prime}}=\lambda_{A}$. Namely, the isomorphism $\lambda \mapsto \lambda_{A}$ only depends on $\Lambda_{\text {aff-orbit }}$ in \mathcal{A}. Hence, we also write the isomorphism by $\lambda \mapsto \lambda_{\Omega}$ where $\Omega \in \mathcal{A} / \Lambda_{\text {aff }}$. The inverse is denoted by $\lambda \mapsto \lambda^{\Omega}$. The $\Lambda_{\text {aff-orbit through }} A$ is equal to $\{A+\lambda \mid \lambda \in \mathbb{Z} \Delta\}$. Let $A+\mathbb{Z} \Delta$ be this set.

The following lemma is obvious from the definitions.
Lemma 2.1. Let $\lambda \in \Lambda, \nu \in X, x \in W_{\text {aff }}, y \in W_{\text {aff }}^{\prime}$ and $A \in \mathcal{A}$.
(1) $x(\lambda)_{A}=\lambda_{A x}$.
(2) $y\left(\lambda_{A}\right)=\lambda_{y A}$.
(3) $\nu^{A}=x\left(\nu^{A x}\right)$.
(4) $\nu^{A}=y(\nu)^{y A}$.

Fix a positive system $\Delta^{+} \subset \Delta$. Let $\alpha \in \Delta^{+}$and $n \in \mathbb{Z}$. We say $A \leq s_{\alpha, n}(A)$ if, for all $a \in A$, we have $\left\langle a, \alpha^{\vee}\right\rangle<n$. The generic Bruhat order \leq on \mathcal{A} is the partial order generated by the relations $A \leq s_{\alpha, n}(A)$. The following lemma is obvious from the definition.

Lemma 2.2. Let $A \in \mathcal{A}, w \in W_{\text {aff }}^{\prime}$ and a is in the closure of A. If $A \leq w(A)$, then $w(a)-a \in \mathbb{R}_{\geq 0} \Delta^{+}$.

Lemma 2.3. Let $A, A^{\prime} \in \mathcal{A}$ such that $A+\nu=A^{\prime}$ for $\nu \in \mathbb{Z} \Delta$. Then, $A \leq A^{\prime}$ if and only if $\nu \in \mathbb{Z}_{\geq 0} \Delta^{+}$.

Proof. We assume $\nu \in \mathbb{Z}_{\geq 0} \Delta^{+}$and prove that $A \leq A^{\prime}$. We may assume $\nu=\alpha \in \Delta^{+}$. Take $n \in \mathbb{Z}$ such that $n-1<\left\langle a, \alpha^{\vee}\right\rangle<n$ for any $a \in A$. For $a \in A$, we have $\left\langle s_{\alpha, n}(a), \alpha^{\vee}\right\rangle=$ $\left\langle a-\left(\left\langle a, \alpha^{\vee}\right\rangle-n\right) \alpha, \alpha^{\vee}\right\rangle=2 n-\left\langle a, \alpha^{\vee}\right\rangle$. Hence, $n<\left\langle s_{\alpha, n}(a), \alpha^{\vee}\right\rangle<n+1$. Therefore, $A \leq s_{\alpha, n}(A) \leq s_{\alpha, n+1} s_{\alpha, n}(A)=A+\alpha$.

However, assume that $A \leq A^{\prime}$. Take $a \in A$. Then by Lemma 2.2, we have $(a+\nu)-a \in$ $\mathbb{R}_{\geq 0} \Delta^{+}$. Hence, $\nu \in \mathbb{R}_{\geq 0} \Delta^{+}$. Since $\nu \in \mathbb{Z} \Delta$, we get $\nu \in \mathbb{Z}_{\geq 0} \Delta^{+}$.

A subset $I \subset \mathcal{A}$ is called open (resp. closed) if $A \in I, A^{\prime} \leq A$ (resp. $A^{\prime} \geq A$), which implies $A^{\prime} \in I$. This defines a topology on \mathcal{A}. The following lemma is an immediate result of the previous lemma, and it plays an important role throughout this paper.

Lemma 2.4. For each $\Omega \in \mathcal{A} / \Lambda_{\text {aff }}$ and $x \in W_{\text {aff }}$, the map $x: \Omega \rightarrow \Omega x$ preserves the order.
For $A, A^{\prime} \in \mathcal{A}$, set $\left[A, A^{\prime}\right]=\left\{A^{\prime \prime} \in \mathcal{A} \mid A \leq A^{\prime \prime} \leq A^{\prime}\right\}$. For $\alpha \in \Delta^{+}$and $A \in \mathcal{A}$, take $n \in \mathbb{Z}$ such that $n-1<\left\langle a, \alpha^{\vee}\right\rangle<n$ for all $a \in A$ and define $\alpha \uparrow A=s_{\alpha, n}(A)$. By the definition, $A \leq \alpha \uparrow A$. We define $\alpha \downarrow A$ as the unique element such that $\alpha \uparrow(\alpha \downarrow A)=A$.
In this paper, graded module (resp. ring) means \mathbb{Z}-graded module (resp. ring). Let $M=\bigoplus_{i} M^{i}$ be a graded module. For $k \in \mathbb{Z}$, we define $M(k)$ by $M(k)^{i}=M^{i+k}$. For a graded ring S, a graded S-module M is called graded free if it is isomorphic to $\bigoplus_{i} S\left(n_{i}\right)$
where $n_{1}, \ldots, n_{r} \in \mathbb{Z}$ (in this paper, graded free means graded free of finite rank). We set $\operatorname{grk}(M)=\sum_{i} v^{n_{i}} \in \mathbb{Z}\left[v, v^{-1}\right]$, where v is an indeterminate.

2.2. The categories

Fix a Noetherian integral domain \mathbb{K} (in the Introduction, it was an algebraically closed field. Since our arguments work with a Noetherian integral domain, we assume \mathbb{K} is a Noetherian integral domain. Later we will add more assumptions). We define Λ^{\vee} using X^{\vee} exactly in the same way as we defined Λ using X. As $\Lambda, W_{\text {aff }}$ acts on Λ^{\vee}. We put $\Lambda_{\mathbb{K}}^{\vee}=\Lambda^{\vee} \otimes_{\mathbb{Z}} \mathbb{K}, X_{\mathbb{K}}^{\vee}=X^{\vee} \otimes_{\mathbb{Z}} \mathbb{K}$ and $R=\operatorname{Sym}\left(\Lambda_{\mathbb{K}}^{\vee}\right)$. The algebra R is equipped with a grading such that $\operatorname{deg}\left(\Lambda_{\mathbb{K}}^{\vee}\right)=2$. As for the case of Λ and X, for $f \in \Lambda^{\vee}$, we put $f_{A}=f(A)$. Then, $f \mapsto f_{A}$ gives an isomorphism $\Lambda^{\vee} \rightarrow X^{\vee}$ and this induces an isomorphism $R \rightarrow S$ for which we also write $f \mapsto f_{A}$. The inverse of this map is denoted by $g \mapsto g^{A}$.

Assumption 2.5. In the rest of this section, we assume the following.
(1) We have $2 \in \mathbb{K}^{\times}$, and any $\alpha^{\vee} \neq \beta^{\vee} \in\left(\Delta^{\vee}\right)^{+}$are linearly independent in $X_{\mathbb{K} / \mathfrak{m}}^{\vee}$ for any maximal ideal $\mathfrak{m} \subset \mathbb{K}$. This is the GKM-property of the moment graph attached to the finite Weyl group [Fie11, 9.1].
(2) The torsion primes of the root system $\left(X^{\vee}, \Delta^{\vee}, X, \Delta\right)$ [JMW14, Definition 2.43] are invertible in \mathbb{K}.

Lemma 2.6. The representation $X_{\mathbb{K}}^{\vee}$ of W_{f} is faithful.
Proof. If $w \in W_{\mathrm{f}}$ fixes any element in $X_{\mathbb{K}}^{\vee}$, it fixes any image of $\alpha \in \Delta$. By the assumption, $\Delta^{\vee} \rightarrow X_{\mathbb{K}}^{\vee}$ is injective. Therefore, w fixes any coroot. Hence, w is identity.

The image of $\alpha^{\vee} \in \Delta^{\vee}$ in $X_{\mathbb{K}}^{\vee}$ is denoted by the same letter. We also put $S=\operatorname{Sym}\left(X_{\mathbb{K}}^{\vee}\right)$. We give a grading to S via $\operatorname{deg}\left(X_{\mathbb{K}}^{\vee}\right)=2$. Set $S^{\emptyset}=S\left[\left(\alpha^{\vee}\right)^{-1} \mid \alpha \in \Delta\right]$. For an S-module M, set $M^{\emptyset}=S^{\emptyset} \otimes_{S} M$. If M is an S-algebra, then M^{\emptyset} is an S^{\emptyset}-algebra. Let S_{0} be a flat commutative graded S-algebra. If M is an S_{0}-module, then $M^{\emptyset} \simeq S_{0}^{\emptyset} \otimes_{S_{0}} M$ is an S_{0}^{\emptyset} module. We consider the category $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ consisting of $M=\left(M,\left\{M_{A}^{\emptyset}\right\}_{A \in \mathcal{A}}\right)$ such that

- M is a graded $\left(S_{0}, R\right)$-bimodule which is finitely generated torsion-free as a left S_{0}-module.
- M_{A}^{\emptyset} is an $\left(S_{0}^{\emptyset}, R\right)$-bimodule such that $m f=f_{A} m$ for any $m \in M_{A}^{\emptyset}$ and $f \in R$.
- $M^{\emptyset}=\bigoplus_{A \in \mathcal{A}} M_{A}^{\emptyset}$.

A morphism $M \rightarrow N$ in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ is an $\left(S_{0}, R\right)$-bimodule φ homomorphism of degree zero such that

$$
\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \geq A} N_{A^{\prime}}^{\emptyset}
$$

for any $A \in \mathcal{A}$. We put $\operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}^{\bullet}(M, N)=\bigoplus_{i} \operatorname{Hom}_{\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}(M, N(i))$. This is a graded $\left(S_{0}, R\right)$-bimodule. For $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$, we put $\operatorname{supp}_{\mathcal{A}}(M)=\left\{A \in \mathcal{A} \mid M_{A}^{\emptyset} \neq 0\right\}$.
Remark 2.7. Let $\Omega \in \mathcal{A} / \Lambda_{\text {aff }}$. For any $m \in \bigoplus_{A \in \Omega} M_{A}^{\emptyset}$ and $f \in R$, we have $m f=f_{\Omega} m$. The action of $W_{\text {aff }}^{\prime}$ on $\mathcal{A} / \Lambda_{\text {aff }}$ factors through $W_{\text {aff }}^{\prime} \rightarrow W_{\mathrm{f}}$, and W_{f} acts on $\mathcal{A} / \Lambda_{\text {aff }}$
simply transitively. We have $M^{\emptyset}=\bigoplus_{w \in W_{\mathrm{f}}}\left(\bigoplus_{A \in w(\Omega)} M_{A}^{\emptyset}\right)$ and for $m \in \bigoplus_{A \in w(\Omega)} M_{A}^{\emptyset}$, $m f=w\left(f_{\Omega}\right) m$. Therefore, the decomposition of M^{\emptyset} into $\bigoplus_{A \in w(\Omega)} M_{A}^{\emptyset}$ is determined by the $\left(S_{0}, R\right)$-bimodule structure. Hence, any (S_{0}, R)-bimodule homomorphism $M \rightarrow N$ sends $\bigoplus_{A \in \Omega} M_{A}^{\emptyset}$ to $\bigoplus_{A \in \Omega} N_{A}^{\emptyset}$. We will often use this fact.

Remark 2.8. Here, we do not assume that a morphism $M \rightarrow N$ in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ sends M_{A}^{\emptyset} to N_{A}^{\emptyset}.
For each closed subset $I \subset \mathcal{A}$, we define $M_{I}=M \cap \bigoplus_{A \in I} M_{A}^{\emptyset}$. Set

$$
\left(M_{I}\right)_{A}^{\emptyset}= \begin{cases}M_{A}^{\emptyset} & (A \in I), \\ 0 & (A \notin I) .\end{cases}
$$

By the following lemma, $M_{I} \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ and therefore, $M \mapsto M_{I}$ is an endofunctor of $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. We have a natural monomorphism $M_{I} \rightarrow M$ in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$.

Lemma 2.9. The module M_{I} is an $\left(R_{0}, S\right)$-submodule of M, and we have

$$
\left(M_{I}\right)^{\emptyset}=\bigoplus_{A \in I} M_{A}^{\emptyset} .
$$

We also have $M_{I_{1} \cap I_{2}}=M_{I_{1}} \cap M_{I_{2}}$ for any closed subsets $I_{1}, I_{2} \subset \mathcal{A}$.
Proof. The first part is obvious, and for the second part, the left-hand side is contained in the right-hand side. Take m from the right-hand side and let $f \in S$ such that $f m \in M$. Then, we have $\mathrm{fm} \in M_{I}$, and m is in the left-hand side. The last assertion is obvious.
If S_{0}^{\prime} is a commutative flat graded S_{0}-algebra, then for $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$, the $\left(S_{0}^{\prime}, R\right)$ bimodule $S_{0}^{\prime} \otimes_{S_{0}} M$ has a decomposition $\left(S_{0}^{\prime} \otimes_{S_{0}} M\right)^{\emptyset} \simeq \bigoplus_{A \in \mathcal{A}}\left(\left(S_{0}^{\prime}\right)^{\emptyset} \otimes_{S_{0}^{0}} M_{A}^{\emptyset}\right)$, and this decomposition gives a structure of an object in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\prime}\right)$. It is easy to see that $M \mapsto S_{0}^{\prime} \otimes_{S_{0}} M$ is a functor $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right) \rightarrow \widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\prime}\right)$.

For each $\alpha \in \Delta$, set $W_{\alpha, \text { aff }}^{\prime}=\left\{1, s_{\alpha}\right\} \ltimes \mathbb{Z} \alpha \subset W_{\text {aff }}^{\prime}$. We also put $S^{\alpha}=S\left[\left(\beta^{\vee}\right)^{-1} \mid \beta \in\right.$ $\Delta \backslash\{ \pm \alpha\}]$ and $M^{\alpha}=S^{\alpha} \otimes_{S} M$ for any left S-module M. Again, if M is an S-algebra then M^{α} is an S^{α}-algebra. If $M \in \widetilde{\mathcal{K}^{\prime}}\left(S_{0}\right)$, then $M^{\alpha} \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\alpha}\right)$ as mentioned above. Note that, from our assumption, $\bigcap_{\alpha \in \Delta^{+}} S^{\alpha}=S$ [AJS94, 9.1 Lemma]. We say $M \in \widetilde{\mathcal{K}}\left(S_{0}\right)$ if $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ and satisfies the following two conditions which are taken from [FL15]. These are important properties in our arguments.
(S) $\quad M_{I_{1} \cup I_{2}}=M_{I_{1}}+M_{I_{2}}$ for any two closed subsets I_{1}, I_{2}.
(LE) For any $\alpha \in \Delta^{+}$, there exist $M^{(\Omega)} \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\alpha}\right)$ for all $\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}$ with an injective morphism $M^{(\Omega)} \hookrightarrow M^{\alpha}$ in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\alpha}\right)$ such that $\operatorname{supp}_{\mathcal{A}} M^{(\Omega)} \subset \Omega$ and the induced morphism $\bigoplus_{\Omega \in W_{\alpha, \text { aff } \backslash \mathcal{A}}^{\prime}} M^{(\Omega)} \rightarrow M^{\alpha}$ is an isomorphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\alpha}\right)$.
(S) stands for "sheaf" and (LE) stands for "local extension condition" [FL15, Definition 5.4].
Let $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. If $M^{\alpha}=\bigoplus_{\Omega \in W_{\alpha, \text { aff } \backslash \mathcal{A}}^{\prime}}\left(\bigoplus_{A \in \Omega} M_{A}^{\emptyset} \cap M^{\alpha}\right)$ for any $\alpha \in \Delta, M$ satisfies (LE). The converse is not true, in general. For example, assume $\# \Delta>1$. Fix $\alpha \in \Delta^{+}$.

Take $\beta \in \Delta^{+} \backslash\{\alpha\}$ and $A \in \mathcal{A}$. Define $N \in \widetilde{\mathcal{K}}^{\prime}(S)$ by $N=\{(f, g) \mid f, g \in S, f \equiv g(\bmod \alpha)\}$, $N_{A}^{\emptyset}=S^{\emptyset} \oplus 0, N_{A-\beta}^{\emptyset}=0 \oplus S^{\emptyset}$ and $N_{A^{\prime}}^{\emptyset}=0$ for any $A^{\prime} \in \mathcal{A} \backslash\{A, A-\beta\}$ (these determine the right R-action on N uniquely). Then, it is easy to see that $N^{\alpha} \neq \bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(\bigoplus_{A \in \Omega} N_{A}^{\emptyset} \cap\right.$ $\left.N^{\alpha}\right)$. Define $N^{(\Omega)} \in \widetilde{\mathcal{K}}^{\prime}(S)$ for $\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}$ as follows: $N^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}=S^{\alpha},\left(N^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}\right)_{A}^{\emptyset}=$ $S^{\emptyset},\left(N^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}\right)_{A^{\prime}}^{\emptyset}=0$ for $A^{\prime} \in \mathcal{A} \backslash\{A\}, N^{\left(W_{\alpha, \text { aff }}^{\prime}(A-\beta)\right)}=S^{\alpha},\left(N^{\left(W_{\alpha, \text { aff }}^{\prime}(A-\beta)\right)}\right)_{A-\beta}^{\emptyset}=S^{\emptyset}$, $\left(N^{\left(W_{\alpha, \text { aff }}^{\prime}(A-\beta)\right)}\right)_{A^{\prime}}^{\emptyset}=S^{\emptyset}$ for $A^{\prime} \in \mathcal{A} \backslash\{A-\beta\}$ and $N^{(\Omega)}=0$ for $\Omega \neq W_{\alpha, \text { aff }}^{\prime} A, W_{\alpha, \text { aff }}^{\prime}(A-\beta)$. Then, we have $\operatorname{supp}_{\mathcal{A}} N^{(\Omega)} \subset \Omega$. We define $N^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)} \rightarrow N^{\alpha}$ (resp. $N^{\left(W_{\alpha, \text { aff }}^{\prime}(A-\beta)\right)} \rightarrow N^{\alpha}$) by $f \mapsto(\alpha f, 0)$ (resp. $f \mapsto(f, f)$). Then, $\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}} N^{(\Omega)} \rightarrow N^{\alpha}$ is an isomorphism. We can also easily verify that $N^{\gamma}=\bigoplus_{\Omega \in W_{\gamma, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(\bigoplus_{A \in \Omega} N_{A}^{\emptyset} \cap N^{\gamma}\right)$ for any $\gamma \in \Delta^{+} \backslash\{\alpha\}$. Hence, N satisfies (LE).

We have the following. M satisfies (LE) if and only if for any $\alpha \in \Delta$, there exists $N \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}^{\alpha}\right)$ which is isomorphic to M^{α} and satisfies $N=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(\bigoplus_{A \in \Omega} N_{A}^{\emptyset} \cap N\right)$.

Lemma 2.10. Let $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right), \alpha \in \Delta$ and $A \in \mathcal{A}$. Assume that $\operatorname{supp}_{\mathcal{A}}(M) \subset W_{\alpha, \text { aff }}^{\prime} A$. Then, M satisfies (S). In particular, if M satisfies (LE), then M^{α} satisfies (S).
Proof. Set $\Omega=W_{\alpha, \text { aff }}^{\prime} A$ and let $I_{1}, I_{2} \subset \mathcal{A}$ be closed subsets. We have $\Omega=\{A, \alpha \uparrow A, \alpha \uparrow$ $(\alpha \uparrow A), \ldots\} \cup\{\alpha \downarrow A, \alpha \downarrow(\alpha \downarrow A), \ldots\}$ and Ω is a totally ordered subset of \mathcal{A}. Since Ω is totally ordered, $I_{1} \cap \Omega \subset I_{2} \cap \Omega$ or $I_{2} \cap \Omega \subset I_{1} \cap \Omega$. We may assume $I_{1} \cap \Omega \subset I_{2} \cap \Omega$. We can take closed subsets I_{1}^{\prime} and I_{2}^{\prime} such that $I_{1}^{\prime} \subset I_{2}^{\prime}, I_{1}^{\prime} \cap \Omega=I_{1} \cap \Omega$ and $I_{2}^{\prime} \cap \Omega=I_{2} \cap \Omega$. Then, we have $M_{I_{1}^{\prime}}=M_{I_{1}}, M_{I_{2}^{\prime}}=M_{I_{2}}$ and $M_{I_{1}^{\prime} \cup I_{2}^{\prime}}=M_{I_{1} \cup I_{2}}$. Hence, we may assume $I_{1}=I_{1}^{\prime}$ and $I_{2}=I_{2}^{\prime}$. In this case, (S) obviously holds.

Let $K \subset \mathcal{A}$ be a locally closed subset; namely, K is the intersection of a closed subset I with an open subset J. It is easy to see that, if $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ satisfies (S), then $M_{I} / M_{I \backslash J} \simeq$ $M_{I^{\prime}} / M_{I^{\prime} \backslash J^{\prime}}$ naturally for closed subsets I, I^{\prime} and open subsets J, J^{\prime} such that $K=I \cap J=$ $I^{\prime} \cap J^{\prime}$. We define $M_{K}=M_{I} / M_{I \backslash J}$ for $M \in \widetilde{\mathcal{K}}\left(S_{0}\right)$. By Lemma 2.9, we have

$$
\bigoplus_{A \in K} M_{A}^{\emptyset} \xrightarrow{\sim} M_{K}^{\emptyset}
$$

By putting $\left(M_{K}\right)_{A}^{\emptyset}$ equal to the image of M_{A}^{\emptyset} in M_{K}^{\emptyset} by this isomorphism, we have an object M_{K} of $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. The following lemma is obvious.
Lemma 2.11. We have $\operatorname{supp}_{\mathcal{A}}\left(M_{K}\right)=\operatorname{supp}_{\mathcal{A}}(M) \cap K$ for any locally closed subset $K \subset \mathcal{A}$.
Lemma 2.12. Let $K_{1}, K_{2} \subset \mathcal{A}$ be locally closed subsets. If $M \in \widetilde{\mathcal{K}}\left(S_{0}\right)$, then $\left(M_{K_{1}}\right)_{K_{2}} \simeq$ $M_{K_{1} \cap K_{2}}$
Proof. The proof is divided into 4 steps.
(1) Assume that both K_{1}, K_{2} are closed. Then, the lemma follows from the definitions.
(2) Assume that K_{1} is open and K_{2} is closed. Set $I_{1}=\mathcal{A} \backslash K_{1}$. Then, we have

$$
\left(M_{K_{1}}\right)_{K_{2}}=M / M_{I_{1}} \cap \bigoplus_{A \in K_{2}}\left(M / M_{I_{1}}\right)_{A}^{\emptyset}
$$

Note that $M_{K_{2}} /\left(M_{K_{2}} \cap M_{I_{1}}\right)=M_{K_{2}} / M_{K_{2} \cap I_{1}}=M_{K_{1} \cap K_{2}}$. There is a canonical embedding from $M_{K_{2}} /\left(M_{K_{2}} \cap M_{I_{1}}\right)$ to $\left(M_{K_{1}}\right)_{K_{2}}$. Let $m \in M$ such that $m+M_{I_{1}} \in \bigoplus_{A \in K_{2}}\left(M / M_{I_{1}}\right)_{A}^{\emptyset}$. Then, M_{A}^{\emptyset}-component m_{A} of m is 0 for $A \notin I_{1} \cup K_{2}$. Hence, $m \in M_{I_{1} \cup K_{2}}=M_{I_{1}}+M_{K_{2}}$. Therefore, the canonical embedding is surjective. We get the lemma.
(3) Assume that K_{2} is closed. Take a closed subset I_{1} and an open subset J_{1} such that $K_{1}=I_{1} \cap J_{1}$. Then, by (2), $\left(M_{J_{1}}\right)_{I_{1}} \simeq M_{K_{1}}$. Hence, $\left(M_{K_{1}}\right)_{K_{2}} \simeq\left(\left(M_{J_{1}}\right)_{I_{1}}\right)_{K_{2}}=\left(M_{J_{1}}\right)_{I_{1} \cap K_{2}}$ by (1). This is isomorphic to $M_{J_{1} \cap I_{1} \cap K_{2}}=M_{K_{1} \cap K_{2}}$ by (2).
(4) Now we prove the lemma in general. Let I_{i} be a closed subset and J_{i} be an open subset such that $K_{i}=I_{i} \cap J_{i}$ and put $J_{i}^{c}=\mathcal{A} \backslash J_{i}$ for $i=1,2$. Then,

$$
\left(M_{K_{1}}\right)_{K_{2}}=\left(M_{K_{1}}\right)_{I_{2}} /\left(M_{K_{1}}\right)_{I_{2} \cap J_{2}^{c}} \simeq M_{K_{1} \cap I_{2}} / M_{K_{1} \cap I_{2} \cap J_{2}^{c}}
$$

by (3). We have $M_{K_{1} \cap I_{2}}=M_{I_{1} \cap I_{2}} / M_{I_{1} \cap I_{2} \cap J_{1}^{c}}$ and $M_{K_{1} \cap I_{2} \cap J_{2}^{c}}=M_{I_{1} \cap I_{2} \cap J_{2}^{c}} / M_{I_{1} \cap I_{2} \cap J_{2}^{c} \cap J_{1}^{c}}$. Hence,

$$
\left(M_{K_{1}}\right)_{K_{2}} \simeq M_{I_{1} \cap I_{2}} /\left(M_{I_{1} \cap I_{2} \cap J_{1}^{c}}+M_{I_{1} \cap I_{2} \cap J_{2}^{c}}\right) .
$$

Since $M_{I_{1} \cap I_{2} \cap J_{1}^{c}}+M_{I_{1} \cap I_{2} \cap J_{2}^{c}}=M_{\left(I_{1} \cap I_{2} \cap J_{1}^{c}\right) \cup\left(I_{2} \cap I_{2} \cap J_{2}^{c}\right)}=M_{\left(I_{1} \cap I_{2}\right) \backslash\left(J_{1} \cap J_{2}\right)}$, we get the lemma.

Lemma 2.13. If $M \in \widetilde{\mathcal{K}}\left(S_{0}\right)$, then $M_{K} \in \widetilde{\mathcal{K}}\left(S_{0}\right)$.
Proof. Take a closed subset I and an open subset J such that $K=I \cap J$.
We prove M_{K} satisfies (S). Let I_{1}, I_{2} be closed subsets. Since $\left(M_{K}\right)_{I_{i}}=M_{K \cap I_{i}}$ is a quotient of $M_{I \cap I_{i}}$, it is sufficient to prove that $M_{I \cap I_{1}} \oplus M_{I \cap I_{2}} \rightarrow\left(M_{K}\right)_{I_{1} \cup I_{2}}$ is surjective. The module $\left(M_{K}\right)_{I_{1} \cup I_{2}}=M_{K \cap\left(I_{1} \cup I_{2}\right)}$ is a quotient of $M_{I \cap\left(I_{1} \cup I_{2}\right)}$, and since $M_{I \cap\left(I_{1} \cup I_{2}\right)}=$ $M_{I \cap I_{1}}+M_{I \cap I_{2}}$, the map is surjective.

We prove M_{K} satisfies (LE). We may assume $M=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(\bigoplus_{A \in \Omega} M_{A}^{\emptyset} \cap M^{\alpha}\right)$. Let $m \in M_{I}^{\alpha}$. Then, for each $\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}$, we have $m_{\Omega} \in M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}$ such that $m=\sum m_{\Omega}$. Then, for each $A \in \mathcal{A}$, we have $m_{A}=\left(m_{\Omega}\right)_{A}$, where Ω is the unique $W_{\alpha, \text { aff }}{ }^{-}$ orbit containing A. Therefore, since $m \in M_{I}^{\alpha}$, we have $m_{\Omega} \in M_{I}^{\alpha}$. Hence, $m_{\Omega} \in M_{I}^{\alpha} \cap$ $\bigoplus_{A \in \Omega}\left(M_{I}\right)_{A}^{\emptyset}$. Namely, M_{I} satisfies (LE). Since M_{K} is a quotient of M_{I}, it also satisfies (LE).

2.3. Standard filtration

Note that $\{A\}=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A\right\} \cap\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \leq A\right\}$ is locally closed. Let S_{0} be a flat commutative graded S-algebra. We say that an object M of $\widetilde{\mathcal{K}}\left(S_{0}\right)$ admits a standard filtration if $M_{\{A\}}$ is a graded free S_{0}-module for any $A \in \mathcal{A}$. Let $\widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ be the full subcategory of $\widetilde{\mathcal{K}}\left(S_{0}\right)$ consisting of an object M which admits a standard filtration and for which $\operatorname{supp}_{\mathcal{A}}(M)$ is finite. By Lemma 2.12 , if $M \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$, then $M_{K} \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ for any locally closed subset $K \subset \mathcal{A}$.

Lemma 2.14. Let $M_{1}, \ldots, M_{l} \in \widetilde{\mathcal{K}}\left(S_{0}\right)$ and assume that $\operatorname{supp}_{\mathcal{A}}\left(M_{1}\right), \ldots, \operatorname{supp}_{\mathcal{A}}\left(M_{l}\right)$ are all finite. Let $I \subset \mathcal{A}$ be a closed subset and $A \in I$ such that $I \backslash\{A\}$ is closed. Then, there exist closed subsets $I_{0} \subset I_{1} \subset \cdots \subset I_{r}$ and $k \in\{1, \ldots, r\}$ such that $\#\left(I_{j} \backslash I_{j-1}\right)=1$ for any
$j=1, \ldots, r, I_{k} \cap\left(\bigcup_{i} \operatorname{supp}_{\mathcal{A}}\left(M_{i}\right)\right)=I \cap\left(\bigcup_{i} \operatorname{supp}_{\mathcal{A}}\left(M_{i}\right)\right), I_{k-1}=I_{k} \backslash\{A\},\left(M_{i}\right)_{I_{0}}=0$ and $\left(M_{i}\right)_{I_{r}}=M$ for any $i=1, \ldots, l$. In particular, we have $\left(M_{i}\right)_{I} \simeq\left(M_{i}\right)_{I_{k}}$ for all $i=1, \ldots, l$.

Proof. There exist A_{0}^{-}, A_{0}^{+}such that $\operatorname{supp}_{\mathcal{A}}\left(M_{i}\right) \subset\left[A_{0}^{-}, A_{0}^{+}\right]$for any $i=1, \ldots, l$ by [Lus80, Proposition 3.7]. Put $I_{0}=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \nless A_{0}^{+}\right\} \cap I$. We enumerate the elements in $(I \backslash\{A\}) \cap\left[A_{0}^{-}, A_{0}^{+}\right]$(resp. $\left.\left[A_{0}^{-}, A_{0}^{+}\right] \backslash I\right)$ as $\left\{A_{1}, \ldots, A_{k-1}\right\}$ (resp. $\left\{A_{k+1}, \ldots, A_{r}\right\}$) such that $A_{i} \geq A_{j}$ implies $i \leq j$. Put $A_{k}=A$. Then, it is easy to see that $I_{i}=I_{0} \cup\left\{A_{1}, \ldots, A_{i}\right\}$ is closed and satisfies the conditions of the lemma.

Lemma 2.15. Let $M \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$, and let K be a locally closed subset. Then M_{K} is graded free as a left S_{0}-module.

Proof. Since $M_{K} \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$, we may assume $K=\mathcal{A}$. Take closed subsets $I_{0} \subset I_{1} \subset \cdots \subset I_{r}$ such that $I_{i+1} \backslash I_{i}=\left\{A_{i}\right\}, M_{I_{0}}=0$ and $M_{I_{r}}=M$. Then, $M_{I_{i+1}} / M_{I_{i}}=M_{\left\{A_{i}\right\}}$ is a graded free S_{0}-module. Hence, $M_{I_{r}} / M_{I_{0}}=M$ is also graded free.

Finally, we define the category $\widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$, which plays an important role later. The definitions are taken from [FL15, Lemma 4.11].

Definition 2.16. We say that a sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ satisfies (ES) if the composition $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ is zero and

$$
0 \rightarrow\left(M_{1}\right)_{\{A\}} \rightarrow\left(M_{2}\right)_{\{A\}} \rightarrow\left(M_{3}\right)_{\{A\}} \rightarrow 0
$$

is exact for any $A \in \mathcal{A}$.
We define the category $\widetilde{\mathcal{K}}_{P}\left(S_{0}\right) \subset \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ as follows: $M \in \widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$ if and only if for any sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ which satisfies (ES), the induced sequence

$$
0 \rightarrow \operatorname{Hom}_{\stackrel{\tilde{\mathcal{K}}}{\Delta}^{\left(S_{0}\right)}}^{\bullet}\left(M, M_{1}\right) \rightarrow \operatorname{Hom}_{\dot{\mathcal{K}}_{\Delta}\left(S_{0}\right)}^{\bullet}\left(M, M_{2}\right) \rightarrow \operatorname{Hom}_{\tilde{\mathcal{K}}_{\Delta\left(S_{0}\right)}^{\bullet}}\left(M, M_{3}\right) \rightarrow 0
$$

is exact.
Lemma 2.17. Assume that $M_{1}, M_{2}, M_{3} \in \widetilde{\mathcal{K}}\left(S_{0}\right)$ satisfy $\# \operatorname{supp}_{\mathcal{A}}\left(M_{i}\right)<\infty \quad(i=1,2,3)$, and the sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ satisfies ($E S$). Then, $0 \rightarrow\left(M_{1}\right)_{K} \rightarrow\left(M_{2}\right)_{K} \rightarrow\left(M_{3}\right)_{K} \rightarrow$ 0 is exact for any locally closed subset K.

Proof. Replacing M_{i} with $\left(M_{i}\right)_{K}$ for $i=1,2,3$, we may assume $K=\mathcal{A}$. We can take closed subsets $I_{0} \subset I_{1} \subset \cdots \subset I_{r}$ such that $\left(M_{i}\right)_{I_{0}}=0,\left(M_{i}\right)_{I_{r}}=M_{i}$ and $\#\left(I_{j+1} \backslash I_{j}\right)=1$ for $i=1,2,3$ and $j=0, \ldots, r$, as in Lemma 2.14. Then, the exactness of $0 \rightarrow\left(M_{1}\right)_{I_{j}} \rightarrow$ $\left(M_{2}\right)_{I_{j}} \rightarrow\left(M_{3}\right)_{I_{j}} \rightarrow 0$ follows by induction on j and a standard diagram argument.

Lemma 2.18. Let $M \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$, and $I_{1} \supset I_{2}$ are closed subsets of \mathcal{A}. Then, $M_{I_{2}} \rightarrow M_{I_{1}} \rightarrow$ $M_{I_{1}} / M_{I_{2}}$ satisfies ($E S$).
Proof. Note that $M_{I_{1}} / M_{I_{2}}=M_{I_{1} \backslash I_{2}}$. The lemma follows from Lemma 2.12.
We put $\widetilde{\mathcal{K}}^{\prime}=\widetilde{\mathcal{K}}(S), \widetilde{\mathcal{K}}=\widetilde{\mathcal{K}}(S), \widetilde{\mathcal{K}}_{\Delta}=\widetilde{\mathcal{K}}_{\Delta}(S)$ and $\widetilde{\mathcal{K}}_{P}=\widetilde{\mathcal{K}}_{P}(S)$. We also put $\left(\widetilde{\mathcal{K}}^{\prime}\right)^{*}=$ $\widetilde{\mathcal{K}}^{\prime}\left(S^{*}\right), \widetilde{\mathcal{K}}^{*}=\widetilde{\mathcal{K}}\left(S^{*}\right), \widetilde{\mathcal{K}}_{\Delta}^{*}=\widetilde{\mathcal{K}}_{\Delta}\left(S^{*}\right)$ and $\widetilde{\mathcal{K}}_{P}^{*}=\widetilde{\mathcal{K}}_{P}\left(S^{*}\right)$ for $* \in \Delta \cup\{\emptyset\}$.

2.4. Hecke action

For $\lambda \in \Lambda_{\mathbb{K}}$ and $f \in \Lambda_{\mathbb{K}}^{\vee}$, we put $\langle\lambda, f\rangle=f_{A}\left(\lambda_{A}\right)$ for $A \in \mathcal{A}$. It is easy to see that this does not depend on A and gives an isomorphism $\Lambda_{\mathbb{K}}^{\vee} \simeq \operatorname{Hom}_{\mathbb{K}}\left(\Lambda_{\mathbb{K}}, \mathbb{K}\right)$. Let $s \in S_{\mathrm{aff}}$, and we define $\alpha_{s} \in \Lambda_{\mathbb{K}}$ and $\alpha_{s}^{\vee} \in \Lambda_{\mathbb{K}}^{\vee}$ as follows: let $A \in \mathcal{A}$ and $\alpha \in \Delta^{+}$ such that $s_{\alpha, n}=A s$ for some $n \in \mathbb{Z}$. Then, we put $\alpha_{s}=\alpha^{A}$ and $\alpha_{s}^{\vee}=\left(\alpha^{\vee}\right)^{A}$. These depend on a choice of A and α. For each $s \in S_{\text {aff }}$, we fix such A and α and define $\alpha_{s}, \alpha_{s}^{\vee}$.

Lemma 2.19. The pair $\left(\alpha_{s}, \alpha_{s}^{\vee}\right)$ does not depend on A, α up to sign.
Proof. Let $A^{\prime} \in \mathcal{A}$ and take $\beta \in \Delta^{+}$and $m \in \mathbb{Z}$ such that $A^{\prime} s=s_{\beta, m} A^{\prime}$. Take $x \in W_{\text {aff }}^{\prime}$ such that $A^{\prime}=x A$. Then, $A^{\prime} s=x A s=x s_{\alpha, n} A$. Since the action of $W_{\text {aff }}^{\prime}$ on $X_{\mathbb{R}}$ preserves the set $\left\{\left\{\lambda \in X_{\mathbb{R}} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle=n\right\} \mid \alpha \in \Delta, n \in \mathbb{Z}\right\}$, there exists $(\gamma, k) \in \Delta \times \mathbb{Z}$ such that $x s_{\alpha, n}=s_{\gamma, k} x$. Moreover, $\gamma \in\{ \pm \bar{x}(\alpha)\}$, where $\bar{x} \in W_{\mathrm{f}}$ is the image of x under $W_{\mathrm{aff}}^{\prime} \rightarrow W_{\mathrm{f}}$. We may assume $\gamma=\bar{x}(\alpha)$. We have $A^{\prime} s=s_{\gamma, k} x A=s_{\gamma, k} A^{\prime}$. Hence, $s_{\gamma, k}=s_{\beta, m}$ and therefore, $\beta=\varepsilon \gamma=\varepsilon \bar{x}(\alpha)$ for $\varepsilon=1$ or $\varepsilon=-1$. We have $\beta^{A^{\prime}}=\varepsilon \bar{x}(\alpha)^{x A}=\varepsilon \alpha^{A}$ and $\left(\beta^{\vee}\right)^{A^{\prime}}=\varepsilon\left(\alpha^{\vee}\right)^{A}$.

We have that $\left(\Lambda_{\mathbb{K}},\left\{\alpha_{s}\right\}_{s \in S_{\text {aff }}},\left\{\alpha_{s}^{\vee}\right\}_{s \in S_{\text {aff }}}\right)$ is a realization which satisfies Demazure surjectivity [EW16, Definition 3.1]. Let \mathcal{S} Bimod be the category introduced in [Abe21]. We remark that [Abe21, Assumption 3.2] is satisfied in this case by [Abe20a, Theorem 1.2, Proposition 3.7]. Set $R^{\emptyset}=R\left[\left(\left(\alpha^{\vee}\right)^{A}\right)^{-1} \mid \alpha \in \Delta\right]$ for $A \in \mathcal{A}$. It is easy to see that this does not depend on A. We put $B^{\emptyset}=R^{\emptyset} \otimes_{R} B$ for $B \in \mathcal{S B i m o d}$.
Recall that we have an object $B_{s} \in \mathcal{S}$ Bimod. Set $R^{s}=\{f \in R \mid s(f)=f\}$. As an R-bimodule, $B_{s}=R \otimes_{R^{s}} R(1) \simeq\left\{(f, g) \in R^{2} \mid f \equiv g\left(\bmod \alpha_{s}\right)\right\}$ and we have the decomposition of $B_{s}^{\emptyset}=\bigoplus_{w \in W}\left(B_{s}\right)_{w}^{\emptyset}$, where

$$
\begin{aligned}
\left(B_{s}\right)_{e}^{\emptyset} & =R^{\emptyset}\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right), \\
\left(B_{s}\right)_{s}^{\emptyset} & =R^{\emptyset}\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right), \\
\left(B_{s}\right)_{w}^{\emptyset} & =0 \quad(w \neq e, s) .
\end{aligned}
$$

Here, $\delta_{s} \in \Lambda_{\mathbb{K}}^{\vee}$ is chosen such that $\left\langle\alpha_{s}, \delta_{s}\right\rangle=1$. The decomposition does not depend on our choice of δ_{s}.

Lemma 2.20. Let $B \in \mathcal{S}$ Bimod. Then, there exists a decomposition $B^{\emptyset}=\bigoplus_{x \in W_{\text {aff }}} B_{x}^{\emptyset}$ such that $\operatorname{Frac}(R) \otimes_{R^{\emptyset}} B_{x}^{\emptyset} \simeq B_{x}^{\operatorname{Frac}(R)}$. Here, $B_{x}^{\operatorname{Frac}(R)}$ is the $\operatorname{Frac}(R)$-bimodule as in the definition of \mathcal{S} Bimod.

Proof. Assume that $B_{1} \in \mathcal{S B i m o d}$ is a direct summand of $B \in \mathcal{S B i m o d}$, and let $e \in \operatorname{End}_{\mathcal{S B i m o d}}(B)$ be the idempotent such that $B_{1}=e(B)$. If B satisfies the lemma, then by putting $\left(B_{1}\right)_{x}^{\emptyset}=e\left(B_{x}^{\emptyset}\right)$, we see that B_{1} also satisfies the lemma. Therefore, we may assume $B=B_{s_{1}} \otimes \cdots \otimes B_{s_{l}}$ for $s_{i} \in S_{\text {aff }}$. Note that for $B=B_{s}$, the lemma holds as we have seen in the above. Hence, it is sufficient to prove that if B_{1}, B_{2} satisfy the lemma, then $B=B_{1} \otimes B_{2}$ also satisfies the lemma.
For $x \in W_{\text {aff }}$ and $b \in\left(B_{1}\right)_{x}^{\emptyset}$, we have $b f=x(f) b$ for $f \in R$. Since $\left\{\left(\alpha^{\vee}\right)^{A} \mid \alpha \in \Delta\right\}$ is stable under the action of x, the formula says that $\left(B_{1}\right)_{x}^{\emptyset}$ is also a right R^{\emptyset}-module. Therefore, B_{1}^{\emptyset} is also a right R^{\emptyset}-module. Hence, $R^{\emptyset} \otimes_{R} B_{1} \otimes_{R} B_{2} \simeq B_{1}^{\emptyset} \otimes_{R} B_{2} \simeq B_{1}^{\emptyset} \otimes_{R^{\emptyset}} R^{\emptyset} \otimes_{R} B_{2} \simeq$
$B_{1}^{\emptyset} \otimes_{R^{\emptyset}} B_{2}^{\emptyset}$. We put $B_{x}^{\emptyset}=\bigoplus_{y z=x}\left(B_{1}\right)_{y}^{\emptyset} \otimes_{R^{\emptyset}}\left(B_{2}\right)_{z}^{\emptyset}$. Then, we get $B^{\emptyset}=\bigoplus_{x \in W_{\text {aff }}} B_{x}^{\emptyset}$ and we have $\operatorname{Frac}(R) \otimes_{R^{\varrho}} B_{x}^{\emptyset} \simeq B_{x}^{\operatorname{Frac}(R)}$.

Let S_{0} be a flat commutative graded S-algebra. For $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ and $B \in \mathcal{S}$ Bimod, we define $M * B \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ by

- As an $\left(S_{0}, R\right)$-bimodule, $M * B=M \otimes_{R} B$.
- We put $(M * B)_{A}^{\emptyset}=\bigoplus_{x \in W_{\text {aff }}} M_{A x^{-1}}^{\emptyset} \otimes_{R^{\emptyset}} B_{x}^{\emptyset}$.

Let $f: M \rightarrow N$ be a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. We have $f\left(M_{A x^{-1}}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \in A x^{-1}+\mathbb{Z} \Delta, A^{\prime} \geq A x^{-1}} N_{A^{\prime}}^{\emptyset}$. By Lemma 2.3, for $A^{\prime} \in A x^{-1}+\mathbb{Z} \Delta, A^{\prime} \geq A x^{-1}$ if and only if $A^{\prime} x \geq A$. Therefore, $\bigoplus_{A^{\prime} \in A x^{-1}+\mathbb{Z} \Delta, A^{\prime} \geq A x^{-1}} N_{A^{\prime}}^{\emptyset}=\bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta, A^{\prime} \geq A} N_{A^{\prime} x^{-1}}^{\emptyset}$ by replacing $A^{\prime} x$ with A^{\prime}. Hence,

$$
(f \otimes \mathrm{id})\left(M_{A x^{-1}}^{\emptyset} \otimes B_{x}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta, A^{\prime} \geq A} N_{A^{\prime} x^{-1}}^{\emptyset} \otimes B_{x}^{\emptyset} \subset \bigoplus_{A^{\prime} \geq A}(N * B)_{A^{\prime}}^{\emptyset}
$$

Therefore, $(f \otimes \mathrm{id})$ gives a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. Similarly, if $f: B_{1} \rightarrow B_{2}$ is a morphism in \mathcal{S} Bimod, then $\operatorname{id} \otimes f: M * B_{1} \rightarrow M * B_{2}$ is a morphism in $\mathcal{K}^{\prime}\left(S_{0}\right)$.
For each $B \in \mathcal{S}$ Bimod, B_{x}^{\emptyset} is free as a left R^{\emptyset}-module. We put $\operatorname{supp}_{W_{\text {aff }}}(B)=\left\{x \in W_{\text {aff }} \mid\right.$ $\left.B_{x}^{\emptyset} \neq 0\right\}$. The following lemma follows.

Lemma 2.21. We have $\operatorname{supp}_{\mathcal{A}}(M * B)=\left\{A x \mid A \in \operatorname{supp}_{\mathcal{A}}(M), x \in \operatorname{supp}_{W_{\text {aff }}}(B)\right\}$.
Consider $M \otimes_{R} B_{s}=M \otimes_{R^{s}} R(1)=M(1) \otimes 1 \oplus M(1) \otimes \delta_{s}$. In $\left(M \otimes_{R} B_{s}\right)^{\emptyset}=M^{\emptyset}(1) \otimes$ $1 \oplus M^{\emptyset}(1) \otimes \delta_{s}$, we have

$$
\begin{align*}
\left(M * B_{s}\right)_{A}^{\emptyset} & =\left\{m \delta_{s} \otimes 1-m \otimes s\left(\delta_{s}\right) \mid m \in M_{A}^{\emptyset}\right\} \oplus\left\{m \delta_{s} \otimes 1-m \otimes \delta_{s} \mid m \in M_{A s}^{\emptyset}\right\} \\
& \simeq M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset} . \tag{2.1}
\end{align*}
$$

The isomorphism is given by $m \otimes f \mapsto(m f, m s(f))$. Note that the last isomorphism is an isomorphism as left S_{0}^{\emptyset}-modules. As right R-modules, if $m \in\left(M * B_{s}\right)_{A}^{\emptyset}$ corresponds to $\left(m_{1}, m_{2}\right) \in M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset}$, then $m f$ corresponds to ($m_{1} f, m_{2} s(f)$).

Proposition 2.22. Let $M, N \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. We have $\operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}^{\bullet}\left(M, N * B_{s}\right) \simeq \operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}^{\bullet}(M *$ $\left.B_{s}, N\right)$.
Proof. Take $\delta \in \Lambda_{\mathbb{K}}^{\vee}$ such that $\left\langle\alpha_{s}, \delta\right\rangle=1$. As $\left(S_{0}, R\right)$-bimodules, we have $N * B_{s}=N \otimes_{R^{s}}$ $R(1)$ and $M * B_{s}=M \otimes_{R^{s}} R(1)$. For $\varphi: M \otimes_{R^{s}} R(1) \rightarrow N$, define $\psi: M \rightarrow N \otimes_{R^{s}} R(1)$ by $\psi(m)=\varphi(m \delta \otimes 1) \otimes 1-\varphi(m \otimes 1) \otimes s(\delta)$. We know that if φ is an $\left(S_{0}, R\right)$-bimodule homomorphism, ψ is also an $\left(S_{0}, R\right)$-bimodule homomorphism and it induces a bijection between the spaces of (S_{0}, R)-bimodule homomorphisms (ee, for example, [Lib08, Lemma 3.3]). We prove that φ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ if and only if ψ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$.

Set $a(m)=m \delta \otimes 1-m \otimes s(\delta)$ and $b(m)=m s(\delta) \otimes 1-m \otimes s(\delta)$ for $m \in M^{\emptyset}$. We also define $a^{\prime}(n), b^{\prime}(n) \in N^{\emptyset} \otimes_{R^{s}} R$ for $n \in N^{\emptyset}$ in the same way. Then, we have $\left(M * B_{s}\right)_{A}^{\emptyset}=$ $a\left(M_{A}^{\emptyset}\right)+b\left(M_{A s}^{\emptyset}\right)$ and the same for N by (2.1) for $A \in \mathcal{A}$.

Let $A \in \mathcal{A}$ and $m \in M_{A}^{\emptyset}$. By the definition, $\psi(m)=\varphi(a(m)) \otimes 1+b^{\prime}(\varphi(m \otimes 1))$. Since $a(m) \in\left(M * B_{s}\right)_{A}^{\emptyset}, \quad \varphi(a(m)) \otimes 1=\left(\alpha_{s}\right)_{A}^{-1} \varphi(a(m)) \alpha_{s} \otimes 1=\left(\alpha_{s}\right)_{A}^{-1} a^{\prime}(\varphi(a(m)))-$ $\left(\alpha_{s}\right)_{A}^{-1} b^{\prime}(\varphi(a(m)))$. However, we have $m \otimes 1=\left(\alpha_{s}\right)_{A}^{-1} m \alpha_{s} \otimes 1=\left(\alpha_{s}\right)_{A}^{-1} a(m)-$
$\left(\alpha_{s}\right)_{A}^{-1} b(m)$. Since φ and b^{\prime} are left S_{0}-equivariant, we get $\psi(m)=\left(\alpha_{s}\right)_{A}^{-1} a^{\prime}(\varphi(a(m)))-$ $\left(\alpha_{s}\right)_{A}^{-1} b^{\prime}(\varphi(b(m)))$.

Assume that φ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. Then, for any $m \in M_{A}^{\emptyset}, \varphi(a(m)) \in \bigoplus_{A^{\prime} \geq A} N_{A^{\prime}}^{\emptyset}$. Hence, $a^{\prime}(\varphi(a(m))) \in \bigoplus_{A^{\prime} \geq A}\left(N * B_{s}\right)_{A^{\prime}}^{\emptyset}$. Since $b(m) \in\left(M * B_{s}\right)_{A s}^{\emptyset}$, we have $\varphi(\bar{b}(m)) \in$ $\bigoplus_{A^{\prime} \geq A s, A^{\prime} \in A s+\mathbb{Z} \Delta} N_{A^{\prime}}^{\emptyset}$. Therefore, $b^{\prime}(\varphi(b(m))) \in \bigoplus_{A^{\prime} \geq A s, A^{\prime} \in A s+\mathbb{Z} \Delta}\left(N * B_{s}\right)_{A^{\prime} s}^{\emptyset}$. If $A^{\prime} \in$ $A s+\mathbb{Z} \Delta$ satisfies $A^{\prime} \geq A s$, since $s: A s+\mathbb{Z} \Delta \rightarrow A+\mathbb{Z} \Delta$ preserves the order, we get $A^{\prime} s \geq A$. Hence, $b^{\prime}(\varphi(b(m))) \in \bigoplus_{A^{\prime} \geq A}\left(N * B_{s}\right)_{A^{\prime}}^{\emptyset}$. Therefore, ψ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$.

However, assume that ψ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. Consider the map $\Phi: N \otimes_{R^{s}} R \rightarrow N$ defined by $n \otimes f \mapsto n f$. Then, $\Phi\left(a^{\prime}(n)\right)=n \alpha_{s}$ and $\Phi\left(b^{\prime}(n)\right)=0$. Therefore, $\Phi\left(\left(N * B_{s}\right)_{A}^{\emptyset}\right)=$ $\Phi\left(a^{\prime}\left(N_{A}^{\emptyset}\right)+b^{\prime}\left(N_{A s}^{\emptyset}\right)\right) \subset N_{A}^{\emptyset}$. Let $m \in M_{A}^{\emptyset}$. Then applying Φ to $\psi(m)=\left(\alpha_{s}\right)_{A}^{-1} a^{\prime}(\varphi(a(m)))-$ $\left(\alpha_{s}\right)_{A}^{-1} b^{\prime}(\varphi(b(m)))$, we get $\left(\alpha_{s}\right)_{A}^{-1} \varphi(a(m)) \alpha_{s} \in \bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta, A^{\prime} \geq A} M_{A^{\prime}}^{\emptyset}$. Hence, $\varphi\left(a\left(M_{A}^{\emptyset}\right)\right) \subset$ $\bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}$. Similarly, using $N \otimes_{R^{s}} R \rightarrow N$ defined by $n \otimes f \mapsto n s(f)$, we get $\varphi\left(b\left(M_{A s}^{\emptyset}\right)\right) \subset$ $\bigoplus_{A^{\prime} \geq A} N_{A^{\prime}}^{\emptyset}$. Since $\left(M * B_{s}\right)_{A}^{\emptyset}=a\left(M_{A}^{\emptyset}\right)+b\left(M_{A s}^{\emptyset}\right), \varphi$ is a morphism in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$.

Lemma 2.23. Let $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$.
(1) For $\alpha \in \Delta$, $s \in S_{\mathrm{aff}}$ and $\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}$, set $M^{(\Omega)}=M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}$. Then, we have the following.
(a) If $\Omega s=\Omega$, then $\left(M * B_{s}\right)^{(\Omega)} \simeq M^{(\Omega)} * B_{s}$.
(b) If $\Omega s \neq \Omega$, then the right action of α_{s} on $M^{(\Omega)}$ is invertible and we have

$$
\left(M * B_{s}\right)^{(\Omega)} \simeq M^{(\Omega)} \otimes\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right) \oplus M^{(\Omega s)} \otimes\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right)
$$

where $\left\langle\alpha_{s}, \delta_{s}\right\rangle=1$.
(2) If $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ satisfies (LE), then $M * B$ also satisfies (LE) for any $B \in \mathcal{S}$ Bimod.

Proof. We have

$$
\begin{aligned}
\left(M * B_{s}\right)^{(\Omega)} & =M^{\alpha} * B_{s} \cap \bigoplus_{A \in \Omega}\left(M * B_{s}\right)_{A}^{\emptyset} \\
& =M^{\alpha} * B_{s} \cap\left(\bigoplus_{A \in \Omega} M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{e}^{\emptyset} \oplus \bigoplus_{A \in \Omega} M_{A s}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset}\right) .
\end{aligned}
$$

If $\Omega s=\Omega$, then in the second direct sum, we can replace $A s$ with A. Therefore,

$$
\begin{aligned}
\left(M * B_{s}\right)^{(\Omega)} & =M^{\alpha} * B_{s} \cap\left(\bigoplus_{A \in \Omega} M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{e}^{\emptyset} \oplus \bigoplus_{A \in \Omega} M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset}\right) \\
& =M^{\alpha} * B_{s} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset} \otimes\left(B_{s}\right)^{\emptyset} \\
& =\left(M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}\right) \otimes B_{s} \\
& =M^{(\Omega)} * B_{s} .
\end{aligned}
$$

Assume that $\Omega s \neq \Omega$ and take $A \in \Omega$. Set $\beta^{\vee}=\left(\alpha_{s}^{\vee}\right)_{A}$. Then the assumption $\Omega s \neq \Omega$ tells us that $\beta^{\vee} \neq \pm \alpha^{\vee}$. Hence, β^{\vee} is invertible in S^{α}. The element $s_{\alpha}\left(\beta^{\vee}\right)$ is also invertible.

Let $\delta \in X_{\mathbb{K}}^{\vee}$ such that $\langle\alpha, \delta\rangle=1$. For $m \in M^{(\Omega)}$, there exists $m_{1} \in \bigoplus_{A^{\prime} \in A+\mathbb{Z} \alpha} M_{A^{\prime}}^{\emptyset}$ and $m_{2} \in \bigoplus_{A^{\prime} \in s_{(\alpha, 0)} A+\mathbb{Z}_{\alpha}} M_{A^{\prime}}^{\emptyset}$ such that $m=m_{1}+m_{2}$. For each $f \in R, m_{1} f=f_{A} m_{1}$ and $m_{2} f=s_{\alpha}\left(f_{A}\right) m_{2}$. By calculations using this, we have

$$
\left(\frac{1}{\beta^{\vee}} m+\frac{\left\langle\alpha, \beta^{\vee}\right\rangle}{\beta s_{\alpha}\left(\beta^{\vee}\right)}\left(\delta m-m \delta^{A}\right)\right) \alpha_{s}^{\vee}=m .
$$

Hence, the right action of α_{s}^{\vee} is invertible.
Therefore, we have $\left(M * B_{s}\right)^{(\Omega)}=\left(M * B_{s}\left[\alpha_{s}^{-1}\right]\right)^{(\Omega)}$ where $B_{s}\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]=B_{s} \otimes_{R}$ $R\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]$. Since $B_{s}\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]=R\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right) \oplus R\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right)$ with $R\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right) \subset\left(B_{s}\right)_{e}^{\emptyset}$ and $R\left[\left(\alpha_{s}^{\vee}\right)^{-1}\right]\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right) \subset\left(B_{s}\right)_{s}^{\emptyset}$, the definition of $\left(M * B_{s}\right)^{(\Omega)}$ implies (b).
(2) Fix $\alpha \in \Delta$. By replacing M^{α} with an object which is isomorphic to M^{α}, we may assume $M^{\alpha}=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(\bigoplus_{A \in \Omega} M_{A}^{\emptyset} \cap M^{\alpha}\right)$. Let $\left\{\Omega_{i}\right\}$ be a complete set of representatives for $\left\{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A} \mid \Omega s \neq \Omega\right\} /\{e, s\}$. Then, we have

$$
\begin{aligned}
\bigoplus_{\Omega \in W_{\alpha, \text { aff } \backslash \mathcal{A}}^{\prime}}\left(M^{\alpha} * B_{s}\right)^{(\Omega)} & =\bigoplus_{\Omega s=\Omega}\left(M * B_{s}\right)^{(\Omega)} \oplus \bigoplus_{i}\left(\left(M * B_{s}\right)^{\left(\Omega_{i}\right)} \oplus\left(M * B_{s}\right)^{\left(\Omega_{i} s\right)}\right) \\
& =\bigoplus_{\Omega s=\Omega} M^{(\Omega)} * B_{s} \oplus \bigoplus_{i}\left(\left(M * B_{s}\right)^{\left(\Omega_{i}\right)} \oplus\left(M * B_{s}\right)^{\left(\Omega_{i} s\right)}\right)
\end{aligned}
$$

From the argument of the proof of (1)(b), we have $M^{\left(\Omega_{i}\right)} \otimes\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right) \oplus M^{\left(\Omega_{i}\right)} \otimes$ $\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right)=M^{\left(\Omega_{i}\right)} \otimes B_{s}\left[\alpha_{s}^{-1}\right]=M^{\left(\Omega_{i}\right)} \otimes B_{s}$. Therefore, by (1)(b), $\left(\left(M * B_{s}\right)^{\left(\Omega_{i}\right)} \oplus\right.$ $\left.\left(M * B_{s}\right)^{\left(\Omega_{i} s\right)}\right)=M^{\left(\Omega_{i}\right)} \otimes B_{s} \oplus M^{\left(\Omega_{i} s\right)} \otimes B_{s}$. Hence,

$$
\begin{aligned}
\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(M * B_{s}\right)^{(\Omega)} & =\bigoplus_{\Omega s=\Omega} M^{(\Omega)} * B_{s} \oplus \bigoplus_{i}\left(M^{\left(\Omega_{i}\right)} * B_{s} \oplus M^{\left(\Omega_{i} s\right)} * B_{s}\right) \\
& =\bigoplus_{\Omega \in W_{\alpha, \text { aff }} \backslash \mathcal{A}} M^{(\Omega)} * B_{s} \\
& =M^{\alpha} * B_{s} .
\end{aligned}
$$

Hence, $M * B_{s}$ satisfies (LE).

2.5. An example

We give an example of our category. Let ($X=\mathbb{Z}, \Delta=\{\alpha=2\}, X^{\vee}=\mathbb{Z}, \Delta^{\vee}=\left\{\alpha^{\vee}=1\right\}$) be the root system of type A_{1}. The Weyl group W_{f} is $\left\{e, s_{\alpha}\right\}$. Let $s_{1} \in S_{\text {aff }}$ (resp. $s_{0} \in S_{\text {aff }}$) be the element corresponding to $W_{\text {aff }}^{\prime}\{0\}$ (resp. $W_{\text {aff }}^{\prime}\{1\}$). Then, $S_{\text {aff }}=\left\{s_{0}, s_{1}\right\}$. The set of alcoves is given by $\mathcal{A}=\left\{A_{n}=\left\{r \in \mathbb{R}=X \otimes_{\mathbb{Z}} \mathbb{R} \mid n<r<n+1\right\} \mid n \in \mathbb{Z}\right\}$. We have $A_{n} s_{1}=A_{n-1}$ if n is even and $A_{n} s_{1}=A_{n+1}$ if n is odd. The algebra $S=\operatorname{Sym}\left(X_{\mathbb{K}}^{\vee}\right)$ is isomorphic to the polynomial ring $\mathbb{K}\left[\alpha^{\vee}\right]$.

Define $Q_{A_{n}} \in \widetilde{\mathcal{K}}^{\prime}=\widetilde{\mathcal{K}}^{\prime}(S)$ as follows. As an (S, R)-bimodule, we define $Q_{A_{n}}=\{(f, g) \in$ $\left.S^{2} \mid f \equiv g\left(\bmod \alpha^{\vee}\right)\right\}$. Here, S acts naturally and $r \in R$ acts by $(f, g) r=\left(r_{A_{n}} f, r_{A_{n+1}} g\right)$.

We put $\left(Q_{A_{n}}^{\emptyset}\right)_{A_{n}}=S^{\emptyset} \oplus 0,\left(Q_{A_{n}}^{\emptyset}\right)_{A_{n+1}}=0 \oplus S^{\emptyset}$ and $\left(Q_{A_{n}}^{\emptyset}\right)_{A_{m}}=0$ for $m \neq n, n+1$ (we denote this object $Q_{A_{n}, \alpha}$ later in 3.5).
We have $\operatorname{supp}_{\mathcal{A}}\left(Q_{A_{n}}\right)=\left\{A_{n}, A_{n+1}\right\}$. We prove $Q_{A_{0}} * B_{s_{1}} \simeq Q_{A_{-1}} \oplus Q_{A_{1}}$. We have $\operatorname{supp}_{\mathcal{A}}\left(Q_{A_{0}} * B_{s_{1}}\right)=\left\{A_{0}, A_{1}, A_{0} s_{1}, A_{1} s_{1}\right\}=\left\{A_{-1}, A_{0}, A_{1}, A_{2}\right\}$.

Below, by an isomorphism $f \mapsto f_{A_{0}}$, we identify $R \simeq S=\mathbb{K}\left[\alpha^{\vee}\right]$. Hence, $Q_{A_{n}}=\{(a, b) \in$ $\left.\mathbb{K}\left[\alpha^{\vee}\right]^{2} \mid a \equiv b\left(\bmod \alpha^{\vee}\right)\right\}$. Put $s=s_{\alpha}$ which acts on $\mathbb{K}\left[\alpha^{\vee}\right]$. The right actions of $R \simeq \mathbb{K}\left[\alpha^{\vee}\right]$ on $Q_{A_{0}}, Q_{A_{1}}, Q_{A_{-1}}$ are given as follows: for $(a, b) \in Q_{A_{0}}$, we have $(a, b) f=(a f, b s(f))$ and for $(c, d) \in Q_{A_{1}}, Q_{A_{-1}}$, we have $(c, d) f=(c s(f), d f)$.
We have $B_{s_{1}} \simeq\left\{(f, g) \in \mathbb{K}\left[\alpha^{\vee}\right] \mid f \equiv g\left(\bmod \alpha^{\vee}\right)\right\},\left(B_{s_{1}}^{\emptyset}\right)_{e}=\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset} \oplus 0$ and $\left(B_{s_{1}}^{\emptyset}\right)_{s_{1}}=$ $0 \oplus \mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}$ where $\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}=\mathbb{K}\left[\left(\alpha^{\vee}\right)^{ \pm 1}\right]$. We have

$$
\begin{aligned}
& \left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{-1}}^{\emptyset}=\left(\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset} \oplus 0\right) \otimes\left(0 \oplus \mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}\right), \\
& \left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{0}}=\left(\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset} \oplus 0\right) \otimes\left(\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset} \oplus 0\right), \\
& \left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{1}}^{\emptyset}=\left(0 \oplus \mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}\right) \otimes\left(\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset} \oplus 0\right), \\
& \left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{2}}^{\emptyset}=\left(0 \oplus \mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}\right) \otimes\left(0 \oplus \mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}\right),
\end{aligned}
$$

These correspond to $A_{-1}=A_{0} s_{1}, A_{0}=A_{0} e, A_{1}=A_{1} e$ and $A_{2}=A_{1} s_{1}$, respectively.
We define $p_{1}: Q_{A_{0}} * B_{s} \rightarrow Q_{A_{-1}}$ by $p_{1}((a, b) \otimes(f, g))=(a g, a f)$ and $p_{2}: Q_{A_{0}} * B_{s} \rightarrow Q_{A_{1}}$ by $p_{2}((a, b) \otimes(f, g))=\left((b s(f)-a g) / \alpha^{\vee},(b s(g)-a f) / \alpha^{\vee}\right)$. In the definition of p_{2}, we note that $b s(f) \equiv a g, b s(g) \equiv a f\left(\bmod \alpha^{\vee}\right)$ since $a \equiv b, s(f) \equiv f, s(g) \equiv g, f \equiv g\left(\bmod \alpha^{\vee}\right)$. These are $\mathbb{K}\left[\alpha^{\vee}\right]$-bimodule homomorphisms, and from the above description, p_{1} is a morphism in $\widetilde{\mathcal{K}}^{\prime}$. We have $p_{2}((1,0) \otimes(0,1))=\left(-1 / \alpha^{\vee}, 0\right)$. Hence, $p_{2}\left(\left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{-1}}^{\emptyset}\right) \subset\left(Q_{A_{1}}\right)_{A_{1}}^{\emptyset}$. We also have $p_{2}\left(\left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{1}}^{\emptyset}\right) \subset\left(Q_{A_{1}}\right)_{A_{1}}^{\emptyset}, p_{2}\left(\left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{0}}^{\emptyset}\right), p_{2}\left(\left(Q_{A_{0}} * B_{s_{1}}\right)_{A_{2}}^{\emptyset}\right) \subset\left(Q_{A_{1}}\right)_{A_{2}}^{\emptyset}$. Therefore, p_{2} is also a morphism in $\widetilde{\mathcal{K}}^{\prime}$.

We define $i_{1}: Q_{A_{-1}} \rightarrow Q_{A_{0}} * B_{s_{1}}$ by $i_{1}(a, b)=(b, a) \otimes(1,1)+\left((a-b) / \alpha^{\vee},(a-b) / \alpha^{\vee}\right) \otimes$ $\left(0, \alpha^{\vee}\right)$. In $\left(Q_{A_{0}} * B_{s_{1}}\right)^{\emptyset}$, i_{1} is given by $i_{1}(a, b)=(b, a) \otimes(1,0)+(a, b) \otimes(0,1)$. It is easy to see that i_{1} is a left $\mathbb{K}\left[\alpha^{\vee}\right]$-module homomorphism. For $f \in \mathbb{K}\left[\alpha^{\vee}\right]$, we have $i_{1}(a, b) f=(b, a) \otimes(f, 0)+(a, b) \otimes(0, s(f))=(b, a) f \otimes(1,0)+(a, b) s(f) \otimes(0,1)=(b f, a s(f)) \otimes$ $(1,0)+(a s(f), b f) \otimes(0,1)=i_{1}(a s(f), b f)=i_{1}((a, b) f)$. Therefore, i_{1} is a $\mathbb{K}\left[\alpha^{\vee}\right]$-bimodule homomorphism. We can also check that i_{1} is a morphism in $\widetilde{\mathcal{K}}^{\prime}$. We also define $i_{2}: Q_{A_{1}} \rightarrow$ $Q_{A_{0}} * B_{s_{1}}$ by $i_{2}(a, b)=\left(0, \alpha^{\vee}\right) \otimes(s(a), s(b))$. Then, it is straightforward to check that i_{2} is a morphism in $\widetilde{\mathcal{K}}^{\prime}$. Finally, straightforward calculations imply $p_{1} \circ i_{1}=\mathrm{id}, p_{2} \circ i_{2}=\mathrm{id}$, $i_{1} \circ p_{1}+i_{2} \circ p_{2}=$ id. Hence, $Q_{A_{0}} * B_{s_{1}} \simeq Q_{A_{-1}} \oplus Q_{A_{1}}$.
Note that the decomposition $Q_{A_{0}} * B_{s_{1}}=\operatorname{Im} i_{1} \oplus \operatorname{Im} i_{2}$ is not compatible with respect to the decomposition over $\mathbb{K}\left[\alpha^{\vee}\right]^{\emptyset}$ since i_{1} is not compatible with the decomposition.

2.6. Hecke actions preserve $\widetilde{\mathcal{K}}_{\Delta}$

We assume that \mathbb{K} is local. Then, since any direct summand of a graded free S-module is also graded free, a direct summand of an object in $\widetilde{\mathcal{K}}_{\Delta}$ is also in $\widetilde{\mathcal{K}}_{\Delta}$. The aim of this subsection is to prove the following proposition.

Proposition 2.24. We have $\widetilde{\mathcal{K}}_{\Delta} * \mathcal{S} \operatorname{Bimod} \subset \widetilde{\mathcal{K}}_{\Delta}$.

We fix $M \in \widetilde{\mathcal{K}}_{\Delta}$ and $s \in S_{\text {aff }}$ in this subsection and prove $M * B_{s} \in \widetilde{\mathcal{K}}_{\Delta}$. The most difficult part is to prove that $M * B_{s}$ satisfies (S). First we remark that, since $M * B_{s}$ satisfies (LE) by Lemma 2.23, $\left(M * B_{s}\right)^{\alpha}$ satisfies (S) by Lemma 2.10.

Lemma 2.25. If I is a closed s-invariant subset of \mathcal{A}, then $\left(M * B_{s}\right)_{I} \simeq M_{I} * B_{s}$.
Proof. We have $\left(M * B_{s}\right)_{I}^{\emptyset}=\bigoplus_{A \in I} M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{e}^{\emptyset} \oplus \bigoplus_{A \in I} M_{A s}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset}$. Since I is $s-$ invariant, $\bigoplus_{A \in I} M_{A s}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset}=\bigoplus_{A \in I} M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset}$. Hence, $\left(M * B_{s}\right)_{I}^{\emptyset}=\bigoplus_{A \in I} M_{A}^{\emptyset} \otimes$ $\left(\left(B_{s}\right)_{e}^{\emptyset} \oplus\left(B_{s}\right)_{s}^{\emptyset}\right)=\bigoplus_{A \in I} M_{A}^{\emptyset} \otimes B_{s}^{\emptyset}=M_{I}^{\emptyset} \otimes B_{s}^{\emptyset}$.

Lemma 2.26. Let $A \in \mathcal{A}$ such that $A s<A$ and I (resp. J) be an s-invariant closed (resp. open) subset such that $I \cap J=\{A, A s\}$. Set $N=M * B_{s}$. Then, we have

$$
N_{I \backslash\{A s\}} / N_{I \backslash\{A, A s\}} \simeq M_{\{A, A s\}}(-1), \quad N_{I} / N_{I \backslash\{A s\}} \simeq M_{\{A, A s\}}(1)
$$

as left S-modules.
Proof. First we note that $I \backslash\{A, A s\}=I \backslash J$ and $I \backslash\{A s\}=(I \backslash J) \cup\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A\right\}$ are closed. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow N_{I \backslash\{A s\}} / N_{I \backslash\{A, A s\}} \rightarrow N_{I} / N_{I \backslash\{A, A s\}} \rightarrow N_{I} / N_{I \backslash\{A s\}} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

We have $\left(N_{I} / N_{I \backslash\{A, A s\}}\right)^{\emptyset}=N_{A}^{\emptyset} \oplus N_{A s}^{\emptyset}$ and we have the following commutative diagram:

Therefore, $N_{I \backslash\{A s\}} / N_{I \backslash\{A, A s\}}=\left(N_{I} / N_{I \backslash\{A, A s\}}\right) \cap\left(N_{A}^{\emptyset} \oplus 0\right)$.
Set $L=N_{I} / N_{I \backslash\{A, A s\}}$. By Lemma 2.25, $L \simeq M_{\{A, A s\}} \otimes_{R^{s}} R(1)$. We have $L^{\emptyset}=L_{A}^{\emptyset} \oplus L_{A s}^{\emptyset}$. We determine $L \cap\left(L_{A}^{\emptyset} \oplus 0\right)$.

By (2.1), we have $L_{A}^{\emptyset} \simeq M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset}$ and $L_{A s}^{\emptyset} \simeq M_{A s}^{\emptyset} \oplus M_{A}^{\emptyset}$. In general, we write $m_{A^{\prime}}$ for the image of $m \in M$ in $M_{A^{\prime}}^{\emptyset}$, where $A^{\prime} \in \mathcal{A}$. The image of $m_{1} \otimes 1+m_{2} \otimes \delta \in L=$ $M_{\{A, A s\}} \otimes_{R^{s}} R(1)$ in each direct summand is

$$
\begin{gathered}
m_{1, A}+m_{2, A} \delta \in M_{A}^{\emptyset} \subset L_{A}^{\emptyset}, \\
m_{1, A s}+m_{2, A s} s(\delta) \in M_{A s}^{\emptyset} \subset L_{A}^{\emptyset}, \\
m_{1, A s}+m_{2, A s} \delta \in M_{A s}^{\emptyset} \subset L_{A s}^{\emptyset}, \\
m_{1, A}+m_{2, A} s(\delta) \in M_{A}^{\emptyset} \subset L_{A s}^{\emptyset} .
\end{gathered}
$$

Therefore, $m_{1} \otimes 1+m_{2} \otimes \delta \in L_{A}^{\emptyset}$ if and only if $m_{1, A s}+m_{2, A s} \delta=0, m_{1, A}+m_{2, A} s(\delta)=$ 0 . Note that $m_{2, A s} \delta=(s(\delta))_{A} m_{2, A s}$ and $m_{2, A} s(\delta)=(s(\delta))_{A} m_{2, A}$. Therefore, $\left(m_{1}+\right.$ $\left.(s(\delta))_{A} m_{2}\right)_{A^{\prime}}=0$ for $A^{\prime}=A, A s$. Hence, $m_{1}+(s(\delta))_{A} m_{2}=0$. Therefore, we have

$$
L \cap\left(L_{A}^{\emptyset} \oplus 0\right)=\left\{m_{2} \otimes \delta-(s(\delta))_{A} m_{2} \otimes 1 \mid m_{2} \in M_{\{A, A s\}}\right\}(1)
$$

which is isomorphic to $M_{\{A, A s\}}(-1)$.

The map $L \simeq M_{\{A, A s\}} \otimes_{R^{s}} R(1) \ni m \otimes f \mapsto(s(f))_{A} m \in M_{\{A, A s\}}(1)$ is surjective and, by the above argument, the kernel is $L \cap\left(L_{A}^{\emptyset} \oplus 0\right) \simeq N_{I \backslash\{A s\}} / N_{I \backslash\{A, A s\}}$. Therefore, by the exact sequence (2.2), we have $N_{I} / N_{I \backslash\{A s\}} \simeq M_{\{A, A s\}}(1)$.

Lemma 2.27. Let $A \in \mathcal{A}$ such that $A s<A$, I is a closed subset and J is an open subset. Then, we have the following.
(1) If $I \cap J=\{A s\}$, then $\left(M * B_{s}\right)_{I} /\left(M * B_{s}\right)_{I \backslash J} \simeq M_{\{A, A s\}}(1)$ as left S-modules.
(2) If $I \cap J=\{A\}$, then $\left(M * B_{s}\right)_{I} /\left(M * B_{s}\right)_{I \backslash J} \simeq M_{\{A, A s\}}(-1)$ as left S-modules.

Proof. Set $N=M * B_{s} \in \widetilde{\mathcal{K}}^{\prime}$.
(1) Put $I_{1}=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A s\right\}$. This is s-invariant. Since I is closed and contains $A s$, we have $I_{1} \subset I$. Hence, $N_{I_{1}} / N_{I_{1} \backslash\{A s\}} \hookrightarrow N_{I} / N_{I \backslash\{A s\}}$. By Lemma 2.26 , we have $N_{I_{1}} / N_{I_{1} \backslash\{A s\}} \simeq M_{\{A, A s\}}(-1)$. Hence, we have $M_{\{A, A s\}}(-1) \hookrightarrow N_{I} / N_{I \backslash\{A s\}}$.
Let $\nu \in X_{\mathbb{K}}^{\vee}$ and write $S_{(\nu)}$ for the localization at the prime ideal (ν). Set $N_{(\nu)}=$ $S_{(\nu)} \otimes_{S} N$. The algebra $S_{(\nu)}$ is an S^{α}-algebra for a certain $\alpha \in \Delta$. Therefore, $N_{(\nu)}$ satisfies (S). Hence, the above embedding $\left(M_{(\nu)}\right)_{\{A, A s\}}(-1) \hookrightarrow\left(N_{(\nu)}\right)_{I} /\left(N_{(\nu)}\right)_{I \backslash\{A s\}}$ is an isomorphism. Since M admits a standard filtration, $M_{\{A, A s\}}$ is graded free as an S-module. Therefore, $M_{\{A, A s\}}(-1)=\bigcap_{\nu \in X_{\mathbb{K}}}\left(S_{(\nu)} \otimes_{S} M_{\{A, A s\}}(-1)\right)=$ $\bigcap_{\nu \in X_{\mathbb{K}}}\left(\left(N_{(\nu)}\right)_{I} /\left(N_{(\nu)}\right)_{I \backslash\{A s\}}\right) \supset N_{I} / N_{I \backslash\{A s\}}$. We get the lemma.
(2) First, we prove that there exists an embedding $\left(M * B_{s}\right)_{I} /\left(M * B_{s}\right)_{I \backslash J} \hookrightarrow$ $M_{\{A, A s\}}(-1)$. We may assume $J=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \leq A\right\}$ since $I \backslash J$ is not changed. Then, J is s-invariant. Put $I_{1}=I \cup I s$. Then I_{1} is an s-invariant closed subset and $I_{1} \cap J=(I \cap J) \cup(I s \cap J)=(I \cap J) \cup(I \cap J) s=\{A, A s\}$. We have $I_{1} \backslash\{A s\} \supset I$. Hence, we have an embedding $N_{I} / N_{I \backslash J} \hookrightarrow N_{I_{1} \backslash\{A s\}} / N_{I_{1} \backslash\{A, A s\}} \simeq M_{\{A, A s\}(-1)}$. We prove that this embedding is surjective.
First, we assume that \mathbb{K} is a field. Take a sequence of closed subsets $I_{0} \subset \cdots \subset I_{r}$ such that $\#\left(I_{i+1} \backslash I_{i}\right)=1, N_{I_{0}}=0, N_{I_{r}}=N$, and there exists $k=1, \ldots, r$ such that $I_{k-1} \cap \operatorname{supp}_{\mathcal{A}}(N)=I \cap \operatorname{supp}_{\mathcal{A}}(N)$ and $I_{k}=I_{k-1} \cup\{A\}$ (Lemma 2.14). Let $A_{i} \in \mathcal{A}$ such that $I_{i}=I_{i-1} \cup\left\{A_{i}\right\}$. Since $N_{I_{i}}$ is a filtration of N, for each l, the l-th graded piece N^{l} satisfies $\operatorname{dim}_{\mathbb{K}} N^{l}=\sum_{i}\left(N_{I_{i}} / N_{I_{i-1}}\right)^{l}$. By the existence of an embedding we have proved, $\operatorname{dim}_{\mathbb{K}}\left(N_{I_{i}} / N_{I_{i-1}}\right)^{l} \leq \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}, A_{i} s\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}$, where $\varepsilon\left(A_{i}\right)=1$ if $A_{i} s>A_{i}$ and $\varepsilon\left(A_{i}\right)=-1$ otherwise. We have

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}, A_{i} s\right\}}\right)^{l+\varepsilon\left(A_{i}\right)} \\
&= \sum_{i}\left(\operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}+\operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i} s\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}\right) \\
&= \sum_{A_{i} s>A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l+1}\right)+\sum_{A_{i} s>A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i} s\right\}}^{l+1}\right) \\
&+\sum_{A_{i} s<A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l-1}\right)+\sum_{A_{i} s<A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i} s\right\}}^{l-1}\right)
\end{aligned}
$$

By replacing A_{i} with $A_{i} s$ in the second and fourth sum, we have

$$
\begin{aligned}
& \sum_{i}\left(\operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}+\operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i} s\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}\right) \\
& \left.=\sum_{A_{i} s>A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l+1}\right)+\sum_{A_{i} s<A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l+1}\right)\right) \\
& \quad+\sum_{A_{i} s<A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l-1}\right)+\sum_{A_{i} s>A_{i}} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}^{l-1}\right) \\
& =\sum_{i}\left(\operatorname{dim}_{\mathbb{K}} M_{\left\{A_{i}\right\}}^{l+1}+\operatorname{dim}_{\mathbb{K}} M_{\left\{A_{i}\right\}}^{l-1}\right)
\end{aligned}
$$

Since $\left\{M_{\left\{A_{i}\right\}}\right\}$ are subquotients of a filtration $\left\{M_{I_{i}}\right\}$ on M, we have $\sum_{i} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}\right\}}\right)^{l^{\prime}}=$ $\operatorname{dim}_{\mathbb{K}} M^{l^{\prime}}$. Hence, $\sum_{i}\left(\operatorname{dim}_{\mathbb{K}} M_{\left\{A_{i}\right\}}^{l+1}+\operatorname{dim}_{\mathbb{K}} M_{\left\{A_{i}\right\}}^{l-1}\right)=\operatorname{dim}_{\mathbb{K}} M^{l+1}+\operatorname{dim}_{\mathbb{K}} M^{l-1}$.

However, since $N=M * B_{s}=M \otimes_{R^{s}} R(1)=M(1) \otimes 1 \oplus M(1) \otimes \delta_{s}$ where δ_{s} satisfies $\left\langle\delta_{s}, \alpha_{s}^{\vee}\right\rangle=1$, we have $\operatorname{dim}_{\mathbb{K}} N^{l}=\operatorname{dim}_{\mathbb{K}} M^{l+1}+\operatorname{dim}_{\mathbb{K}} M^{l-1}$. Therefore, we get

$$
\operatorname{dim}_{\mathbb{K}} N^{l}=\sum_{i} \operatorname{dim}_{\mathbb{K}}\left(N_{I_{i}} / N_{I_{i-1}}\right)^{l} \leq \sum_{i} \operatorname{dim}_{\mathbb{K}}\left(M_{\left\{A_{i}, A_{i} s\right\}}\right)^{l+\varepsilon\left(A_{i}\right)}=\operatorname{dim}_{\mathbb{K}} N^{l}
$$

Hence, the embedding has to be a bijection.
Now, let \mathbb{K} be a general Noetherian integral domain. Assume that we can prove that $\left(N_{I_{i}} / N_{I_{i-1}}\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(M_{\left\{A_{i}, A_{i} s\right\}}\left(\varepsilon\left(A_{i}\right)\right)\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ for each maximal ideal \mathfrak{m} in \mathbb{K}. Since $M_{\left\{A_{i}, A_{i} s\right\}}^{l}$ is finitely generated as a \mathbb{K}-module, by Nakayama's lemma, $\left(N_{I_{i}} / N_{I_{i-1}}\right)_{\mathfrak{m}}^{l} \rightarrow\left(M_{\left\{A_{i}, A_{i} s\right\}}\right)_{\mathfrak{m}}^{l+\varepsilon\left(A_{i}\right)}$ is surjective, where $(\bullet)_{\mathfrak{m}}$ means the localization at \mathfrak{m}. Since this is true for any maximal ideal \mathfrak{m}, the map $\left(N_{I_{i}} / N_{I_{i-1}}\right)^{l} \rightarrow M_{\left\{A_{i}, A_{i} s\right\}}^{l}$ is surjective for any $l \in \mathbb{Z}$. Hence, it is an isomorphism. Therefore, it is sufficient to prove $\left(N_{I_{i}} / N_{I_{i-1}}\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(M_{\left\{A_{i}, A_{i} s\right\}}\left(\varepsilon\left(A_{i}\right)\right)\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$. In the rest of the proof, we omit the grading.

To prove this, we need some properties on the base change to $\mathbb{K} / \mathfrak{m}$. Let $L \in \widetilde{\mathcal{K}}^{\prime}$. Then, $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ is an $(S / \mathfrak{m} S, R / \mathfrak{m} R)$-bimodule and we have $S^{\emptyset} \otimes_{S} L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq$ $\bigoplus_{A \in \mathcal{A}} L_{A}^{\emptyset} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$. Therefore, it defines an object in $\widetilde{\mathcal{K}}_{\mathbb{K} / \mathfrak{m}}^{\prime}$. Here, the suffix $\mathbb{K} / \mathfrak{m}$ means that, in the definition of $\widetilde{\mathcal{K}}^{\prime}$, we replace \mathbb{K} with $\mathbb{K} / \mathfrak{m}$. We also have $B \otimes_{\mathbb{K}} \mathbb{K} / \mathfrak{m} \in \mathcal{S} \operatorname{Bimod}_{\mathbb{K}} / \mathfrak{m}$ (the meaning of the suffix $\mathbb{K} / \mathfrak{m}$ is the same as above) and we have $(M * B) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq$ $\left(M \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right) *\left(B \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)$. Let $K \subset \mathcal{A}$ be a closed subset. Then, we have a map $L_{K} \otimes_{\mathbb{K}}$ $(\mathbb{K} / \mathfrak{m}) \rightarrow L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$. Since $\operatorname{supp}_{\mathcal{A}}\left(L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right) \subset K$, the image of this homomorphism is in $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K}$. Hence, we get a map $L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K}$. We claim:
(a) The map is surjective.
(b) If L / L_{K} is graded free, then this map is an isomorphism.

We prove (a) first. By the exact sequence $0 \rightarrow L_{K} \rightarrow L \rightarrow L / L_{K} \rightarrow 0$, we have an exact sequence $L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow\left(L / L_{K}\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow 0$. Since $\operatorname{supp}_{\mathcal{A}}\left(\left(L / L_{K}\right) \otimes_{\mathbb{K}}\right.$
$(\mathbb{K} / \mathfrak{m})) \subset \mathcal{A} \backslash K$, the map $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow\left(L / L_{K}\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ factors through $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow$ $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right) /\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K}$. Hence, $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K} \subset \operatorname{Ker}\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow\left(L / L_{K}\right) \otimes_{\mathbb{K}}\right.$ $(\mathbb{K} / \mathfrak{m}))=\operatorname{Im}\left(L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)$. Therefore, we get (a). If L / L_{K} is graded free, then L / L_{K} is free as a \mathbb{K}-module. Hence, $L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \rightarrow L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ is injective. Therefore, we have (b).
In particular, if L satisfies (S), then $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ also satisfies (S). Indeed, let K_{1}, K_{2} be closed subsets. Then, we have a commutative diagram

Here, the horizontal maps are surjective by (a) in the above, and the left vertical map is surjective since L satisfies (S). Hence, the right vertical map is surjective and it means that $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ satisfies (S).

We also have that if L satisfies (LE), then $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ satisfies (LE). Let $\alpha \in \Delta$ and decompose L^{α} as $L^{\alpha} \simeq \bigoplus_{\Omega \in W_{\alpha}^{\prime} \backslash \mathcal{A}} L^{(\Omega)}$ such that $\operatorname{supp} L^{(\Omega)} \subset \Omega$. Then, $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)^{\alpha} \simeq$ $\bigoplus_{\Omega \in W_{\alpha}^{\prime} \backslash \mathcal{A}} L^{(\Omega)} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$ and it gives a desired decomposition in (LE).
Let $K_{1} \subset K_{2} \subset \mathcal{A}$ be closed subsets and suppose that $L \in \widetilde{\mathcal{K}}_{\Delta}$. Since $L \in \widetilde{\mathcal{K}}_{\Delta}$, $L / L_{K_{1}}$ and $L / L_{K_{2}}$ are both graded free. Hence, $L_{K_{1}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K_{1}} \subset$ $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K_{2}} \simeq L_{K_{2}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})$. By the right exactness of the tensor product, we have $\left(L_{K_{2}} / L_{K_{1}}\right) \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(L_{K_{2}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right) /\left(L_{K_{1}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right) \simeq\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K_{2}} /\left(L \otimes_{\mathbb{K}}\right.$ $(\mathbb{K} / \mathfrak{m}))_{K_{1}}$. Therefore, for any locally closed subset $K \subset \mathcal{A}$, we have $L_{K} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq$ $\left(L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{K}$. In particular, $L \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \in \widetilde{\mathcal{K}}_{\Delta, \mathbb{K} / \mathfrak{m}}$.

We return to the proof of the lemma. We have $M \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \in \widetilde{\mathcal{K}}_{\Delta, \mathbb{K} / \mathfrak{m}}$ as we have proved. We have $M_{\left\{A_{i}, A_{i} s\right\}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(M \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m})\right)_{\left\{A_{i}, A_{i} s\right\}}$. Hence, we have the following commutative diagram:

Note that the bottom homomorphism is an isomorphism since the lemma is proved if \mathbb{K} is a field.

We prove that the left vertical map is an isomorphism by backward induction on i. By inductive hypothesis, $N_{I_{i^{\prime}}} / N_{I_{i^{\prime}-1}} \simeq M_{\left\{A_{i^{\prime}}, A_{i^{\prime}}\right\}}$ for any $i^{\prime}>i$ and, in particular, it is graded free. Hence, $N / N_{I_{i}}$ is also graded free. Therefore, we have $N_{I_{i}} \otimes_{\mathbb{K}}(\mathbb{K} / \mathfrak{m}) \simeq\left(N \otimes_{\mathbb{K}}\right.$ $(\mathbb{K} / \mathfrak{m}))_{I_{i}}$. Now we get the desired result by applying the five lemmas to the following commutative diagram with exact columns:

Lemma 2.28. Set $N=M * B_{s}$. Then, for any two closed subsets I_{1}, I_{2} with $I_{1} \supset I_{2}$, $N_{I_{1}} / N_{I_{2}}$ is a graded free S-module.

Proof. Take $A_{0}, A_{1} \in \mathcal{A}$ such that $\operatorname{supp}_{\mathcal{A}} N \subset\left[A_{0}, A_{1}\right]$. Replacing I_{1} with $I_{1} \cap\{A \in \mathcal{A} \mid$ $\left.A \geq A_{0}\right\}$ and I_{2} with $I_{2} \cup\left\{A \in \mathcal{A} \mid A \not \leq A_{1}\right\}$, we may assume $I_{1} \backslash I_{2}$ is finite. We can take a sequence of closed subsets $I_{2}=I_{0}^{\prime} \subset I_{1}^{\prime} \subset \cdots \subset I_{r}^{\prime}=I_{1}$ such that $\#\left(I_{i}^{\prime} \backslash I_{i-1}^{\prime}\right)=1$. Let A_{i} such that $I_{i}^{\prime}=I_{i-1}^{\prime} \cup\left\{A_{i}\right\}$. Then by Lemma 2.27, $N_{I_{i}^{\prime}} / N_{I_{i-1}^{\prime}} \simeq M_{\left\{A_{i}, A_{i} s\right\}}\left(\varepsilon\left(A_{i}\right)\right)$, where $\varepsilon\left(A_{i}\right) \in\{ \pm 1\}$ is as in the proof of Lemma 2.27. In particular, this is graded free and therefore, $M_{I_{1}} / M_{I_{2}}=M_{I_{r}^{\prime}} / M_{I_{0}^{\prime}}$ is also graded free.

Proof of Proposition 2.24. Set $N=M * B_{s}$. We prove that N satisfies (S). Let I_{1}, I_{2} be closed subsets, and we prove the surjectivity of $N_{I_{1}} / N_{I_{1} \cap I_{2}} \hookrightarrow N_{I_{1} \cup I_{2}} / N_{I_{2}}$. For each $\nu \in X_{\mathbb{K}}^{\vee}$, let $S_{(\nu)}$ be the localization at the prime ideal (ν). Then, $S_{(\nu)}$ is an S^{α}-algebra for some $\alpha \in \Delta^{+}$. Since $N_{(\nu)}=S_{(\nu)} \otimes_{S} N$ satisfies (LE), $N_{(\nu)}$ satisfies (S) by Lemma 2.10. Hence, this embedding is surjective after applying $S_{(\nu)} \otimes_{S}$. Put $L_{(\nu)}=S_{(\nu)} \otimes_{S} L$ for a left S-module L. Since $N_{I_{1}} / N_{I_{1} \cap I_{2}}$ is graded free by Lemma 2.28, we have $N_{I_{1}} / N_{I_{1} \cap I_{2}}=\bigcap_{\nu}\left(N_{I_{1}} / N_{I_{1} \cap I_{2}}\right)_{(\nu)}$. Hence, $N_{I_{1}} / N_{I_{1} \cap I_{2}}=\bigcap_{\nu}\left(N_{I_{1}} / N_{I_{1} \cap I_{2}}\right)_{(\nu)} \simeq$ $\bigcap_{\nu}\left(N_{I_{1} \cup I_{2}} / N_{I_{2}}\right)_{(\nu)} \supset N_{I_{1} \cup I_{2}} / N_{I_{2}}$. We get the surjectivity.

Now $N_{\{A\}}$ is well-defined and isomorphic to $M_{\{A, A s\}}(\varepsilon(A))$, where $\varepsilon(A) \in\{ \pm 1\}$ is as in the proof of Lemma 2.27. Hence, $N_{\{A\}}$ is graded free; namely, N admits a standard filtration.

As a consequence of Lemma 2.27, we get the following corollary.
Corollary 2.29. If $M \in \widetilde{\mathcal{K}}_{\Delta}$, then we have

$$
\left(M * B_{s}\right)_{\{A\}} \simeq \begin{cases}M_{\{A, A s\}}(-1) & (A s<A) \\ M_{\{A, A s\}}(1) & (A s>A)\end{cases}
$$

Therefore, we have

$$
\operatorname{grk}\left(\left(M * B_{s}\right)_{\{A\}}\right)= \begin{cases}v^{-1}\left(\operatorname{grk}\left(M_{\{A\}}\right)+\operatorname{grk}\left(M_{\{A s\}}\right)\right) & (A s<A), \\ v\left(\operatorname{grk}\left(M_{\{A\}}\right)+\operatorname{grk}\left(M_{\{A s\}}\right)\right) & (A s>A)\end{cases}
$$

for each $A \in \mathcal{A}$ and $s \in S_{\text {aff }}$.
The action of \mathcal{S} Bimod preserves $\widetilde{\mathcal{K}}_{P}$ too.
Proposition 2.30. We have $\widetilde{\mathcal{K}}_{P} * \mathcal{S} \operatorname{Bimod} \subset \widetilde{\mathcal{K}}_{P}$.
Proof. Let $M \in \widetilde{\mathcal{K}}_{P}$ and $s \in S_{\text {aff }}$. We prove $M * B_{s} \in \widetilde{\mathcal{K}}_{P}$. We have already proved that $M * B_{s} \in \widetilde{\mathcal{K}}_{\Delta}$.

Assume that a sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\widetilde{\mathcal{K}}_{\Delta}$ satisfies (ES). By Lemma 2.17, $0 \rightarrow$ $\left(M_{1}\right)_{\{A, A s\}} \rightarrow\left(M_{2}\right)_{\{A, A s\}} \rightarrow\left(M_{3}\right)_{\{A, A s\}} \rightarrow 0$ is also exact for any $A \in \mathcal{A}$. Hence, $0 \rightarrow\left(M_{1} *\right.$ $\left.B_{s}\right)_{\{A\}} \rightarrow\left(M_{2} * B_{s}\right)_{\{A\}} \rightarrow\left(M_{3} * B_{s}\right)_{\{A\}} \rightarrow 0$ is exact (i.e., $M_{1} * B_{s} \rightarrow M_{2} * B_{s} \rightarrow M_{3} * B_{s}$ also satisfies (ES)). Since $M \in \widetilde{\mathcal{K}}_{P}$, the sequence $0 \rightarrow \operatorname{Hom}^{\bullet}\left(M, M_{1} * B_{s}\right) \rightarrow \operatorname{Hom}^{\bullet}\left(M, M_{2} *\right.$ $\left.B_{s}\right) \rightarrow \operatorname{Hom}^{\bullet}\left(M, M_{3} * B_{s}\right) \rightarrow 0$ is exact. By Proposition 2.22, $M * B_{s} \in \widetilde{\mathcal{K}}_{P}$.

2.7. Indecomposable objects

Assume that \mathbb{K} is complete local Noetherian integral domain. For $M, N \in \widetilde{\mathcal{K}}^{\prime}, \operatorname{Hom}_{S}^{\bullet}(M, N)$ is finitely generated as an S-module since M, N are finitely generated and S is Noetherian. Hence, $\operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}}^{\bullet}(M, N) \subset \operatorname{Hom}_{S}^{\bullet}(M, N)$ is also finitely generated. Therefore, $\operatorname{Hom}_{\widetilde{\mathcal{K}}^{\prime}}(M, N)$ is finitely generated \mathbb{K}-module. Hence, $\widetilde{\mathcal{K}}^{\prime}$ has Krull-Schmidt property. This is also true for $\widetilde{\mathcal{K}}_{P}$.
Let $(\mathbb{R} \Delta)_{\text {int }}=\left\{\lambda \in \mathbb{R} \Delta \mid\left\langle\lambda, \Delta^{\vee}\right\rangle \subset \mathbb{Z}\right\}$ be the set of integral weights. For $\lambda \in(\mathbb{R} \Delta)_{\text {int }}$, let Π_{λ} be the set of alcoves A such that $\left\langle\lambda, \alpha^{\vee}\right\rangle-1<\left\langle a, \alpha^{\vee}\right\rangle<\left\langle\lambda, \alpha^{\vee}\right\rangle$ for any $a \in A$ and simple root α. The set Π_{λ} is called a box and each $A \in \mathcal{A}$ is contained in a box. Each Π_{λ} has the unique maximal element A_{λ}^{-}. Let $W_{\lambda}^{\prime}=\operatorname{Stab}_{W_{\text {aff }}^{\prime}}(\lambda)$ be the stabilizer. Then, A_{λ}^{-}is the minimal element in $W_{\lambda}^{\prime} A_{\lambda}^{-}$. The set $W_{\lambda}^{\prime} A_{\lambda}^{-}$is the set of alcoves whose closure contains λ.
We define $Q_{\lambda} \in \widetilde{\mathcal{K}}$ as follows. Consider the orbit $W_{\lambda}^{\prime} A_{\lambda}^{-}$through A_{λ}^{-}. As an (S, R) bimodule, it is given by

$$
Q_{\lambda}=\left\{\left(z_{A}\right) \in S^{W_{\lambda}^{\prime} A_{\lambda}^{-}} \mid z_{A} \equiv z_{\left.s_{\alpha,\langle\lambda, \alpha} \vee\right\rangle} A \quad\left(\bmod \alpha^{\vee}\right) \text { for } \alpha \in \Delta \text { and } A \in W_{\lambda}^{\prime} A_{\lambda}^{-}\right\}
$$

where the right action of R is given by $\left(z_{A}\right) f=\left(f_{A} z_{A}\right)$. We have $Q_{\lambda}^{\emptyset}=\left(S^{\emptyset}\right)^{W_{\lambda}^{\prime} A_{\lambda}^{-}}$. The module $\left(Q_{\lambda}\right)_{A}^{\emptyset}$ is the A-component if $A \in W_{\lambda}^{\prime} A_{\lambda}^{-}$, and 0 otherwise.

The definition of Q_{λ} comes from the structure sheaf of the moment graph associated to W_{f}. The structure sheaf is defined by

$$
\mathcal{Z}=\left\{\left(z_{x}\right)_{x \in W_{\mathrm{f}}} \in S^{W_{\mathrm{f}}} \mid z_{x} \equiv z_{s_{\alpha} x} \quad\left(\bmod \alpha^{\vee}\right)\right\}
$$

The natural map $W_{\lambda}^{\prime} \hookrightarrow W_{\text {aff }}^{\prime} \rightarrow W_{\mathrm{f}}$ is an isomorphism. The map $W_{\mathrm{f}} \simeq W_{\lambda}^{\prime} \xrightarrow{w \mapsto w\left(A_{\lambda}^{-}\right)}$ $W_{\lambda}^{\prime} A_{\lambda}^{-}$is a bijection which preserves orders and, by this bijection, we have $\mathcal{Z} \simeq Q_{\lambda}$.
The following are well-known. (See [Abe20b] for example.)

- The map $S \otimes_{S^{W_{\mathrm{f}}}} S \rightarrow \mathcal{Z}$ defined by $f \otimes g \mapsto\left(x^{-1}(f) g\right)_{x \in W_{\mathrm{f}}}$ is an isomorphism.
- Let $K \subset W_{\mathrm{f}}$ be a closed subset and $w \in K$ such that $K \backslash\{w\}$ is closed. Put $\mathcal{Z}_{K}=$ $\left\{\left(z_{x}\right) \in \mathcal{Z} \mid z_{x}=0\right.$ for $\left.x \notin K\right\}$ and the same for $\mathcal{Z}_{K \backslash\{w\}}$. Then, $\mathcal{Z}_{K} / \mathcal{Z}_{K \backslash\{w\}} \simeq$ $S\left(-2 \ell\left(w_{0} w\right)\right)$ as a left S-module.

Let $d: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{Z}$ be the function defined in [Lus80, 1.4]. From the second property, we get the following.

Lemma 2.31. Let $A \in W_{\lambda}^{\prime} A_{\lambda}^{-}$and $I \subset \mathcal{A}$ is a closed subset such that $A \in I$ and $I \backslash\{A\}$ is closed. Then, we have $\left(Q_{\lambda}\right)_{I} /\left(Q_{\lambda}\right)_{I \backslash\{A\}} \simeq S\left(2 d\left(A, A_{\lambda}^{-}\right)\right)$.

It is easy to see that Q_{λ} satisfies (LE) and the argument of the proof of Proposition 2.24 with the above lemma implies that Q_{λ} also satisfies (S). Hence, we have $Q_{\lambda} \in \mathcal{K}_{\Delta}$.

Lemma 2.32. Let S_{0} be a flat commutative graded S-algebra. We have $\operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S}\right.$ $\left.Q_{\lambda}, M\right) \simeq M_{\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}}$for $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$. Therefore, $S_{0} \otimes_{S} Q_{\lambda} \in \widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$.
Proof. Since S_{0} is flat, we have

$$
S_{0} \otimes_{S} Q_{\lambda}=\left\{\left(z_{A}\right) \in S_{0}^{W_{\mathrm{f}} A_{0}^{-}} \mid z_{A} \equiv z_{\left.s_{\alpha,\langle\lambda, \alpha} \vee\right\rangle} A \quad\left(\bmod \alpha^{\vee}\right) \text { for } \alpha \in \Delta \text { and } A \in W_{\mathrm{f}} A_{\lambda}^{-}\right\}
$$

Put $I=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}$and $q=(1)_{A \in W_{\mathrm{f}} A_{\lambda}^{-}} \in S_{0} \otimes_{S} Q_{\lambda}$.
Any $\left(S_{0}, R\right)$-bimodule is regarded as an $S_{0} \otimes R$-module. Let $M \in \widetilde{\mathcal{K}}_{\Delta}\left(S_{0}\right)$ and $m \in M$. According to the decomposition $M^{\emptyset}=\bigoplus_{A \in \mathcal{A}} M_{A}^{\emptyset}, m$ can be written as $m=\sum_{A \in \mathcal{A}} m_{A}$ with $m_{A} \in M_{A}^{\emptyset}$. Consider $S^{W_{\mathrm{f}}}=\left\{f \in S \mid w(f)=f\right.$ for all $\left.w \in W_{\mathrm{f}}\right\}$. Then, we have the following.

- For $A \in \mathcal{A}$ and $f \in S^{W_{\mathrm{f}}}, f^{A}$ does not depend on A.
- For $f \in S$, we have $f m=\sum f m_{A}=\sum m_{A} f^{A}$.

Therefore, we have an embedding $S^{W_{\mathrm{f}}} \hookrightarrow R$ naturally and any M is an $S_{0} \otimes_{S^{W_{\mathrm{f}}}} R$-module. Then, we have a map $S \otimes_{S W_{\mathrm{f}}} R \rightarrow Q_{\lambda}$ defined by $f \otimes g \mapsto\left(f g_{w\left(A_{\lambda}^{-}\right)}\right)$, and by the property of \mathcal{Z} we have remarked, this is an isomorphism. Therefore, Q_{λ} is a free $S \otimes_{S} W_{f} R$-module of rank one with a basis q. We also remark that $q \in S_{0} \otimes_{S} Q_{\lambda}=\left(S_{0} \otimes_{S} Q_{\lambda}\right)_{I}$. Therefore, $\varphi \mapsto \varphi(q)$ gives an embedding

$$
\operatorname{Hom}_{\tilde{\mathcal{K}}_{\Delta\left(S_{0}\right)}^{\bullet}}\left(S_{0} \otimes_{S} Q_{\lambda}, M\right) \hookrightarrow M_{I} .
$$

Let $m \in M_{I}$ and $\varphi: S_{0} \otimes_{S} Q_{\lambda} \rightarrow M$ be an $\left(S_{0}, R\right)$-bimodule homomorphism such that $\varphi(q)=m$. We prove that this is a morphism in $\widetilde{\mathcal{K}}\left(S_{0}\right)$. Let $A \in W_{\lambda}^{\prime} A_{\lambda}^{-}$. Then, $\varphi\left(\left(Q_{\lambda}\right)_{A}^{\emptyset}\right) \subset$ $\bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta, A^{\prime} \in I} M_{A^{\prime}}^{\emptyset}$. Therefore, the lemma follows from the following lemma.

Lemma 2.33. Let $A \in W_{\lambda}^{\prime} A_{\lambda}^{-}$. Then, $(A+\mathbb{Z} \Delta) \cap\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}=\left\{A^{\prime} \in A+\mathbb{Z} \Delta \mid\right.$ $\left.A^{\prime} \geq A\right\}$.

Proof. Since A_{λ}^{-}is the minimal element in $W_{\lambda}^{\prime} A_{\lambda}^{-}$, the right-hand side is contained in the left-hand side. Let A^{\prime} be in the left-hand side. Take $x \in W_{\lambda}^{\prime}$ and $\mu \in \mathbb{Z} \Delta$ such that $A=x\left(A_{\lambda}^{-}\right)$and $A^{\prime}=A+\mu$. Then, $A^{\prime}=x\left(A_{\lambda}^{-}\right)+\mu$. Since $A^{\prime} \geq A_{\lambda}^{-}$and λ is in the closure of
A_{λ}^{-}, we have $x(\lambda)+\mu-\lambda \in \mathbb{R}_{\geq 0} \Delta^{+}$by Lemma 2.2. Since $x \in W_{\lambda}^{\prime}=\operatorname{Stab}_{W_{\text {aff }}^{\prime}}(\lambda), x(\lambda)=\lambda$. Therefore, $\mu \in \mathbb{R}_{\geq 0} \Delta^{+}$. Hence, $A^{\prime}=A+\mu \geq A$.
Let $A \in \Pi_{\lambda}$ and take $w \in W_{\text {aff }}$ such that $A=A_{\lambda}^{-} w$. As in the proof of [Lus80, Proposition 4.2], for any $x<w$ and $A^{\prime} \in W_{\lambda}^{\prime} A_{\lambda}^{-}$, we have $A^{\prime} x>A_{\lambda}^{-} w$. Let $w=s_{1} \cdots s_{l}$ be a reduced expression. Then, $Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}$ satisfies the following.

Lemma 2.34. We have the following.
(1) $\left(Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}\right)_{\{A\}} \simeq S(l)$ as a left S-module.
(2) $\operatorname{supp}_{\mathcal{A}}\left(Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}\right) \subset\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A\right\}$.

Proof. (2) is obvious from what we mentioned before the lemma. We prove (1) by induction on l. Set $M=Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l-1}}$ and $s=s_{l}$. By Lemma 2.27, $\left(M * B_{s}\right)_{\{A\}} \simeq$ $M_{\{A, A s\}}(1)$. By (2), $A \notin \operatorname{supp}_{\mathcal{A}}(M)$. Hence, $M_{\{A, A s\}} \simeq M_{\{A s\}}$. Therefore, $\left(M * B_{s}\right)_{\{A\}} \simeq$ $M_{\{A s\}}(1)$ and the inductive hypothesis implies (1).

Theorem 2.35. We have the following.
(1) For any $A \in \mathcal{A}$, there exists an indecomposable object $Q(A) \in \widetilde{\mathcal{K}}_{P}$ such that $\operatorname{supp}_{\mathcal{A}}(Q(A)) \subset\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A\right\}$ and $Q(A)_{\{A\}} \simeq S$. Moreover, $Q(A)$ is unique up to isomorphisms.
(2) Any object in $\widetilde{\mathcal{K}}_{P}$ is a direct sum of $Q(A)(n)$, where $A \in \mathcal{A}$ and $n \in \mathbb{Z}$.

Proof. Fix s_{1}, \ldots, s_{l} as in the above. By Lemma 2.34, there is the unique indecomposable module $Q(A)$ such that $Q(A)_{\{A\}} \simeq S$ and $Q(A)(l)$ is a direct summand of $Q_{\lambda} * B_{s_{1}} * \cdots *$ $B_{s_{l}}$. It is sufficient to prove that any object $M \in \widetilde{\mathcal{K}}_{P}$ is a direct sum of $Q(A)(n)$'s. By induction on the rank of M, it is sufficient to prove that $Q(A)(n)$ is a direct summand of M for some $A \in \mathcal{A}$ and $n \in \mathbb{Z}$ if $M \neq 0$.
Let $M \in \widetilde{\mathcal{K}}_{P}$ and let $A \in \operatorname{supp}_{\mathcal{A}}(M)$ be a minimal element. Then, $M_{\{A\}} \neq 0$. Since M admits a standard filtration, $M_{\{A\}}$ is graded free. Hence, there exists n such that $S(n) \simeq Q(A)(n)_{\{A\}}$ is a direct summand of $M_{\{A\}}$. Let $i: Q(A)(n)_{\{A\}} \rightarrow M_{\{A\}}$ (resp. $\left.p: M_{\{A\}} \rightarrow Q(A)(n)_{\{A\}}\right)$ be the embedding from (resp. projection to) the direct summand.
Let I be a closed subset which contains $\operatorname{supp}_{\mathcal{A}}(M)$ such that $I \backslash\{A\}$ is closed. Then, $I \supset\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A\right\} \supset \operatorname{supp}_{\mathcal{A}}(Q(A))$. Therefore, we have two sequences

$$
\begin{aligned}
M_{I \backslash\{A\}} \rightarrow M_{I} & =M \rightarrow M_{\{A\}}, \\
Q(A)(n)_{I \backslash\{A\}} \rightarrow Q(A)(n)_{I} & =Q(A)(n) \rightarrow Q(A)(n)_{\{A\}},
\end{aligned}
$$

which satisfy (ES). Consider the homomorphism $Q(A)(n) \rightarrow Q(A)(n)_{\{A\}} \xrightarrow{i} M_{\{A\}}$. Since $Q(A)(n) \in \widetilde{\mathcal{K}}_{P}$, there exists a lift $\widetilde{i}: Q(A)(n) \rightarrow M$ of the above homomorphism. Similarly, we have a morphism $\widetilde{p}: M \rightarrow Q(A)(n)$ which is a lift of p. The composition $\widetilde{p} \circ \widetilde{i} \in$ $\operatorname{End}(Q(A)(n))$ induces the identity on $Q(A)(n)_{\{A\}}$. Therefore, $1-\widetilde{p} \circ \widetilde{i}$ is not a unit. Since $Q(A)(n)$ is indecomposable, the endomorphism ring of $Q(A)(n)$ is local. Therefore, $\widetilde{p} \circ \widetilde{i}$ is an isomorphism. Hence, $Q(A)(n)$ is a direct summand of M.

Corollary 2.36. Any object in $\widetilde{\mathcal{K}}_{P}$ is a direct summand of a direct sum of objects of a form $Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}(n)$, where $\lambda \in(\mathbb{R} \Delta)_{\mathrm{int}}, n \in \mathbb{Z}$ and $s_{1}, \ldots, s_{l} \in S_{\mathrm{aff}}$.

Proof. This is obvious from Theorem 2.35 and the proof of the theorem.
Corollary 2.37. Let $M, N \in \widetilde{\mathcal{K}}_{P}$. Then, $\operatorname{Hom}_{\dot{\mathcal{K}}_{P}}^{\bullet}(M, N)$ is graded free of finite rank as an S-module.

Proof. We may assume $M=Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}(n)$ for some $\lambda \in(\mathbb{R} \Delta)_{\text {int }}, \quad n \in \mathbb{Z}$ and $s_{1}, \ldots, s_{l} \in S_{\text {aff }}$. Hence, by Proposition 2.22 , we may assume $M=Q_{\lambda}$. Then, $\operatorname{Hom}_{\widetilde{\mathcal{K}}_{P}^{\bullet}}(M, N) \simeq N_{\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}}$and this is graded free since N admits a standard filtration.

Corollary 2.38. Let $M, N \in \widetilde{\mathcal{K}}_{P}$. Then, for any flat commutative graded S-algebra S_{0}, we have $S_{0} \otimes_{S} \operatorname{Hom}_{\dot{\tilde{\mathcal{K}}}_{P}}^{\bullet}(M, N) \simeq \operatorname{Hom}_{\overline{\mathcal{K}}_{P}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S} M, S_{0} \otimes_{S} N\right)$.

Proof. As in the proof of the previous corollary, we may assume $M=Q_{\lambda}$. Set $I=\left\{A^{\prime} \in\right.$ $\left.\mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}$. Then, the corollary is equivalent to $S_{0} \otimes_{S} N_{I} \simeq\left(S_{0} \otimes_{S} N\right)_{I}$. This is clear.

2.8. The categorification

Assume that \mathbb{K} is a complete local Noetherian integral domain. We follow the notation of Soergel [Soe97] for the Hecke algebra and the periodic module. The $\mathbb{Z}\left[v, v^{-1}\right]$-algebra \mathcal{H} is generated by $\left\{H_{w} \mid w \in W_{\text {aff }}\right\}$ and defined by the following relations.

- $\left(H_{s}-v^{-1}\right)\left(H_{s}+v\right)=0$ for any $s \in S_{\text {aff }}$.
- If $\ell\left(w_{1}\right)+\ell\left(w_{2}\right)=\ell\left(w_{1} w_{2}\right)$ for $w_{1}, w_{2} \in W_{\text {aff }}$, we have $H_{w_{1} w_{2}}=H_{w_{1}} H_{w_{2}}$.

It is well-known that $\left\{H_{w} \mid w \in W_{\text {aff }}\right\}$ is a $\mathbb{Z}\left[v, v^{-1}\right]$-basis of \mathcal{H}.
Set $\mathcal{P}=\bigoplus_{A \in \mathcal{A}} \mathbb{Z}\left[v, v^{-1}\right] A$ and define a right action of \mathcal{H} [Soe97, Lemma 4.1] on \mathcal{P} by

$$
A H_{s}= \begin{cases}A s & (A s>A) \\ A s+\left(v^{-1}-v\right) A & (A s<A)\end{cases}
$$

for $s \in S_{\mathrm{aff}}$.
For an additive category \mathcal{B}, let $[\mathcal{B}]$ be the split Grothendieck group of \mathcal{B}. We have $[\mathcal{S B i m o d}] \simeq \mathcal{H}\left[\right.$ Abe21, Theorem 4.3] and under this isomorphism, $\left[B_{s}\right] \in[\mathcal{S B i m o d}]$ corresponds to $H_{s}+v \in \mathcal{H}$. By $[M][B]=[M * B],\left[\mathcal{K}_{P}\right]$ is a right $[\mathcal{S B i m o d}]$-module. Fix a length function $\ell: \mathcal{A} \rightarrow \mathbb{Z}$ in the sense of [Lus80, 2.11]. Define ch: $\left[\mathcal{K}_{P}\right] \rightarrow \mathcal{P}$ by

$$
\operatorname{ch}(M)=\sum_{A \in \mathcal{A}} v^{\ell(A)} \operatorname{grk}\left(M_{\{A\}}\right) A
$$

Then, by Corollary 2.29 , ch is an $[\mathcal{S}$ Bimod] $\simeq \mathcal{H}$-module homomorphism.
For each $\lambda \in(\mathbb{R} \Delta)_{\text {int }}$, set $e_{\lambda}=\sum_{A \in W_{\lambda}^{\prime} A_{\lambda}^{-}} v^{-\ell(A)} A$. We put $\mathcal{P}^{0}=\sum_{\lambda \in(\mathbb{R} \Delta)_{\text {int }}} e_{\lambda} \mathcal{H} \subset \mathcal{P}$.
Lemma 2.39. We have $\operatorname{ch}\left(Q_{\lambda}\right)=v^{2 \ell\left(A_{\lambda}^{-}\right)} e_{\lambda}$.
Proof. It follows from Lemma 2.31.
Theorem 2.40. We have ch: $\left[\widetilde{\mathcal{K}}_{P}\right] \xrightarrow{\sim} \mathcal{P}^{0}$.

Proof. Since $e_{\lambda}=v^{-2 \ell\left(A_{\lambda}^{-}\right)} \operatorname{ch}\left(Q_{\lambda}\right) \in \operatorname{Im}($ ch $)$, the image of ch is contained in \mathcal{P}^{0} and it surjects to \mathcal{P}^{0}. The \mathcal{H}-module $\left[\widetilde{\mathcal{K}}_{P}\right]$ has a $\mathbb{Z}\left[v, v^{-1}\right]$-basis $[Q(A)]$ by Theorem 2.35 . Since $\operatorname{ch}(Q(A)) \in v^{\ell(A)} A+\sum_{A^{\prime}>A} \mathbb{Z}\left[v, v^{-1}\right] A^{\prime},\{\operatorname{ch}(Q(A)) \mid A \in \mathcal{A}\}$ is linearly independent. Hence, ch is injective.

2.9. A relation with a work of Fiebig-Lanini

Assume that \mathbb{K} is a complete local Noetherian integral domain. In [FL15], Fiebig and Lanini constructed a category denoted by \mathbf{C} and proved that this is an exact category. They also constructed a wall-crossing functor θ_{s} for $s \in S_{\text {aff }}$ on \mathbf{C} and proved that projective objects are preserved by wall-crossing functors. In this subsection, we prove the following. We identify $W_{\mathrm{aff}}^{\prime} \simeq W_{\text {aff }}$ and $S \simeq R$ by using A_{0}^{+}, the maximal element in $W_{0}^{\prime} A_{0}^{-}$.

Theorem 2.41. The category $\widetilde{\mathcal{K}}_{P}$ is equivalent to the category of projective objects in \mathbf{C}. The action of B_{s} on $\widetilde{\mathcal{K}}_{P}$ corresponds to θ_{s} for $s \in S_{\mathrm{aff}}$.
Let $M \in \widetilde{\mathcal{K}}_{P}$, and let $J \subset \mathcal{A}$ be an open subset. Then, M_{J} is an R-bimodule (as we identify $S \simeq R$) and the left action of $f \in R^{W_{\mathrm{f}}}$ is equal to the right action of f. Hence, M_{J} is an $R \otimes_{R^{W_{\mathrm{f}}}} R$-module. The algebra $R \otimes_{R^{W_{\mathrm{f}}}} R$ is isomorphic to the structure algebra \mathcal{Z} on the moment graph attached to W_{f}. Hence, we get a functor F from $\widetilde{\mathcal{K}}_{P}$ to the category of \mathcal{Z}-coefficient presheaves on \mathcal{A}.

We prove that F is fully faithful. Since $M=F(M)(\mathcal{A})$ is an R-module, F induces an injective map between the space of morphisms; namely, F is faithful. Let $f: F(M) \rightarrow$ $F(N)$ be a morphism between sheaves. We define $\varphi: M \rightarrow N$ by $M=F(M)(\mathcal{A}) \rightarrow$ $F(N)(\mathcal{A})=N$. Then, this is an R-bimodule morphism. Moreover, φ induces $M / M_{\mathcal{A} \backslash J}=$ $F(M)(J) \rightarrow F(N)(J)=N / N_{\mathcal{A} \backslash J}$ for any open subset J. Hence, $\varphi\left(M_{I}\right) \subset N_{I}$ for any closed subset $I \subset \mathcal{A}$. Therefore, φ is a morphism in $\widetilde{\mathcal{K}}_{P}$, and therefore, F is full.
Next, we prove that $F\left(M * B_{s}\right) \simeq \theta_{s}(F(M))$ for $M \in \widetilde{\mathcal{K}}_{P}$. Let $s \in S_{\text {aff }}$, and let ϵ_{s} be the functor defined in [FL15, 8.1]. Then an argument of the proof in [Abe21, Proposition 5.3] gives $\epsilon_{s}(M) \simeq M \otimes_{R} B_{s}$ as \mathcal{Z}-modules (here, in the right-hand side, we consider a \mathcal{Z}-module as an R-bimodule via $\mathcal{Z} \simeq R \otimes_{R^{W_{\mathrm{f}}}} R$). Let $J \subset \mathcal{A}$ be an open subset and J^{b} (resp. J^{\sharp}) be the largest (resp. smallest) s-invariant open subset which is contained in (resp. contains) J. Then, we have morphisms

$$
\left(M * B_{s}\right)_{J^{\sharp}} \xrightarrow{j^{\sharp}}\left(M * B_{s}\right)_{J} \xrightarrow{j^{b}}\left(M * B_{s}\right)_{J^{b}}
$$

such that $j^{\sharp}, j^{\text {b }}$ are surjective. We have $\left(M * B_{s}\right)_{J^{\sharp}} \simeq M_{J^{\sharp}} * B_{s}$ and $\left(M * B_{s}\right)_{J^{b}} \simeq M_{J^{b}} * B_{s}$ by Lemma 2.25. We have $\operatorname{supp}_{\mathcal{A}}\left(\operatorname{Ker} j_{1}\right) \subset J^{\sharp} \backslash J$ and $\operatorname{supp}_{\mathcal{A}}\left(\operatorname{Ker} j_{2}\right) \subset J \backslash J^{b}$. Hence, by [FL15, Lemma 2.8], $\left(M * B_{s}\right)_{J}$ satisfies the condition in [FL15, 8.3], and we get $F(M *$ $\left.B_{s}\right)(J) \simeq \theta_{s}(F(M))(J)$. Therefore, we get $F\left(M * B_{s}\right) \simeq \theta_{s}(F(M))$.

Finally, we prove that the image of F is projective and the functor from $\widetilde{\mathcal{K}}_{P}$ to the category of projective objects in \mathbf{C} is essentially surjective. Let $\underline{\mathcal{K}}_{\lambda}$ be a projective object in \mathbf{C} defined in $\left[F L 15\right.$, Section 6]. From the definitions, we have $F\left(Q_{\lambda}\right)=\underline{\mathcal{K}}_{\lambda}$. Any $M \in$ $\widetilde{\mathcal{K}}_{P}$ is a direct sum of direct summands of objects of the form $M * B_{s_{1}} * \cdots * B_{s_{l}}(n)$ for $s_{1}, \ldots, s_{l} \in S_{\text {aff }}$ and $n \in \mathbb{Z}$. Since $F\left(M * B_{s_{1}} * \cdots * B_{s_{l}}(n)\right)=\theta_{s_{l}} \cdots \theta_{s_{1}} \underline{\mathcal{K}}_{\lambda}$ is projective in \mathbf{C}
by [FL15, Corollary 8.7], $F(M)$ is projective in \mathbf{C} for any $M \in \widetilde{\mathcal{K}}_{P}$. Moreover, by the proof of [FL15, Theorem 8.8], any projective object in \mathbf{C} is a direct sum of direct summands of objects of the form $\theta_{s_{l}} \cdots \theta_{s_{1}} \underline{\mathcal{K}}_{\lambda}$. Since F is fully faithful, the essential image of F is closed under taking a direct summand. Hence, F is essentially surjective.

3. The category of Andersen-Jantzen-Soergel

3.1. Our combinatorial category

Assume that \mathbb{K} is a complete local Noetherian integral domain. In this subsection, we introduce some categories using the categories introduced in the previous section. The categories will be related to the combinatorial categories of Andersen-Jantzen-Soergel.

Let S_{0} be a flat commutative graded S-algebra. Let $\mathcal{K}^{\prime}\left(S_{0}\right)$ be the category whose objects are the same as those of $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ and the spaces of morphisms are defined by

$$
\operatorname{Hom}_{\mathcal{K}^{\prime}\left(S_{0}\right)}(M, N)=\operatorname{Hom}_{\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}(M, N) /\left\{\varphi \in \operatorname{Hom}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}(M, N) \mid \varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}\right\} .
$$

We also define $\mathcal{K}\left(S_{0}\right)$ and $\mathcal{K}_{\Delta}\left(S_{0}\right)$ in the same way.
Lemma 3.1. Let $M, N \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right), \varphi: M \rightarrow N$ and $B \in \mathcal{S} \operatorname{Bimod}$. If $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}$ for any $A \in \mathcal{A}$, then $\varphi \otimes \mathrm{id}: M * B \rightarrow N * B$ satisfies $(\varphi \otimes \mathrm{id})\left((M * B)_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A}(N * B)_{A^{\prime}}^{\emptyset}$ for any $A \in \mathcal{A}$.
Proof. Recall that we have $(M * B)_{A}^{\emptyset}=\bigoplus_{x \in W_{\text {aff }}} M_{A x^{-1}}^{\emptyset} \otimes B_{x}^{\emptyset}$. We have $\varphi\left(M_{A x^{-1}}^{\emptyset}\right) \otimes$ $B_{x}^{\emptyset} \subset \bigoplus_{A^{\prime} x^{-1} \in A x^{-1}+\mathbb{Z} \Delta, A^{\prime} x^{-1}>A x^{-1}} N_{A^{\prime} x^{-1}}^{\emptyset} \otimes B_{x}^{\emptyset}$. Since $x:\left(A x^{-1}+\mathbb{Z} \Delta\right) \rightarrow(A+\mathbb{Z} \Delta)$ preserves the order, $A^{\prime} x^{-1}>A x^{-1}$ if and only if $A^{\prime}>A$. Therefore, $(\varphi \otimes \mathrm{id})(M * B)_{A}^{\emptyset} \subset$ $\bigoplus_{x \in W_{\text {aff }} A^{\prime}>A} N_{A^{\prime} x^{-1}}^{\emptyset} \otimes B_{x}^{\emptyset}=\bigoplus_{A^{\prime}>A}(N * B)_{A^{\prime}}^{\emptyset}$.

Therefore, $(M, B) \mapsto M * B$ defines a bi-functor $\mathcal{K}^{\prime}\left(S_{0}\right) \times \mathcal{S} \operatorname{Bimod} \rightarrow \mathcal{K}^{\prime}\left(S_{0}\right)$ and also $\mathcal{K}_{\Delta}\left(S_{0}\right) \times \mathcal{S} \operatorname{Bimod} \rightarrow \mathcal{K}_{\Delta}\left(S_{0}\right)$.

Proposition 3.2. Let $M, N \in \mathcal{K}^{\prime}\left(S_{0}\right)$ and $s \in S_{\text {aff }}$. Then, $\operatorname{Hom}_{\mathcal{K}^{\prime}\left(S_{0}\right)}\left(M * B_{s}, N\right) \simeq$ $\operatorname{Hom}_{\mathcal{K}^{\prime}\left(S_{0}\right)}\left(M, N * B_{s}\right)$.

Proof. Let φ and ψ as in the proof of Proposition 2.22. Then, the proof of Proposition 2.22 shows that $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A}\left(N * B_{s}\right)_{A^{\prime}}^{\emptyset}$ for any $A \in \mathcal{A}$ if and only if $\psi\left(\left(M * B_{s}\right)_{A}^{\emptyset}\right) \subset$ $\bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}$ for any $A \in \mathcal{A}$. The proposition follows.

For each morphism $\varphi: M \rightarrow N$ in $\widetilde{\mathcal{K}}\left(S_{0}\right)$ and $A \in \mathcal{A}$, we have a homomorphism $\varphi_{\{A\}}: M_{\{A\}} \rightarrow N_{\{A\}}$. Note that $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}$ if and only if $\varphi_{\{A\}}=0$. Hence, $M \mapsto M_{\{A\}}$ defines a functor from $\mathcal{K}\left(S_{0}\right)$ to the category of graded S_{0}-modules. Using this, we define as follows. A sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\mathcal{K}\left(S_{0}\right)$ satisfies (ES) if the composition $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ is zero in $\mathcal{K}\left(S_{0}\right)$ and $0 \rightarrow\left(M_{1}\right)_{\{A\}} \rightarrow\left(M_{2}\right)_{\{A\}} \rightarrow\left(M_{3}\right)_{\{A\}} \rightarrow 0$ is exact for any $A \in \mathcal{A}$. Note that a sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\widetilde{\mathcal{K}}$ may not satisfy (ES) even when it satisfies (ES) in \mathcal{K} since the composition $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ may be zero only in \mathcal{K}.

For the definition of $\mathcal{K}_{P}\left(S_{0}\right)$, we use the same condition to define $\widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$. For $M \in$ $\mathcal{K}_{\Delta}\left(S_{0}\right)$, we say $M \in \mathcal{K}_{P}\left(S_{0}\right)$ if, for any sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\mathcal{K}_{\Delta}\left(S_{0}\right)$ which satisfies
(ES), the induced homomorphism $0 \rightarrow \operatorname{Hom}_{\mathcal{K}_{\Delta}\left(S_{0}\right)}^{\bullet}\left(M, M_{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{K}_{\Delta}\left(S_{0}\right)}\left(M, M_{2}\right) \rightarrow$ $\operatorname{Hom}_{\mathcal{K}_{\Delta}\left(S_{0}\right)}\left(M, M_{3}\right) \rightarrow 0$ is exact. Note that this definition is not the same as that in the Introduction. We will prove that two definitions coincide with each other later (Proposition 3.7).

Proposition 3.3. An indecomposable object in $\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ such that $\operatorname{supp}_{\mathcal{A}}(M)$ is finite and is also indecomposable as an object of $\mathcal{K}^{\prime}\left(S_{0}\right)$.

Proof. Let $M \in \widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)$ and assume that $\operatorname{supp}_{\mathcal{A}}(M)$ is finite. Then, $\left\{\varphi \in \operatorname{End}_{\tilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}(M) \mid\right.$ $\left.\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} M_{A^{\prime}}^{\emptyset}(A \in \mathcal{A})\right\}$ is a two-sided ideal of $\operatorname{End}_{\widetilde{\mathcal{K}}^{\prime}\left(S_{0}\right)}(M)$ and, since $\operatorname{supp}_{\mathcal{A}}(M)$ is finite, this is nilpotent. Therefore, the idempotent lifting property implies the proposition.

Lemma 3.4. Let $K \subset \mathcal{A}$ be a locally closed subset such that for any $A \in K$, we have $(A+\mathbb{Z} \Delta) \cap K=\{A\}$. Then, we have the following.
(1) For a morphism $\varphi: M \rightarrow N$ in $\widetilde{\mathcal{K}}\left(S_{0}\right)$ which is zero in $\mathcal{K}\left(S_{0}\right)$, the homomorphism $M_{K} \rightarrow N_{K}$ is zero in $\widetilde{\mathcal{K}}\left(S_{0}\right)$.
(2) Let $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ be a sequence in $\widetilde{\mathcal{K}}\left(S_{0}\right)$ and assume that the sequence $M_{1} \rightarrow$ $M_{2} \rightarrow M_{3}$ satisfies ($E S$) as a seqeune in $\mathcal{K}\left(S_{0}\right)$. Then, $\left(M_{1}\right)_{K} \rightarrow\left(M_{2}\right)_{K} \rightarrow\left(M_{3}\right)_{K}$ satisfies (ES) as a sequence in $\widetilde{\mathcal{K}}\left(S_{0}\right)$. In particular, $0 \rightarrow\left(M_{1}\right)_{K} \rightarrow\left(M_{2}\right)_{K} \rightarrow$ $\left(M_{3}\right)_{K} \rightarrow 0$ is an exact sequence of $\left(S_{0}, R\right)$-bimodules.
Proof. (1) We have $M_{K}^{\emptyset}=\bigoplus_{A \in K} M_{A}^{\emptyset}$ and $N_{K}^{\emptyset}=\bigoplus_{A \in K} N_{A}^{\emptyset}$. Since $\varphi=0$ in \mathcal{K}, we have $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} N_{A^{\prime}}^{\emptyset}$ for any $A \in K$. We also know that $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta} N_{A^{\prime}}^{\emptyset}$. By the assumption, there is no $A^{\prime} \in A+\mathbb{Z} \Delta$ such that $A^{\prime}>A$ and $A^{\prime} \in K$. Hence, $\varphi\left(M_{A}^{\emptyset}\right)=0$.
(2) By (1), the composition $\left(M_{1}\right)_{K} \rightarrow\left(M_{2}\right)_{K} \rightarrow\left(M_{3}\right)_{K}$ is zero.

Lemma 3.5. Assume that a sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\mathcal{K}_{\Delta}\left(S_{0}\right)$ satisfies (ES). Then, $M_{1} * B \rightarrow M_{2} * B \rightarrow M_{3} * B$ also satisfies (ES).

Proof. We may assume $B=B_{s}$ where $s \in S_{\text {aff }}$. We take lifts of $M_{1} \rightarrow M_{2}$ and $M_{2} \rightarrow M_{3}$ in $\widetilde{\mathcal{K}}\left(S_{0}\right)$, and we regard $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ also as a sequence in $\widetilde{\mathcal{K}}\left(S_{0}\right)$. As in Corollary 2.29, we have $\left(M_{i} * B_{s}\right)_{\{A\}} \simeq\left(M_{i}\right)_{\{A, A s\}}(\varepsilon(A))$, where $\varepsilon(A)$ is as in the proof of Lemma 2.27. By the previous lemma, $0 \rightarrow\left(M_{1}\right)_{\{A, A s\}} \rightarrow\left(M_{2}\right)_{\{A, A s\}} \rightarrow\left(M_{3}\right)_{\{A, A s\}} \rightarrow 0$ is exact. Therefore, $0 \rightarrow\left(M_{1} * B_{s}\right)_{\{A\}} \rightarrow\left(M_{2} * B_{s}\right)_{\{A\}} \rightarrow\left(M_{3} * B_{s}\right)_{\{A\}} \rightarrow 0$ is exact. Hence, a sequence $M_{1} *$ $B_{s} \rightarrow M_{2} * B_{s} \rightarrow M_{3} * B_{s}$ in $\mathcal{K}_{\Delta}\left(S_{0}\right)$ satisfies (ES).

Combining Proposition 3.2, we have $\mathcal{K}_{P}\left(S_{0}\right) * \mathcal{S B i m o d} \subset \mathcal{K}_{P}\left(S_{0}\right)$.
Lemma 3.6. Let $\lambda \in(\mathbb{R} \Delta)_{\mathrm{int}}$. The subset $W_{\lambda}^{\prime} A_{\lambda}^{-}$is locally closed and we have a natural isomorphism $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S} Q_{\lambda}, M\right) \simeq M_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$for $M \in \mathcal{K}_{\Delta}\left(S_{0}\right)$.

Proof. Set $I=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}$. We prove $I \backslash W_{\lambda}^{\prime} A_{\lambda^{-}}$is closed. Let $A_{1} \in W_{\lambda}^{\prime} A_{\lambda}^{-}$and $A_{2} \in I$ satisfies $A_{2} \leq A_{1}$. We prove $A_{2} \in W_{\lambda}^{\prime} A_{\lambda}^{-}$. This proves that $I \backslash W_{\lambda}^{\prime} A_{\lambda^{-}}$is closed. Take $A_{3} \in W_{\lambda}^{\prime} A_{\lambda}^{-}$such that $A_{2} \in A_{3}+\mathbb{Z} \Delta$. Then, by Lemma 2.33, we have $A_{2} \geq A_{3}$. Take $x \in W_{\lambda}^{\prime}$ and $\mu \in \mathbb{Z} \Delta$ such that $A_{1}=x\left(A_{3}\right)$ and $A_{2}=A_{3}+\mu$. Then, $A_{1} \geq A_{2} \geq A_{3}$ implies
$x(\lambda)-(\lambda+\mu) \in \mathbb{R}_{\geq 0} \Delta^{+}$and $(\lambda+\mu)-\lambda \in \mathbb{R}_{\geq 0} \Delta^{+}$. As $x(\lambda)=\lambda$, we have $\mu=0$. Hence, $A_{2}=A_{3} \in W_{\lambda}^{\prime} A_{\lambda}^{-}$.

We have $\operatorname{Hom}_{\tilde{\mathcal{K}}\left(S_{0}\right)}^{\bullet}\left(Q_{\lambda}, M\right) \simeq M_{I}$ where $I=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A_{\lambda}^{-}\right\}$and, under this correspondence, $\left\{\varphi \in \operatorname{Hom}_{\stackrel{\tilde{\mathcal{K}}}{ }\left(S_{0}\right)}^{\bullet}\left(Q_{\lambda}, M\right) \mid \varphi\left(\left(Q_{\lambda}\right)_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime}>A} M_{A^{\prime}}^{\emptyset}\right\}$ exactly corresponds to $\left\{m \in M_{I} \mid m_{A}=0\right.$ for any $\left.A \in W_{\lambda}^{\prime} A_{\lambda^{-}}\right\}$. Since $I \backslash W_{\lambda}^{\prime} A_{\lambda^{-}}$is closed, $\left\{m \in M_{I} \mid m_{A}=\right.$ 0 for any $\left.A \in W_{\lambda}^{\prime} A_{\lambda^{-}}\right\}=M_{I \backslash W_{\lambda}^{\prime} A_{\lambda}^{-}}$. Hence, $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}\left(Q_{\lambda}, M\right) \simeq M_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$.

Proposition 3.7. The objects of \mathcal{K}_{P} are the same as those of $\widetilde{\mathcal{K}}_{P}$.
Proof. First, we prove that any $M \in \widetilde{\mathcal{K}}_{P}$ belongs to \mathcal{K}_{P}. By Theorem 2.35, we may assume $M=Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}(n)$ for some $\lambda \in(\mathbb{R} \Delta)_{\text {int }}, s_{1}, \ldots, s_{l} \in S_{\text {aff }}$ and $n \in \mathbb{Z}$. By Proposition 3.2 and Lemma 3.5, we may assume $M=Q_{\lambda}$.

We have $\operatorname{Hom}_{\mathcal{K}}\left(Q_{\lambda}, N\right) \simeq N_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$for $N \in \mathcal{K}$. Since $W_{\lambda}^{\prime} A_{\lambda}^{-}$satisfies the condition of Lemma 3.4, this implies $Q_{\lambda} \in \mathcal{K}_{P}^{\lambda}$.

The object $Q(A)$ is indecomposable in \mathcal{K}_{P} by Proposition 3.3. Using the argument in the proof of Theorem 2.35, any object in \mathcal{K}_{P} is a direct sum of $Q(A)(n)$ where $A \in \mathcal{A}, n \in \mathbb{Z}$. Hence, the proposition is proved.

Hence, our \mathcal{K}_{P} is the same as that in the Introduction.
Corollary 3.8. Let $M \in \mathcal{K}_{P}, N \in \mathcal{K}_{\Delta}$ and S_{0} a flat commutative graded S-algebra.
(1) The natural map $S_{0} \otimes_{S} \operatorname{Hom}_{\mathcal{K}_{P}}^{\bullet}(M, N) \rightarrow \operatorname{Hom}_{\mathcal{K}_{P}\left(S_{0}\right)}\left(S_{0} \otimes_{S} M, S_{0} \otimes_{S} N\right)$ is an isomorphism.
(2) We have $S_{0} \otimes_{S} M \in \mathcal{K}_{P}\left(S_{0}\right)$.

Proof. We may assume $M=Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}(n)$ for some $\lambda \in(\mathbb{R} \Delta)_{\mathrm{int}}, s_{1}, \ldots, s_{l} \in S_{\mathrm{aff}}$ and $n \in \mathbb{Z}$.
(1) By Proposition 3.2, we may assume $M=Q_{\lambda}$. In this case, the corollary is equivalent to $S_{0} \otimes_{S}\left(N_{W_{\lambda}^{\prime} A_{\lambda}^{-}}\right) \simeq\left(S_{0} \otimes_{S} N\right)_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$. This is clear.
(2) By Lemma 3.5, we may assume $M=Q_{\lambda}$. Then, $S_{0} \otimes_{S} Q_{\lambda} \in \mathcal{K}_{P}\left(S_{0}\right)$ by Lemma 3.4 and 3.6.

We can define ch: $\left[\mathcal{K}_{P}\right] \rightarrow \mathcal{P}^{0}$ by the same formula as ch: $\left[\widetilde{\mathcal{K}}_{P}\right] \rightarrow \mathcal{P}^{0}$. By the previous proposition with Theorem 2.40, we get the following.
Theorem 3.9. We have $\left[\mathcal{K}_{P}\right] \simeq \mathcal{P}^{0}$.

3.2. A formula on homomorphisms

Assume that \mathbb{K} is amcomplete local Noetherian integral domain. Let $m \mapsto \bar{m}$ be a map from \mathcal{P}^{0} to \mathcal{P}^{0} defined in [Soe97, Theorem 4.3]. For $m \in \mathcal{P}^{0}$ and $m^{\prime} \in \mathcal{P}$, take $c_{A}, d_{A} \in$ $\mathbb{Z}\left[v, v^{-1}\right]$ such that $\bar{m}=\sum_{A \in \mathcal{A}} c_{A} A$ and $m^{\prime}=\sum_{A \in \mathcal{A}} d_{A} A$. Set $\left(m, m^{\prime}\right)_{\mathcal{P}}=\sum_{A \in \mathcal{A}} c_{A} d_{A}$. We define $\omega: \mathcal{H} \rightarrow \mathcal{H}$ by $\omega\left(\sum_{x \in W} a_{x}(v) H_{x}\right)=\sum_{x \in W} a_{x}\left(v^{-1}\right) H_{x}^{-1}$. Then, we have

$$
\left(m h, m^{\prime}\right)_{\mathcal{P}}=\left(m, m^{\prime} \omega(h)\right)_{\mathcal{P}}
$$

where $m \in \mathcal{P}^{0}, m^{\prime} \in \mathcal{P}$ and $h \in \mathcal{H}$. This easily follows from the definitions. Let $w_{0} \in W_{\mathrm{f}}$ be the longest element.

Theorem 3.10. Let $P \in \mathcal{K}_{P}$ and $M \in \mathcal{K}_{\Delta}$. Then, $\operatorname{Hom}_{\mathcal{K}_{\Delta}}(P, M)$ is amgraded free left S-module and the graded rank is given by

$$
\operatorname{grkHom}_{\mathcal{K}_{\Delta}}^{\bullet}(P, M)=v^{-2 \ell\left(w_{0}\right)}(\operatorname{ch}(P), \operatorname{ch}(M))_{\mathcal{P}}
$$

Proof. Since $\left[\mathcal{K}_{P}\right]$ is generated by elements of a form $\left[Q_{\lambda} * B_{s_{1}} * \cdots * B_{s_{l}}\right]$ with $\lambda \in$ $(\mathbb{R} \Delta)_{\text {int }}$ and $s_{1}, \ldots, s_{l} \in S_{\text {aff }}$, we may assume P has this form. Moreover, by Lemma 3.2 and the formula before the theorem, we may assume $P=Q_{\lambda}$. In this case, we have $\operatorname{Hom}_{\mathcal{K}_{\Delta}}(P, M) \simeq M_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$, and this is graded free by the definition of \mathcal{K}_{Δ}. Moreover, the graded rank of $M_{W_{\lambda}^{\prime} A_{\lambda}^{-}}$is $\sum_{A \in W_{\lambda}^{\prime} A_{\lambda}^{-}} \operatorname{grk}\left(M_{\{A\}}\right)$.

Let S_{λ} be the set of reflections in W_{λ}^{\prime} along the walls of A_{λ}^{-}. Then, this is a generator of W_{λ}^{\prime}, and $\left(W_{\lambda}^{\prime}, S_{\lambda}\right)$ is a Coxeter system. The length function of this Coxeter system is denoted by ℓ_{λ}.

We calculate $\left(\operatorname{ch}\left(Q_{\lambda}\right), \operatorname{ch}(M)\right)$. We put $\left(\sum_{A \in \mathcal{A}} c_{A} A, \sum_{A \in \mathcal{A}} d_{A} A\right)^{\prime}=\sum_{A \in \mathcal{A}} c_{A} d_{A}$. Let $E_{\lambda} \in \mathcal{P}$ be the element defined in [Soe97, 4] and A_{λ}^{+}the maximal element in $W_{\lambda}^{\prime} A_{\lambda}^{-}$. Then, we have $E_{\lambda}=\sum_{w \in W_{\lambda}^{\prime}} v^{\ell_{\lambda}(w)} w A_{\lambda}^{+}$. Since $\ell\left(w\left(A_{\lambda}^{+}\right)\right)=\ell\left(A_{\lambda}^{+}\right)-$ $\ell_{\lambda}(w)$, we have $e_{\lambda}=\sum_{w \in W_{\lambda}^{\prime}} v^{-\ell\left(w\left(A_{\lambda}^{+}\right)\right)} w\left(A_{\lambda}^{+}\right)=v^{-\ell\left(A_{\lambda}^{+}\right)} E_{\lambda}$. Therefore, $\operatorname{ch}\left(Q_{\lambda}\right)=$ $v^{2 \ell\left(A_{\lambda}^{-}\right)} e_{\lambda}=v^{2 \ell\left(A_{\lambda}^{-}\right)-\ell\left(A_{\lambda}^{+}\right)} E_{\lambda}$. Since $\overline{E_{\lambda}}=E_{\lambda}$, we get $\overline{\operatorname{ch}\left(Q_{\lambda}\right)}=v^{-2 \ell\left(A_{\lambda}^{-}\right)+\ell\left(A_{\lambda}^{+}\right)} E_{\lambda}=$ $v^{-2 \ell\left(A_{\lambda}^{-}\right)+2 \ell\left(A_{\lambda}^{+}\right)} e_{\lambda}=v^{2 \ell\left(w_{0}\right)} e_{\lambda}$. Hence,

$$
\begin{aligned}
\left(\operatorname{ch}\left(Q_{\lambda}\right), \operatorname{ch}(M)\right)_{\mathcal{P}} & =v^{2 \ell\left(w_{0}\right)}\left(e_{\lambda}, \operatorname{ch}(M)\right)^{\prime} \\
& =v^{2 \ell\left(w_{0}\right)}\left(\sum_{A \in W_{\lambda}^{\prime} A_{\lambda}^{-}} v^{-\ell(A)} A, \sum_{A \in \mathcal{A}} v^{\ell(A)} \operatorname{grk}\left(M_{\{A\}}\right) A\right)^{\prime} \\
& =v^{2 \ell\left(w_{0}\right)} \sum_{A \in W_{\lambda}^{\prime} A_{\lambda}^{-}} \operatorname{grk}\left(M_{\{A\}}\right) \\
& =v^{2 \ell\left(w_{0}\right)} \operatorname{grk} \operatorname{Hom}_{\mathcal{K}_{P}}\left(Q_{\lambda}, M\right) .
\end{aligned}
$$

We get the theorem.

3.3. The category \mathcal{K}_{P}^{α}

Assume that \mathbb{K} is a complete local Noetherian integral domain. In this subsection, we analyze $\mathcal{K}_{P}^{\alpha}=\mathcal{K}_{P}\left(S^{\alpha}\right)$. First, we define an object $Q_{A, \alpha}$ where $A \in \mathcal{A}$ and $\alpha \in \Delta^{+}$. Set $Q_{A, \alpha}=\left\{(a, b) \in S^{2} \mid a \equiv b\left(\bmod \alpha^{\vee}\right)\right\}$ and define a right action of R on $Q_{A, \alpha}$ by $(x, y) f=$ $\left(f_{A} x, s_{\alpha}\left(f_{A}\right) y\right)$ for $(x, y) \in Q_{A, \alpha}$ and $f \in R$. We have $Q_{A, \alpha}^{\emptyset}=S^{\emptyset} \oplus S^{\emptyset}$ and we set

$$
\left(Q_{A, \alpha}\right)_{A^{\prime}}^{\emptyset}= \begin{cases}S^{\emptyset} \oplus 0 & \left(A^{\prime}=A\right), \\ 0 \oplus S^{\emptyset} & \left(A^{\prime}=\alpha \uparrow A\right), \\ 0 & (\text { otherwise }) .\end{cases}
$$

It is easy to see that $Q_{A, \alpha}^{\alpha}=S^{\alpha} \otimes_{S} Q_{A, \alpha}$ is indecomposable.
Lemma 3.11. We have $Q_{A, \alpha}^{\alpha} \in \mathcal{K}_{P}^{\alpha}$.

Proof. It is easy to see that $Q_{A, \alpha}^{\alpha} \in \mathcal{K}_{\Delta}^{\alpha}$. Let $M \in \mathcal{K}_{\Delta}^{\alpha}$ and we analyze $\operatorname{Hom}_{\mathcal{K}_{\alpha}^{\alpha}}\left(Q_{A, \alpha}^{\alpha}, M\right)$. By (LE), $M \simeq \bigoplus_{i} M_{i}$ such that $\operatorname{supp}_{\mathcal{A}}\left(M_{i}\right) \subset W_{\alpha, \text { aff }}^{\prime} A_{i}$ for some $A_{i} \in \overrightarrow{\mathcal{A}}$. We have $\operatorname{Hom}_{\mathcal{K}_{\Delta}^{\alpha}}\left(Q_{A, \alpha}^{\alpha}, M_{i}\right)=0$ if $A \notin W_{\alpha, \text { aff }}^{\prime} A_{i}$. Therefore, it is sufficient to prove the following: if a sequence $M_{1} \rightarrow M_{2} \rightarrow M_{3}$ in $\mathcal{K}_{\Delta}^{\alpha}$ satisfies (ES) and $\operatorname{supp}_{\mathcal{A}}\left(M_{i}\right) \subset W_{\alpha, \text { aff }}^{\prime} A$, then $0 \rightarrow \operatorname{Hom}_{\mathcal{K}_{\Delta}^{\alpha}}\left(Q_{A, \alpha}^{\alpha}, M_{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{K}_{\Delta}^{\alpha}}^{\bullet}\left(Q_{A, \alpha}^{\alpha}, M_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{K}_{\Delta}^{\alpha}}\left(Q_{A, \alpha}^{\alpha}, M_{3}\right) \rightarrow 0$ is exact. We can apply a similar argument of the proof of Proposition 3.7.

We can apply the argument in the proof of Theorem 2.35 and get the following proposition.

Proposition 3.12. Any object in \mathcal{K}_{P}^{α} is a direct sum of $Q_{A, \alpha}^{\alpha}(n)$ where $A \in \mathcal{A}$ and $n \in \mathbb{Z}$.

3.4. The combinatorial category of Andersen-Jantzen-Soergel

Assume that \mathbb{K} is a complete local Noetherian integral domain. We recall the combinatorial category of Andersen-Jantzen-Soergel [AJS94]. We use the version introduced by Fiebig in [Fie11]. We write $\mathcal{K}_{\text {AJS }}$ for this category.

Let S_{0} be a flat commutative graded S-algebra and we define the category $\mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)$ as follows. An object of $\mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)$ is $\mathcal{M}=\left((\mathcal{M}(A))_{A \in \mathcal{A}},(\mathcal{M}(A, \alpha))_{A \in \mathcal{A}, \alpha \in \Delta^{+}}\right)$, where $\mathcal{M}(A)$ is a graded $\left(S_{0}\right)^{\emptyset}$-module and $\mathcal{M}(A, \alpha) \subset \mathcal{M}(A) \oplus \mathcal{M}(\alpha \uparrow A)$ is a graded sub- $\left(S_{0}\right)^{\alpha}$-module. A morphism $f: \mathcal{M} \rightarrow \mathcal{N}$ in $\mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)$ is a collection of degree zero $\left(S_{0}\right)^{\emptyset}$-homomorphisms $f_{A}: \mathcal{M}(A) \rightarrow \mathcal{N}(A)$ which sends $\mathcal{M}(A, \alpha)$ to $\mathcal{N}(A, \alpha)$ for any $A \in \mathcal{A}$ and $\alpha \in \Delta^{+}$. Put $\mathcal{K}_{\mathrm{AJS}}=\mathcal{K}_{\mathrm{AJS}}(S)$ and $\mathcal{K}_{\mathrm{AJS}}^{*}=\mathcal{K}_{\mathrm{AJS}}\left(S^{*}\right)$ for $* \in\{\emptyset\} \cup \Delta$.

For each $s \in S_{\text {aff }}$, the translation functor $\vartheta_{s}: \mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right) \rightarrow \mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)$ is defined as

$$
\vartheta_{s}(\mathcal{M})(A)=\mathcal{M}(A) \oplus \mathcal{M}(A s)
$$

and

$$
\vartheta_{s}(\mathcal{M})(A, \alpha)= \begin{cases}\mathcal{M}(A, \alpha) \oplus \mathcal{M}(A s, \alpha) & \left(A s \notin W_{\alpha, \text { aff }}^{\prime} A\right), \\ \left\{(x, y) \in \mathcal{M}(A, \alpha)^{2} \mid x-y \in \alpha^{\vee} \mathcal{M}(A, \alpha)\right\} & (A s=\alpha \uparrow A), \\ \alpha^{\vee} \mathcal{M}(A s, \alpha) \oplus \mathcal{M}(\alpha \uparrow A, \alpha) & (A s=\alpha \downarrow A)\end{cases}
$$

We define $\mathcal{F}\left(S_{0}\right): \mathcal{K}_{P}\left(S_{0}\right) \rightarrow \mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)$ as follows. First, we put

$$
\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A)=M_{A}^{\emptyset}
$$

To define $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$, we take $X \in \widetilde{\mathcal{K}}_{P}\left(S_{0}^{\alpha}\right)$ and an isomorphism $\varphi: X \rightarrow M^{\alpha}$ in $\widetilde{\mathcal{K}}_{P}\left(S_{0}^{\alpha}\right)$ such that $X=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(X \cap \bigoplus_{A \in \Omega} X_{A}^{\emptyset}\right)$. Such X exists since M satisfies (LE). Then we have an isomorphism $X_{A}^{\emptyset} \simeq\left(X_{\geq A} / X_{>A}\right)^{\emptyset} \simeq\left(\left(M^{\alpha}\right)_{\geq A} /\left(M^{\alpha}\right)_{>A}\right)^{\emptyset} \simeq M_{A}^{\emptyset}$. In general, for $Y \in \mathcal{K}_{P}\left(S_{0}\right), y \in Y^{\emptyset}$ and $A \in \mathcal{A}$, write y_{A} for the Y_{A}^{\emptyset}-component of y along the decomposition $Y^{\emptyset}=\bigoplus_{A \in \mathcal{A}} Y_{A}^{\emptyset}$. Then, this isomorphism can be written as $x \mapsto \varphi(x)_{A}$. Here, we use the same letter φ for the induced map $X^{\emptyset} \rightarrow M^{\emptyset}$.

Now let $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ be the image of

$$
X_{\geq A} \rightarrow X_{A}^{\emptyset} \oplus X_{\alpha \uparrow A}^{\emptyset} \simeq M_{A}^{\emptyset} \oplus M_{\alpha \uparrow A}^{\emptyset} .
$$

In other words, $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ is the set of $\left(\varphi\left(x_{A}\right)_{A}, \varphi\left(x_{\alpha \uparrow A}\right)_{\alpha \uparrow A}\right)$ where $x \in X_{\geq A}$. We may assume $x \in \bigoplus_{A^{\prime} \in W_{\alpha, \text { aff }}^{\prime} A} X_{A^{\prime}}^{\emptyset}$. Of course, we have to prove that this space does not depend on a choice of X. We use the following lemma.

Lemma 3.13. Let $X, Y \in \widetilde{\mathcal{K}}_{P}\left(S_{0}\right), f: X \rightarrow Y$ be a morphism, $A \in \mathcal{A}$ and $\alpha \in \Delta^{+}$. Assume that $x \in X_{\geq A}^{\emptyset}$ satisfies $x_{A^{\prime}}=0$ for $A^{\prime} \notin W_{\alpha, \text { aff }}^{\prime} A$.
(1) We have $f(x)_{A}=f\left(x_{A}\right)_{A}$ and $f(x)_{\alpha \uparrow A}=f\left(x_{\alpha \uparrow A}\right)_{\alpha \uparrow A}$.
(2) Let $g: Y \rightarrow Z$ be another morphism in $\widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$. Then, $g\left(f(x)_{A^{\prime}}\right)_{A^{\prime}}=g(f(x))_{A^{\prime}}$ for $A^{\prime} \in\{A, \alpha \uparrow A\}$

Proof. We prove (1). Let $A^{\prime \prime} \in \mathcal{A}$. Then $f(x)_{A^{\prime \prime}}=\sum_{A^{\prime} \in \mathcal{A}} f\left(x_{A^{\prime}}\right)_{A^{\prime \prime}}$. We have

- $x_{A^{\prime}}=0$ unless $A^{\prime} \geq A$ since $x \in X_{\geq A}$.
- $x_{A^{\prime}}=0$ unless $A^{\prime} \in W_{\alpha, \text { aff }}^{\prime} A$ from the condition on x.
- $f\left(x_{A^{\prime}}\right)_{A^{\prime \prime}}=0$ unless $A^{\prime \prime} \geq A^{\prime}$ from the definition of morphisms in $\widetilde{\mathcal{K}}_{P}\left(S_{0}\right)$.

Therefore, in the sum $\sum_{A^{\prime} \in \mathcal{A}} f\left(x_{A^{\prime}}\right)_{A^{\prime \prime}}$, we may assume A^{\prime} satisfies $A \leq A^{\prime} \leq A^{\prime \prime}, A^{\prime} \in$ $W_{\alpha, \text { aff }}^{\prime} A$. If $A^{\prime \prime}=A$, then $A \leq A^{\prime} \leq A^{\prime \prime}$, implying $A^{\prime}=A$. Hence, $f(x)_{A}=f\left(x_{A}\right)_{A}$. If $A^{\prime \prime}=\alpha \uparrow A$, we have $A \leq A^{\prime} \leq \alpha \uparrow A$ and $A^{\prime} \in W_{\alpha, \text { aff }}^{\prime} A$. Thus, we have $A^{\prime}=A$ or $\alpha \uparrow A$. However, by Remark 2.7, we have $f\left(x_{A}\right)_{\alpha \uparrow A}=0$. Hence, $f(x)_{\alpha \uparrow A}=f\left(x_{\alpha \uparrow A}\right)_{\alpha \uparrow A}$.

We prove (2). We have $f\left(x_{A^{\prime}}\right) \in \bigoplus_{A^{\prime \prime} \geq A^{\prime}} Y_{A^{\prime \prime}}^{\emptyset}$. Hence, $f\left(x_{A^{\prime}}\right)-f\left(x_{A^{\prime}}\right)_{A^{\prime}} \in \bigoplus_{A^{\prime \prime}>A^{\prime}} Y_{A^{\prime \prime}}^{\emptyset}$. Therefore, $g\left(f\left(x_{A^{\prime}}\right)\right)-g\left(f\left(x_{A^{\prime}}\right)_{A^{\prime}}\right) \in \bigoplus_{A^{\prime \prime}>A^{\prime}} Z_{A^{\prime \prime}}^{\emptyset}$. Hence, $g\left(f\left(x_{A^{\prime}}\right)\right)_{A^{\prime}}=g\left(f\left(x_{A^{\prime}}\right)_{A^{\prime}}\right)_{A^{\prime}}$. By (1), the right-hand side is $g\left(f(x)_{A^{\prime}}\right)_{A^{\prime}}$ and the left-hand side is $g\left(f\left(x_{A^{\prime}}\right)\right)_{A^{\prime}}=(g \circ$ $f)\left(x_{A^{\prime}}\right)_{A^{\prime}}=(g \circ f)(x)_{A^{\prime}}=g(f(x))_{A^{\prime}}$.

Let $\varphi^{\prime}: X^{\prime} \rightarrow M^{\alpha}$ be another isomorphism which satisfies the condition for X and set $\psi=\left(\varphi^{\prime}\right)^{-1} \circ \varphi$. For $A^{\prime} \in\{A, \alpha \uparrow A\}$, we have $\varphi\left(x_{A^{\prime}}\right)_{A^{\prime}}=\varphi(x)_{A^{\prime}}=\varphi^{\prime}(\psi(x))_{A^{\prime}}=$ $\varphi^{\prime}\left(\psi(x)_{A^{\prime}}\right)_{A^{\prime}}$. Hence, $\left(\varphi\left(x_{A}\right)_{A}, \varphi\left(x_{\alpha \uparrow A}\right)_{\alpha \uparrow A}\right)=\left(\varphi^{\prime}\left(\psi(x)_{A}\right)_{A}, \varphi^{\prime}\left(\psi(x)_{\alpha \uparrow A}\right)_{\alpha \uparrow A}\right)$. As ψ is a morphism, $\psi(x) \in X_{\geq A}^{\prime}$. Hence, the right-hand side is in $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ determined by X^{\prime}. Therefore, the space $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ determined by X is contained in the space $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ determined by X^{\prime}. By swapping X with X^{\prime}, we get the reverse inclusion and therefore, the space $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$ does not depend on the choice of X.
Let $f: M \rightarrow N$ be a morphism in $\mathcal{K}_{P}\left(S_{0}\right)$ and take a lift $\widetilde{f} \in \operatorname{Hom}_{\tilde{\mathcal{K}}_{P}\left(S_{0}\right)}(M, N)$ of f. Then, we have a homomorphism $\left(\mathcal{F}\left(S_{0}\right)(f)\right)(A): M_{A}^{\emptyset} \rightarrow N_{A}^{\emptyset}$ defined by $M_{A}^{\emptyset} \hookrightarrow$ $\bigoplus_{A^{\prime} \geq A} M_{A^{\prime}}^{\emptyset} \xrightarrow{\tilde{f}} \bigoplus_{A^{\prime} \geq A} N_{A^{\prime}}^{\emptyset} \rightarrow N_{A}^{\emptyset}$. In other words, we put $\left(\mathcal{F}\left(S_{0}\right)(f)\right)(A)(m)=\widetilde{f}(m)_{A}$. It is easy to see that this does not depend on a lift \widetilde{f}.
We prove that the collection $\left(\left(\mathcal{F}\left(S_{0}\right)(f)\right)(A)\right)_{A \in \mathcal{A}}$ preserves $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$. Take $X \in \widetilde{\mathcal{K}}_{P}\left(S_{0}^{\alpha}\right)$ and $\varphi: X \xrightarrow{\sim} M^{\alpha}$ as in the definition of $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$. We also take $\psi: Y \xrightarrow{\sim} N^{\alpha}$ where $Y \in \mathcal{K}_{P}\left(S_{0}^{\alpha}\right)$ satisfies $Y=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime}}\left(Y \cap \bigoplus_{A \in \Omega} Y_{A}^{\emptyset}\right)$. Let $\left(x_{1}, x_{2}\right) \in$ $\left(\mathcal{F}\left(S_{0}\right)(M)\right)(A, \alpha)$. There exists $x \in X_{\geq A}$ such that $\left(x_{1}, x_{2}\right)=\left(\varphi\left(x_{A}\right)_{A}, \varphi\left(x_{\alpha \uparrow A}\right)_{\alpha \uparrow A}\right)$.

We may assume $x \in \bigoplus_{A^{\prime} \in W_{\alpha, \text { aff }}^{\prime} A} X_{A^{\prime}}^{\emptyset}$. We put $\widetilde{g}=\psi^{-1} \circ \widetilde{f}$. Then, $\left(\mathcal{F}\left(S_{0}\right)(f)\right)(A)\left(x_{1}\right)=$ $\widetilde{f}\left(\varphi\left(x_{A}\right)_{A}\right)_{A}=\psi\left(\widetilde{g}\left(\varphi\left(x_{A}\right)_{A}\right)\right)_{A}$. By Lemma $3.13(2)$ to $\varphi\left(x_{A}\right)_{A}$, we have $\psi\left(\widetilde{g}\left(\varphi\left(x_{A}\right)_{A}\right)\right)_{A}=$ $\psi\left(\widetilde{g}\left(\varphi\left(x_{A}\right)_{A}\right)_{A}\right)_{A}$ and again by Lemma 3.13 (1), (2), this is equal to $\psi\left(\widetilde{g}(\varphi(x))_{A}\right)_{A}$. Similarly, we have $\left(\mathcal{F}\left(S_{0}\right)(f)\right)(\alpha \uparrow A)\left(x_{2}\right)=\psi\left(\widetilde{g}(\varphi(x))_{\alpha \uparrow A}\right)_{\alpha \uparrow A}$. Since the element $\left(\psi\left(\widetilde{g}(\varphi(x))_{A}\right)_{A}, \psi\left(\widetilde{g}(\varphi(x))_{\alpha \uparrow A}\right)_{\alpha \uparrow A}\right)$ is the image of $\widetilde{g}(\varphi(x)) \in Y_{\geq A}$ under $Y_{\geq A} \rightarrow$ $Y_{A}^{\emptyset} \oplus Y_{\alpha \uparrow A}^{\emptyset} \simeq N_{A}^{\emptyset} \oplus N_{\alpha \uparrow A}^{\emptyset}$, it is in $\left(\mathcal{F}\left(S_{0}\right)(N)\right)(A, \alpha)$. Hence, we have proved that the collection $\left(\left(\mathcal{F}\left(S_{0}\right)(f)\right)(A)\right)_{A \in \mathcal{A}}$ defines a morphism $\mathcal{F}\left(S_{0}\right)(M) \rightarrow \mathcal{F}\left(S_{0}\right)(N)$. Hence, $\mathcal{F}\left(S_{0}\right)$ is a functor.

Put $\mathcal{F}=\mathcal{F}(S)$ and $\mathcal{F}^{*}=\mathcal{F}\left(S^{*}\right)$ for $* \in\{\emptyset\} \cup \Delta$.
Proposition 3.14. We have $\mathcal{F}\left(M * B_{s}\right) \simeq \vartheta_{s}(\mathcal{F}(M))$.
Proof. Before giving a proof, we give some notation. Fix $\alpha \in \Delta$ and $M \in \mathcal{K}\left(S_{0}\right)$. Put $M^{(\Omega)}=M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}$ for $\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}$. Then, if $M^{\alpha}=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}\right)$, then $(\mathcal{F}(M))(A, \alpha)$ is the image of $M^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}$ in $M_{A}^{\emptyset} \oplus M_{\alpha \uparrow A}^{\emptyset}$. As $\operatorname{supp} M^{\left(W_{\alpha, a f f}^{\prime} A\right)} \subset$ $W_{\alpha, \text { aff }}^{\prime} A$ and $W_{\alpha, \text { aff }}^{\prime} \cap[A, \alpha \uparrow A]=\{A, \alpha \uparrow A\}$, we have $(\mathcal{F}(M))(A, \alpha) \simeq M_{[A, \alpha \uparrow A]}^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}$.

Take $\delta_{s} \in \Lambda_{\mathbb{K}}^{\vee}$ such that $\left\langle\alpha_{s}, \delta_{s}\right\rangle=1$ and put $b_{e}=\left(\alpha_{s}^{\vee}\right)^{-1}\left(\delta_{s} \otimes 1-1 \otimes s\left(\delta_{s}\right)\right)$ and $b_{s}=$ $\left(\alpha_{s}^{\vee}\right)^{-1}\left(\delta_{s} \otimes 1-1 \otimes \delta_{s}\right)$. Note that this does not depend on a choice of δ_{s}. We fix $\left(B_{s}\right)_{e}^{\emptyset} \simeq R^{\emptyset}$ and $\left(B_{s}\right)_{s}^{\emptyset} \simeq R^{\emptyset}$ as

$$
\begin{aligned}
& R^{\emptyset} \ni 1 \mapsto b_{e} \in\left(B_{s}\right)_{e}^{\emptyset}, \\
& R^{\emptyset} \ni 1 \mapsto b_{s} \in\left(B_{s}\right)_{s}^{\emptyset} .
\end{aligned}
$$

We have $\left(M * B_{s}\right)_{A}^{\emptyset}=M_{A}^{\emptyset} \otimes\left(B_{s}\right)_{e}^{\emptyset} \oplus M_{A s}^{\emptyset} \otimes\left(B_{s}\right)_{s}^{\emptyset} \simeq M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset}=\vartheta_{s}(\mathcal{F}(M))(A)$. Here, we use the above fixed isomorphisms. We check $\mathcal{F}\left(M * B_{s}\right)(A, \alpha) \simeq \vartheta_{s}(\mathcal{F}(M))(A, \alpha)$ under this isomorphism. We may assume $M^{\alpha}=\bigoplus_{\Omega \in W_{\alpha, \text { aff }}^{\prime} \backslash \mathcal{A}}\left(M^{\alpha} \cap \bigoplus_{A \in \Omega} M_{A}^{\emptyset}\right)$.

First, we assume that $A s \notin W_{\alpha, \text { aff }}^{\prime} A$. Then, we have $\left(M * B_{s}\right)^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}=M^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)} \otimes$ $b_{e} \oplus M^{\left(W_{\alpha, \text { aff }}^{\prime} A s\right)} \otimes b_{s}$ by Lemma 2.23. As $b_{e} \in\left(B_{s}\right)_{e}^{\emptyset}\left(\right.$ resp. $\left.b_{s} \in\left(B_{s}\right)_{s}^{\emptyset}\right)$ and $[A, \alpha \uparrow A] s \cap$ $W_{\alpha, \text { aff }}^{\prime} A s=[A s, \alpha \uparrow A s] \cap W_{\alpha, \text { aff }}^{\prime} A s$, we have

$$
\left(M * B_{s}\right)_{[A, \alpha \uparrow A]}^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}=M_{[A, \alpha \uparrow A]}^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)} \otimes b_{e} \oplus M_{[A s, \alpha \uparrow A s]}^{\left(W_{\alpha, \text { aff }}^{\prime} A s\right)} \otimes b_{s}
$$

Therefore, $\mathcal{F}\left(M * B_{s}\right)(A, \alpha)=\mathcal{F}(M)(A, \alpha) \oplus \mathcal{F}(M)(A s, \alpha)=\vartheta_{s}(\mathcal{F}(M))(A, \alpha)$.
Next, assume that $A s=\alpha \uparrow A$. Then, we have $[A, \alpha \uparrow A]=[A, A s]=\{A, A s\}$. Hence, $\mathcal{F}\left(M * B_{s}\right)(A, \alpha)=\left(M * B_{s}\right)_{\{A, A s\}}^{\alpha}$. Since $[A, A s]=\{A, A s\}$ is s-invariant, by Lemma 2.25, we have $\left(M * B_{s}\right)_{[A, A s]}^{\alpha} \simeq M_{[A, A s]}^{\alpha} \otimes_{R} B_{s}=\mathcal{F}(M)(A, \alpha) \otimes_{R} B_{s}$. Our claim is that the image of $M_{\{A, A s\}}^{\alpha} \otimes_{R} B_{s}$ in $\left(M_{\{A, A s\}} * B_{s}\right)^{\emptyset} \simeq\left(M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset}\right) \oplus\left(M_{A s}^{\emptyset} \oplus M_{A}^{\emptyset}\right)$ is equal to $\{(x, y) \in$ $\left.M_{\{A, A s\}}^{\alpha} \mid x-y \in \alpha^{\vee} M_{\{A, A s\}}^{\alpha}\right\}$. We write the image of $m \in M$ in $M_{A^{\prime}}^{\emptyset}$ by $m_{A^{\prime}}$ for $A^{\prime} \in \mathcal{A}$. We have $M_{\{A, A s\}}^{\alpha} \otimes_{R} B_{s}=M_{\{A, A s\}}^{\alpha} \otimes_{R^{s}} R$ and the image of $m_{1} \otimes 1+m_{2} \otimes \delta_{s} \in M_{\{A, A s\}}^{\alpha} \otimes_{R^{s}} R$ in $\left(M_{A}^{\emptyset} \oplus M_{A s}^{\emptyset}\right) \oplus\left(M_{A s}^{\emptyset} \oplus M_{A}^{\emptyset}\right)$ is

$$
\left(\left(m_{1, A}+\delta_{s}^{A} m_{2, A}, m_{1, A s}+\delta_{s}^{A} m_{2, A s}\right),\left(m_{1, A s}+s\left(\delta_{s}\right)^{A} m_{2, A s}, m_{1, A}+s\left(\delta_{s}\right)^{A} m_{1, A}\right)\right)
$$

Therefore, we have

$$
\begin{aligned}
\left(m_{1, A}+\delta_{s}^{A} m_{2, A}, m_{1, A s}+\delta_{s}^{A} m_{2, A s}\right)-\left(m_{1, A}+s\left(\delta_{s}\right)^{A} m_{2, A}, m_{1, A s}\right. & \left.+s\left(\delta_{s}\right)^{A} m_{2, A s}\right) \\
& =\left(\alpha_{s}^{\vee}\right)^{A}\left(m_{2, A}, m_{2, A s}\right)
\end{aligned}
$$

which is in $\alpha^{\vee} M_{\{A, A s\}}^{\alpha}$ since $\left(\alpha_{s}^{\vee}\right)^{A} \in\{ \pm 1\} \alpha^{\vee}$. From this formula it is easy to see the reverse inclusion.
Finally, we assume that $A s=\alpha \downarrow A$. Note that $A s<A<\alpha \uparrow A<(\alpha \uparrow A) s$. Put $N=$ $M^{\left(W_{\alpha, \text { aff }}^{\prime} A\right)}$. We have $\mathcal{F}\left(N * B_{s}\right)(A, \alpha) \subset \mathcal{F}\left(N * B_{s}\right)(A) \oplus \mathcal{F}\left(N * B_{s}\right)(\alpha \uparrow A)=\left(N_{A s}^{\emptyset} \oplus N_{A}^{\emptyset}\right) \oplus$ $\left(N_{\alpha \uparrow A}^{\emptyset} \oplus N_{(\alpha \uparrow A) s}^{\emptyset}\right)$. We describe the image of $\left(N * B_{s}\right)_{[A, \alpha \uparrow A]}$ in $\left(N_{A s}^{\emptyset} \oplus N_{A}^{\emptyset}\right) \oplus\left(N_{\alpha \uparrow A}^{\emptyset} \oplus\right.$ $\left.N_{(\alpha \uparrow A) s}^{\emptyset}\right)$, or equivalently the image of $\left(N * B_{s}\right)_{I}$ where $I=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A s\right\} \backslash\{A s\}$.

Set $I^{\prime}=\left\{A^{\prime} \in \mathcal{A} \mid A^{\prime} \geq A s\right\}$. Then, $I^{\prime} \supset I$ and I^{\prime} is s-invariant. Hence, $\left(N * B_{s}\right)_{I^{\prime}}=$ $N_{I^{\prime}} \otimes B_{s}=N_{I^{\prime}} \otimes_{R^{s}} R$ by Lemma 2.25. Consider the projection $\left(N * B_{s}\right)_{I^{\prime}} \rightarrow\left(N * B_{s}\right)_{A s} \oplus$ $\left(N * B_{s}\right)_{A} \oplus\left(N * B_{s}\right)_{\alpha \uparrow A}=\left(N_{A s}^{\emptyset} \oplus N_{A}^{\emptyset}\right) \oplus\left(N_{A}^{\emptyset} \oplus N_{A s}^{\emptyset}\right) \oplus\left(N_{\alpha \uparrow A}^{\emptyset} \oplus N_{(\alpha \uparrow A) s}^{\emptyset}\right)$. This is given by

$$
N_{I^{\prime}} \otimes_{R^{s}} R \longrightarrow\left(N_{A s}^{\emptyset} \oplus N_{A}^{\emptyset}\right) \oplus\left(N_{A}^{\emptyset} \oplus N_{A s}^{\emptyset}\right) \oplus\left(N_{\alpha \uparrow A}^{\emptyset} \oplus N_{(\alpha \uparrow A) s}^{\emptyset}\right)
$$

Ψ
Ψ

$$
m \otimes f \longmapsto\left(\left(m_{A s} f, m_{A} s(f)\right),\left(m_{A} f, m_{A s} s(f)\right),\left(m_{\alpha \uparrow A} f, m_{(\alpha \uparrow A) s} s(f)\right)\right) .
$$

Any element in $N_{I^{\prime}} \otimes_{R^{s}} R$ is written as $m_{1} \otimes 1+m_{2} \otimes \delta_{s}$ for $m_{1}, m_{2} \in N_{I^{\prime}}$. It is in $\left(N * B_{s}\right)_{I}$ if and only the projection to $\left(N * B_{s}\right)_{A s}^{\emptyset} \simeq N_{A s}^{\emptyset} \oplus N_{A}^{\emptyset}$ is zero. This projection is given by ($\left.m_{1, A s}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2, A s}, m_{1, A}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2, A}\right)$. Hence, it is sufficient to prove that the image of

$$
\left\{m_{1} \otimes 1+m_{2} \otimes \delta_{s} \in N_{I^{\prime}} \otimes_{R^{s}} R \mid\left(m_{1}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2}\right)_{A^{\prime}}=0 \text { for } A^{\prime}=A, A s\right\}
$$

in $\left(N * B_{s}\right)_{A}^{\emptyset} \oplus\left(N * B_{s}\right)_{\alpha \uparrow A}^{\emptyset}=N_{A}^{\emptyset} \oplus N_{A s}^{\emptyset} \oplus N_{\alpha \uparrow A}^{\emptyset} \oplus N_{(\alpha \uparrow A) s}^{\emptyset}$ is $\alpha^{\vee} N_{[A s, A]} \oplus N_{[\alpha \uparrow A,(\alpha \uparrow A) s]}$ (note that $A=\alpha \uparrow(A s)$ and $(\alpha \uparrow A) s=\alpha \uparrow(\alpha \uparrow A)$).

The image of $m_{1} \otimes 1+m_{2} \otimes \delta_{s}$ in $N_{A}^{\emptyset} \oplus N_{A s}^{\emptyset} \oplus N_{\alpha \uparrow A}^{\emptyset} \oplus N_{(\alpha \uparrow A) s}^{\emptyset}$ is given by

$$
\left(m_{1, A}+\delta_{s}^{A} m_{2, A}, m_{1, A s}+\delta_{s}^{A} m_{2, A s}, m_{1, \alpha \uparrow A}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2, \alpha \uparrow A}, m_{1,(\alpha \uparrow A) s}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2,(\alpha \uparrow A) s}\right) .
$$

Define $\varepsilon \in\{ \pm 1\}$ by $\alpha_{s}^{A}=\varepsilon \alpha$. Since $m_{1, A}+s_{\alpha}\left(\delta_{s}^{A}\right) m_{2, A}=0$, we have $m_{1, A}+\delta_{s}^{A} m_{2, A}=$ $\left(\delta_{s}^{A}-s_{\alpha}\left(\delta_{s}^{A}\right)\right) m_{2, A}=\varepsilon \alpha^{\vee} m_{2, A}$. By the same argument, we have $m_{1, A s}+\delta_{s}^{A} m_{2, A s}=$ $\varepsilon \alpha^{\vee} m_{2, A s}$. Therefore, $\left(m_{1, A}+\delta_{s}^{A} m_{2, A}, m_{1, A s}+\delta_{s}^{A} m_{2, A s}\right)=\alpha^{\vee}\left(\varepsilon m_{2, A}, \varepsilon m_{2, A s}\right) \in \alpha^{\vee} N_{[A, A s]}^{\emptyset}$. Therefore, the image is in $\alpha^{\vee} N_{[A s, A]} \oplus N_{[\alpha \uparrow A,(\alpha \uparrow A) s]}$.

However, let $m_{1}^{\prime} \in N_{[A s, A]}$ and $m_{2}^{\prime} \in N_{[\alpha \uparrow A,(\alpha \uparrow A) s]}$. Take a lift $m_{1} \in N_{I^{\prime}}$ (resp. $m_{2} \in$ $M_{I^{\prime \prime}}$) of m_{1}^{\prime} (resp. m_{2}^{\prime}) where $I^{\prime \prime}=\left\{A^{\prime} \in A \mid A^{\prime} \geq \alpha \uparrow A\right\}$. Put $n=m_{2} \otimes 1+\varepsilon\left(m_{1} \otimes \delta_{s}-\right.$ $\left.\left(s\left(\delta_{s}\right)\right)^{A} m_{1} \otimes 1\right)$. Then, since $m_{2} \in M_{I^{\prime \prime}}, m_{2, A}=0, m_{2, A s}=0$. Now it is straightforward to see $n \in\left(M * B_{s}\right)_{I}$ and the image of n is $\left(\alpha^{\vee} m_{1, A}^{\prime}, \alpha^{\vee} m_{1, A s}^{\prime}, m_{2, \alpha \uparrow A}^{\prime}, m_{2,(\alpha \uparrow A) s}^{\prime}\right)$. We get the proposition.

3.5. Some calculations of homomorphisms

Assume that \mathbb{K} is a complete local Noetherian integral domain. In this subsection, we fix a flat commutative graded S-algebra S_{0}. We define some morphisms as follows. These will be used only in this subsection. Let $A \in \mathcal{A}$ and $\alpha \in \Delta^{+}$.

$$
\begin{gathered}
i_{0}: Q_{A, \alpha} \rightarrow Q_{A, \alpha} \quad(f, g) \mapsto\left(0, \alpha^{\vee} g\right), \\
i_{0}^{+}: Q_{A, \alpha} \rightarrow Q_{\alpha \uparrow A, \alpha} \quad(f, g) \mapsto(g, f), \\
i_{0}^{-}: Q_{A, \alpha} \rightarrow Q_{\alpha \downarrow A, \alpha} \quad(f, g) \mapsto\left(0, \alpha^{\vee} f\right) .
\end{gathered}
$$

It is straightforward to see that these are morphisms in $\widetilde{\mathcal{K}}$. We use the same letter for the images of these morphisms in \mathcal{K}.

Lemma 3.15. We have $\operatorname{End}_{\mathcal{K}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S} Q_{A, \alpha}\right)=\operatorname{End}_{\tilde{\mathcal{K}}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S} Q_{A, \alpha}\right)=S_{0} \operatorname{id} \oplus S_{0} i_{0}$.
Proof. Put $M=S_{0} \otimes_{S} Q_{A, \alpha}$. Note that $\operatorname{supp}_{\mathcal{A}}(M)=\{A, \alpha \uparrow A\}$. Let $\varphi \in \operatorname{End}_{\tilde{\mathcal{K}}\left(S_{0}\right)}\left(S_{0} \otimes_{S}\right.$ $\left.Q_{A, \alpha}\right)$. We have $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta} M_{A^{\prime}}^{\emptyset}=M_{A}^{\emptyset}$. By the same argument, we also have $\varphi\left(M_{\alpha \uparrow A}^{\emptyset}\right) \subset M_{\alpha \uparrow A}^{\emptyset}$. Therefore, φ preserves $M_{A^{\prime}}^{\emptyset}$ for any $A^{\prime} \in \mathcal{A}$. Hence, we get the first equality of the lemma.

We prove $\varphi \in S_{0} \mathrm{id}+S_{0} i_{0}$. Since φ preserves $M_{A^{\prime}}^{\emptyset}$, we have $\varphi(f, g)=\left(\varphi_{1}(f), \varphi_{2}(g)\right)$ for some $\varphi_{1}, \varphi_{2}: S_{0}^{\emptyset} \rightarrow S_{0}^{\emptyset}$. Restricting to $\{(f, g) \in M \mid g=0\}=\alpha^{\vee} S_{0} \oplus 0, \varphi_{1}$ sends $\alpha^{\vee} S_{0}$ to $\alpha^{\vee} S_{0}$. Therefore, it is given by $\varphi_{1}(f)=c f$ for some $c \in S_{0}$. Replacing φ with $\varphi-c \mathrm{id}$, we may assume $\varphi_{1}=0$. The image of φ is contained in $\{(f, g) \in M \mid f=0\}=0 \oplus \alpha^{\vee} S_{0}$. Hence, $\varphi_{2}(g)=\alpha^{\vee} d g$ for some $d \in S_{0}$ and we have $\varphi=d i_{0}$.

Lemma 3.16. We have $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}\left(S_{0} \otimes_{S} Q_{A, \alpha}, S_{0} \otimes_{S} Q_{\alpha \uparrow A, \alpha}\right)=S_{0} i_{0}^{+}$.
Proof. Let $\varphi: S_{0} \otimes_{S} Q_{A, \alpha} \rightarrow S_{0} \otimes_{S} Q_{\alpha \uparrow A, \alpha}$ be a morphism in $\widetilde{\mathcal{K}}\left(S_{0}\right)$. By a similar argument of the proof of Lemma 3.15, φ is given by $\varphi(f, g)=\left(\varphi_{1}(g), \varphi_{2}(f)\right)$ for $\varphi_{i}: S_{0}^{\emptyset} \rightarrow$ S_{0}^{\emptyset} such that $\varphi_{i}\left(\alpha^{\vee} S_{0}\right) \subset \alpha^{\vee} S_{0}$ for $i=1,2$. Hence, $\varphi_{1}(f)=c f$ for some $c \in S_{0}$. It is clear that $\varphi-c i_{0}^{+}$is zero as a morphism in $\mathcal{K}\left(S_{0}\right)$. Hence, we get the lemma.

Lemma 3.17. We have $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S} Q_{A, \alpha}, S_{0} \otimes_{S} Q_{\alpha \downarrow A, \alpha}\right)=S_{0} i_{0}^{-}$.
Proof. Set $M=S_{0} \otimes_{S} Q_{A, \alpha}$ and $N=S_{0} \otimes_{S} Q_{\alpha \downarrow A, \alpha}$ and let $\varphi: M \rightarrow N$ be a morphism in $\widetilde{\mathcal{K}}\left(S_{0}\right)$. We have $\varphi\left(M_{\alpha \uparrow A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \geq \alpha \uparrow A} N_{A^{\prime}}^{\emptyset}=0$ and $\varphi\left(M_{A}^{\emptyset}\right) \subset \bigoplus_{A^{\prime} \in A+\mathbb{Z} \Delta} N_{A^{\prime}}^{\emptyset}=N_{A}^{\emptyset}$. Hence $\varphi(f, g)=\left(0, \varphi_{1}(f)\right)$ for some $\varphi_{1}: \bar{S}_{0}^{\emptyset} \rightarrow S_{0}^{\emptyset}$. For any $f \in S_{0}$ we have $\varphi(f, f)=\left(0, \varphi_{1}(f)\right) \in N$. Hence, $\varphi_{1}(f) \in \alpha^{\vee} S_{0}$. Therefore, $\varphi_{1}(f)=c \alpha^{\vee} f$ for some $c \in S_{0}$. Hence, $\varphi=c i_{0}^{-}$.

Lemma 3.18. If $A_{1} \neq \alpha \downarrow A_{2}, A_{2}, \alpha \uparrow A_{2}$, then $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}\left(Q_{A_{1}, \alpha}, Q_{A_{2}, \alpha}\right)=0$.
Proof. It follows from $\operatorname{supp}_{\mathcal{A}}\left(Q_{A_{1}, \alpha}\right) \cap \operatorname{supp}_{\mathcal{A}}\left(Q_{A_{2}, \alpha}\right)=\emptyset$.

Next, we calculate homomorphisms in $\mathcal{K}_{\text {AJS }}$. Set $\mathcal{Q}_{A, \alpha}=\mathcal{F}\left(Q_{A, \alpha}\right)$.

Lemma 3.19. The object $\mathcal{Q}_{A, \alpha}$ is given by

$$
\begin{gathered}
\mathcal{Q}_{A, \alpha}\left(A^{\prime}\right)= \begin{cases}S^{\emptyset} & \left(A^{\prime}=A, \alpha \uparrow A\right), \\
0 & (\text { otherwise }),\end{cases} \\
\mathcal{Q}_{A, \alpha}\left(A^{\prime}, \beta\right)= \begin{cases}S^{\beta} \oplus 0 & \left(A^{\prime}=A, \alpha \uparrow A, \beta \neq \alpha\right), \\
0 \oplus S^{\beta} & \left(\beta \uparrow A^{\prime}=A, \alpha \uparrow A, \beta \neq \alpha\right), \\
\alpha^{\vee} S^{\alpha} \oplus 0 & \left(A^{\prime}=\alpha \uparrow A, \beta=\alpha\right), \\
\left\{(f, g) \in\left(S^{\alpha}\right)^{2} \mid f \equiv g\right. & \left.\left(\bmod \alpha^{\vee}\right)\right\} \\
0 \oplus S^{\alpha} & \left(A^{\prime}=A, \beta=\alpha\right), \\
0 & \left(A^{\prime}=\alpha \downarrow A, \beta=\alpha\right),\end{cases} \\
\text { (otherwise). }
\end{gathered}
$$

Proof. The formula of $\mathcal{Q}_{A, \alpha}(A)$ is obvious. If $\beta \neq \alpha$, then $S^{\beta} \otimes_{S} Q_{A, \alpha}=S^{\beta} \oplus S^{\beta}$. Hence, the formula of $\mathcal{Q}_{A, \alpha}\left(A^{\prime}, \beta\right)$ with $\beta \neq \alpha$ follows. The other formulas follow from a direct calculation.

Set $\iota_{0}=\mathcal{F}\left(i_{0}\right), \iota_{0}^{+}=\mathcal{F}\left(i_{0}^{+}\right), \iota_{0}^{-}=\mathcal{F}\left(i_{0}^{-}\right)$. These morphisms are described as follows.

$$
\begin{gathered}
\iota_{0}: \mathcal{Q}_{A, \alpha} \rightarrow \mathcal{Q}_{A, \alpha} \quad\left(\iota_{0}\right)_{A}=0,\left(\iota_{0}\right)_{\alpha \uparrow A}=\alpha \mathrm{id}, \\
\iota_{0}^{+}: \mathcal{Q}_{A, \alpha} \rightarrow \mathcal{Q}_{\alpha \uparrow A, \alpha} \quad\left(\iota_{0}^{+}\right)_{A}=0,\left(\iota_{0}^{+}\right)_{\alpha \uparrow A}=\mathrm{id}, \\
\iota_{0}^{-}: \mathcal{Q}_{A, \alpha} \rightarrow \mathcal{Q}_{\alpha \downarrow A, \alpha} \quad\left(\iota_{0}^{-}\right)_{A}=\alpha \mathrm{id},\left(\iota_{0}^{-}\right)_{\alpha \uparrow A}=0 .
\end{gathered}
$$

Lemma 3.20. We have $\operatorname{End}_{\mathcal{K}_{\text {AJS }\left(S_{0}\right)}}\left(S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}\right)=S_{0} \mathrm{id} \oplus S_{0} \iota_{0}$.
Proof. Set $\mathcal{M}=S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}$ and let $\varphi: \mathcal{M} \rightarrow \mathcal{M}$ be a morphism. Since $\mathcal{M}\left(A^{\prime}\right)=0$ for $A^{\prime} \neq A, \alpha \uparrow A$, we have $\varphi_{A^{\prime}}=0$ for such A^{\prime}. The morphism φ preserves $\mathcal{M}(\beta \downarrow A, \beta)=0 \oplus S_{0}^{\beta}$ for any $\beta \in \Delta^{+}$. Hence, $\varphi_{A}\left(S_{0}^{\beta}\right) \subset S_{0}^{\beta}$. Therefore, $\varphi_{A}\left(S_{0}\right) \subset S_{0}$ and hence, $\varphi_{A}=c$ id for some $c \in S_{0}$. We also have $\varphi_{\alpha \uparrow A}=d \mathrm{id}$ for some $d \in S_{0}$.
We prove $\varphi \in S_{0} \mathrm{id}+S_{0} \iota_{0}$. By replacing φ with $\varphi-c \mathrm{id}$, we may assume $\varphi_{A}=0$. We have $\left(\varphi_{A}(f), \varphi_{\alpha \uparrow A}(g)\right) \in \mathcal{M}(A, \alpha)$ for any $(f, g) \in \mathcal{M}(A, \alpha)$. Since $\varphi_{A}(f)=0$, we have $\varphi_{\alpha \uparrow A}(g) \in \alpha^{\vee} S_{0}^{\alpha}$. Therefore, $d \in \alpha^{\vee} S_{0}^{\alpha} \cap S_{0}=\alpha^{\vee} S_{0}$. We have $\varphi=\left(d / \alpha^{\vee}\right) \iota_{0}$.

Lemma 3.21. We have $\operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)}\left(S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}, S_{0} \otimes_{S} \mathcal{Q}_{\alpha \uparrow A, \alpha}\right)=S_{0} \iota_{0}^{+}$.
Proof. Set $\mathcal{M}=S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}$ and $\mathcal{N}=S_{0} \otimes_{S} \mathcal{Q}_{\alpha \uparrow A, \alpha}$. Let $\varphi: \mathcal{M} \rightarrow \mathcal{N}$ be a morphism. Then, $\varphi_{A^{\prime}}=0$ for $A^{\prime} \neq \alpha \uparrow A$. For $\beta \in \Delta^{+} \backslash\{\alpha\}$, since φ sends $\mathcal{M}(\alpha \uparrow A, \beta)=S_{0}^{\beta} \oplus 0$ to $\mathcal{N}(\alpha \uparrow A, \beta)=S_{0}^{\beta} \oplus 0$, we have $\varphi_{\alpha \uparrow A}\left(S_{0}^{\beta}\right) \subset S_{0}^{\beta}$. Since φ sends $\mathcal{M}(A, \alpha)$ to $\mathcal{N}(A, \alpha)=0 \oplus S^{\alpha}$, $\varphi_{\alpha \uparrow A}\left(S^{\alpha}\right) \subset S^{\alpha}$. Hence, $\varphi_{\alpha \uparrow A} \in S_{0}$ id and we get the lemma.

Lemma 3.22. We have $\operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}}\left(S_{0}\right)}\left(S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}, S_{0} \otimes_{S} \mathcal{Q}_{\alpha \downarrow A, \alpha}\right)=S_{0} i_{0}^{-}$.
Proof. Set $\mathcal{M}=S_{0} \otimes_{S} \mathcal{Q}_{A, \alpha}$ and $\mathcal{N}=S_{0} \otimes_{S} \mathcal{Q}_{\alpha \downarrow A, \alpha}$. Let $\varphi: \mathcal{M} \rightarrow \mathcal{N}$ be a morphism. Then, $\varphi_{A^{\prime}}=0$ for $A^{\prime} \neq A$. For $\beta \in \Delta^{+} \backslash\{\alpha\}, \varphi$ sends $\mathcal{M}(A, \beta)=0 \oplus S_{0}^{\beta}$ to $\mathcal{N}(A, \beta)=S_{0}^{\beta} \oplus 0$. Hence, $\varphi_{A}\left(S_{0}^{\beta}\right) \subset S_{0}^{\beta}$. The morphism φ sends $\mathcal{M}(A, \alpha)$ to $\mathcal{N}(A, \alpha)=\alpha^{\vee} S^{\alpha} \oplus 0$. Hence, $\varphi_{A}\left(S_{0}^{\alpha}\right) \subset \alpha^{\vee} S_{0}^{\alpha}$. Therefore, $\varphi_{A} \in \alpha^{\vee} S_{0}$ id and we get the lemma.

Lemma 3.23. If $A_{1} \neq \alpha \downarrow A_{2}, A_{2}, \alpha \uparrow A_{2}$, then $\operatorname{Hom}_{\mathcal{K}_{\text {AJS }}\left(S_{0}\right)}\left(\mathcal{Q}_{A_{1}, \alpha}, \mathcal{Q}_{A_{2}, \alpha}\right)=0$.

Proof. It follows from there is no A such that $\mathcal{Q}_{A_{1}, \alpha}(A) \neq 0$ and $\mathcal{Q}_{A_{2}, \alpha}(A) \neq 0$.
Summarizing the calculations in this subsection, we get the following.
Lemma 3.24. The functor $\mathcal{F}^{\alpha}=\mathcal{F}\left(S^{\alpha}\right)$ induces an isomorphism $\operatorname{Hom}_{\mathcal{K}\left(S_{0}\right)}^{\bullet}\left(S_{0} \otimes_{S}\right.$ $\left.Q_{A_{1}, \alpha}, S_{0} \otimes_{S} Q_{A_{2}, \alpha}\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{K}_{\text {AJS }}\left(S_{0}\right)}\left(S_{0} \otimes_{S} \mathcal{F}^{\alpha}\left(Q_{A_{1}, \alpha}\right), S_{0} \otimes_{S} \mathcal{F}^{\alpha}\left(Q_{A_{2}, \alpha}\right)\right)$.

3.6. Equivalence

Assume that \mathbb{K} is a complete local Noetherian integral domain.
Lemma 3.25. The functor $\mathcal{F}^{\alpha}: \mathcal{K}_{P}^{\alpha} \rightarrow \mathcal{K}_{\text {AJS }}^{\alpha}$ is fully faithful for $\alpha \in \Delta$.
Proof. By Corollary 3.8 and Proposition 3.12, we may assume $M=Q_{A_{1}, \alpha}^{\alpha}$ and $N=Q_{A_{2}, \alpha}^{\alpha}$, where $A_{1}, A_{2} \in \mathcal{A}$. Hence, the lemma follows from Lemma 3.24.

Proposition 3.26. The functor $\mathcal{F}: \mathcal{K}_{P} \rightarrow \mathcal{K}_{\mathrm{AJS}}$ is fully faithful.
Proof. Let $M, N \in \mathcal{K}_{P}$ and we prove that $\mathcal{F}: \operatorname{Hom}_{\mathcal{K}_{P}}^{\bullet}(M, N) \rightarrow \operatorname{Hom}_{\mathcal{K}_{\text {AJS }}}(\mathcal{F}(M), \mathcal{F}(N))$ is an isomorphism. By the diagram

\mathcal{F} is injective (the injectivity of two morphisms in the above diagram follows from the definitions).

We prove that \mathcal{F} is surjective. For $\nu \in X_{\mathbb{K}}$, let $S_{(\nu)}$ be the localization at the prime ideal $(\nu) \subset S$. Since $\operatorname{Hom}_{\mathcal{K}_{P}}(M, N)$ is graded free, we have $\operatorname{Im}(\mathcal{F})=$ $\bigcap_{\nu \in X_{\mathrm{K}}} S_{(\nu)} \otimes_{S} \operatorname{Im}(\mathcal{F})$. By Corollary 3.8, we have $S_{(\nu)} \otimes_{S} \operatorname{Im}(\mathcal{F})=\operatorname{Im}\left(\mathcal{F}\left(S_{(\nu)}\right)\right)$. Since any $S_{(\nu)}$ is an S^{α}-algebra for some $\alpha \in \Delta$, by Proposition 3.26, we have $\operatorname{Im}\left(\mathcal{F}\left(S_{(\nu)}\right)\right)=\operatorname{Hom}_{\mathcal{K}_{\text {AJS }}\left(S_{(\nu)}\right)}\left(\mathcal{F}\left(S_{(\nu)}\right)\left(S_{(\nu)} \otimes_{S} M\right), \mathcal{F}\left(S_{(\nu)}\right)\left(S_{(\nu)} \otimes_{S} N\right)\right)$. Therefore, \mathcal{F} is surjective since $\bigcap_{\nu \in X_{\mathrm{K}}} \operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}}\left(S_{(\nu)}\right)}\left(\mathcal{F}\left(S_{(\nu)}\right)\left(S_{(\nu)} \otimes_{S} M\right), \mathcal{F}\left(S_{(\nu)}\right)\left(S_{(\nu)} \otimes_{S} N\right)\right) \supset$ $\operatorname{Hom}_{\mathcal{K}_{\text {AJS }}}(\mathcal{F}(M), \mathcal{F}(N))$.

Set $\mathcal{Q}_{\lambda}=\mathcal{F}\left(Q_{\lambda}\right)$. Let $\mathcal{K}_{\mathrm{AJS}, P}$ be the full subcategory of $\mathcal{K}_{\text {AJS }}$ consisting of direct summands of direct sums of objects of a form $\left(\vartheta_{s_{1}} \circ \cdots \circ \vartheta_{s_{l}}\right)\left(\mathcal{Q}_{\lambda}\right)(n)$ for $s_{1}, \ldots, s_{l} \in S_{\text {aff }}$, $\lambda \in(\mathbb{R} \Delta)_{\text {int }}$ and $n \in \mathbb{Z}$. By Proposition 3.14 and 3.26, we get the following theorem.

Theorem 3.27. We have $\mathcal{K}_{P} \simeq \mathcal{K}_{\mathrm{AJS}, P}$. In particular, the category $\mathcal{S B i m o d}$ acts on $\mathcal{K}_{\text {AJS }, P}$.

3.7. Representation Theory

In this subsection, we assume that \mathbb{K} is an algebraically closed field of $p>h$, where h is the Coxeter number. Let G be a connected reductive group over \mathbb{K} and T a maximal torus of G with the root datum $\left(X, \Delta, X^{\vee}, \Delta^{\vee}\right)$. The Lie algebra \mathfrak{g} of G has a structure of a p-Lie algebra. Let $U^{[p]}(\mathfrak{g})$ be the restricted enveloping algebra. Let \widehat{S} be the completion of S at
the augmentation ideal. For $S_{0}=\widehat{S}$ or \mathbb{K}, let $\mathcal{C}_{S_{0}}$ be the category defined in [AJS94]. The category $\mathcal{C}_{\mathbb{K}}$ is equivalent to the category of $G_{1} T$-modules, where G_{1} is the kernel of the Frobenius morphism. Let $Z_{S_{0}}(\lambda) \in \mathcal{C}_{S_{0}}$ be the baby Verma module with highest weight λ and $P_{S_{0}}(\lambda) \in \mathcal{C}_{S_{0}}$ the indecomposable projective module such that $\mathbb{K} \otimes_{S_{0}} P_{S_{0}}(\lambda)$ is the projective cover of the irreducible module with highest weight λ. Such objects exist by [AJS94, 4.19 Theorem] when $S_{0}=\widehat{S}$.
We fix an alcove $A_{0} \in \mathcal{A}$ and $\lambda_{0} \in X \cap\left(p A_{0}-\rho\right)$, where ρ is the half sum of positive roots and $p A_{0}=\left\{p a \mid a \in A_{0}\right\}$. For $S_{0}=\widehat{S}$ or \mathbb{K}, let $\mathcal{C}_{S_{0}, 0}$ be the full subcategory of $\mathcal{C}_{S_{0}}$ consisting of quotients of modules of a form $\bigoplus_{w \in W_{\text {aff }}^{\prime}} P_{S_{0}}\left(w \cdot p \lambda_{0}\right)^{n_{w}}$ where $w \cdot{ }_{p} \lambda_{0}=$ $p w\left(\left(\lambda_{0}+\rho\right) / p\right)-\rho$ and $n_{w} \in \mathbb{Z}_{\geq 0}$. Then, the cateogory $\mathcal{C}_{S_{0}, 0}$ is a direct summand of $\mathcal{C}_{S_{0}}$. Let $\operatorname{Proj}\left(\mathcal{C}_{S_{0}, 0}\right)=\left\{P \in \mathcal{C}_{S_{0}, 0} \mid P\right.$ is projective $\}$.
Let S_{0} be a flat commutative S-algebra which is not necessary graded. We consider the following object: $\mathcal{M}=\left((\mathcal{M}(A))_{A \in \mathcal{A}},(\mathcal{M}(A, \alpha))_{A \in \mathcal{A}, \alpha \in \Delta^{+}}\right)$, where $\mathcal{M}(A)$ is an $\left(S_{0}\right)^{\emptyset_{-}}$ module and $\mathcal{M}(A, \alpha) \subset \mathcal{M}(A) \oplus \mathcal{M}(\alpha \uparrow A)$ is a sub- $\left(S_{0}\right)^{\alpha}$-module (we consider usual modules, not graded ones). Let $\mathcal{K}_{\text {AJS }}^{\mathrm{f}}\left(S_{0}\right)$ be the category of such objects. Starting from this, we can define the functor ϑ_{s} and the category $\mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}\left(S_{0}\right)$ in a similar way. Andersen-Jantzen-Soergel proved the following (see [AJS94, 9.4. Proposition] for the full faithfulness. For the essential surjectivity, see the discussion in [AJS94, 16.5]). We modified the functor using [Fie11, Theorem 6.1].

Theorem 3.28. There is an equivalence of the categories $\mathcal{V}: \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right) \xrightarrow{\sim} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S})$.
Note that the functor \mathcal{V} is defined explicitly.
Let $\mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)$ be the category defined as follows. The objects of $\mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)$ are the same as those of $\operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)$, and the space of homomorphism is defined by

$$
\operatorname{Hom}_{\mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)}(M, N)=\mathbb{K} \otimes_{\widehat{S}} \operatorname{Hom}_{\operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)}(M, N) .
$$

Lemma 3.29. We have $\mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right) \simeq \operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right)$.
Proof. We consider the functor $\mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right) \rightarrow \operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right)$ defined by $P \mapsto \mathbb{K} \otimes_{\widehat{S}} P$. This is essentially surjective by [AJS94, 4.19 Theorem] and fully faithful by [AJS94, 3.3 Proposition].

We also define $\mathbb{K} \otimes_{\widehat{S}} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S})$ and $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(S)$ in the same way.
Lemma 3.30. We have the following.
(1) The category $\mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(S)$ is equivalent to the category defined as follows: the objects are the same as $\mathcal{K}_{\mathrm{AJS}, P}$, and the space of homomorphisms is defined by $\operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}}=$ $\operatorname{Hom}_{\mathcal{K}_{\mathrm{AJS}, P}}$.
(2) We have $\mathbb{K} \otimes_{\widehat{S}} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S}) \simeq \mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(S)$.

Proof. (1) is obvious.
For (2), define $\widehat{S} \otimes_{S} \mathcal{K}_{\text {AJS }, P}^{\mathrm{f}}$ in the obvious way. It is sufficient to prove $\mathcal{K}_{\text {AJS }, P}^{\mathrm{f}}(\widehat{S}) \simeq$ $\widehat{S} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}$. The functor $F: \widehat{S} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}} \rightarrow \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S})$ is defined in an obvious way and it
is fully faithful by [AJS94, 14.8 Lemma]. In particular, F sends an indecomposable object to an indecomposable object. We define the category $\mathcal{K}_{P}^{\mathrm{f}}$ as in (1). Namely, the objects of $\mathcal{K}_{P}^{\mathrm{f}}$ are the same as those of $\mathcal{K}_{P}^{\mathrm{f}}$ and we define $\operatorname{Hom}_{\mathcal{K}_{P}^{\mathrm{f}}}=\operatorname{Hom}_{\mathcal{K}_{P}}^{\bullet}$. The indecomposable objects in $\mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}} \simeq \mathcal{K}_{P}^{\mathrm{f}}$ and $\mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S}) \simeq \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right)$ are both parametrized by \mathcal{A}, and it is easy to see that F gives a bijection between the set of indecomposable objects. Therefore, F is essentially surjective.

Therefore, we get

$$
\operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right) \simeq \mathbb{K} \otimes_{\widehat{S}} \operatorname{Proj}\left(\mathcal{C}_{\widehat{S}, 0}\right) \simeq \mathbb{K} \otimes_{\widehat{S}} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}}(\widehat{S}) \simeq \mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}^{\mathrm{f}} \simeq \mathbb{K} \otimes_{S} \mathcal{K}_{P}^{\mathrm{f}}
$$

Since the action of \mathcal{S} Bimod on \mathcal{K}_{P} is S-linear, it gives an action on $\mathbb{K} \otimes_{S} \mathcal{K}_{P}^{\mathrm{f}}$. Hence, \mathcal{S} Bimod acts on $\operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right)$. With respect to this action, B_{s} acts as the wall-crossing functor. We write this action as $(M, B) \mapsto M * B$.

Now we prove the following theorem.
Theorem 3.31. There is an action of $\mathcal{S B i m o d}$ on $\mathcal{C}_{\mathbb{K}, 0}$ such that B_{s} acts as the wallcrossing functor for $s \in S_{\mathrm{aff}}$.

Let $L(p \lambda) \in \mathcal{C}_{\mathbb{K}}$ be the irreducible module with highest weight $p \lambda$ for $\lambda \in \mathbb{Z} \Delta$. The category $\mathcal{C}_{\mathbb{K}, 0}$ has the structure of $\mathbb{Z} \Delta$-category via $M \mapsto M \otimes L(p \lambda)$ for $\lambda \in \mathbb{Z} \Delta$. Fix a projective $\mathbb{Z} \Delta$-generator P of $\mathcal{C}_{\mathbb{K}, 0}$ and set $\mathcal{E}=\bigoplus_{\lambda \in \mathbb{Z} \Delta} \operatorname{Hom}_{\mathcal{C}_{\mathbb{K}, 0}}(P, P \otimes L(p \lambda))$. This is a $\mathbb{Z} \Delta$-graded algebra, and $\mathcal{C}_{\mathbb{K}, 0} \ni M \mapsto \bigoplus_{\lambda \in \mathbb{Z} \Delta} \operatorname{Hom}(P, M \otimes L(p \lambda))$ gives an equivalence of categories between $\mathcal{C}_{\mathbb{K}, 0}$ and the category of finitely generated $\mathbb{Z} \Delta$-graded right \mathcal{E}-modules [AJS94, E. 4 Proposition]. Let $\operatorname{Mod}_{\mathbb{Z}}(\mathcal{E})$ be the the category of finitely generated $\mathbb{Z} \Delta$ graded right \mathcal{E}-modules and $\operatorname{Proj}_{\mathbb{Z} \Delta}(\mathcal{E})$ the category of projective objects in $\operatorname{Mod}_{\mathbb{Z} \Delta}(\mathcal{E})$.

Lemma 3.32. We have $(Q * B) \otimes L(p \lambda) \simeq(Q \otimes L(p \lambda)) * B$ for $Q \in \operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right), B \in$ $\mathcal{S B i m o d}$ and $\lambda \in \mathbb{Z} \Delta$.

Proof. Let $\lambda \in \mathbb{Z} \Delta$. Then, we have a functor $T_{\lambda}\left(\right.$ resp. $\left.T_{\mathrm{AJS}, \lambda}\right)$ on $\mathcal{K}_{P}\left(\right.$ resp. $\left.\mathcal{K}_{\mathrm{AJS}, P}\right)$ defined as follows.

- For $M \in \mathcal{K}_{P}, T_{\lambda}(M)=M$ and $T_{\lambda}(M)_{A}^{\emptyset}=M_{A+\lambda}^{\emptyset}$.
- For $\mathcal{M} \in \mathcal{K}_{\mathrm{AJS}}, T_{\mathrm{AJS}, \lambda}(\mathcal{M})(A)=\mathcal{M}(A+\lambda)$ and $T_{\mathrm{AJS}, \lambda}(\mathcal{M})(A, \alpha)=\mathcal{M}(A+\lambda, \alpha)$.

Since these functors are S-linear, they give functors on $\mathbb{K} \otimes_{S} \mathcal{K}_{P}$ and $\mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P}$, respectively. These functors give structures of $\mathbb{Z} \Delta$-category on each category. It is easy to see that equivalences $\mathbb{K} \otimes_{S} \mathcal{K}_{P} \simeq \mathbb{K} \otimes_{S} \mathcal{K}_{\mathrm{AJS}, P} \simeq \operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right)$ are $\mathbb{Z} \Delta$-functor. Therefore, it is sufficient to prove $T_{\lambda}(M * B) \simeq T_{\lambda}(M) * B$ for $M \in \mathcal{K}_{P}$ and $B \in \mathcal{S}$ Bimod. This follows from the definition.

Therefore, the action of $B \in \mathcal{S}$ Bimod on $\operatorname{Proj}\left(\mathcal{C}_{\mathbb{K}, 0}\right)$ is compatible with the $\mathbb{Z} \Delta$-category structure, and it gives an action on $\operatorname{Proj}_{\mathbb{Z} \Delta}(\mathcal{E})$. We write this action again by $M \mapsto M * B$. For each $B \in \mathcal{S}$ Bimod, we define $\mathcal{E}(B)$ by $\mathcal{E}(B)=\bigoplus_{\lambda \in \mathbb{Z} \Delta} \operatorname{Hom}(P,(P * B) \otimes L(p \lambda))$. This is a $\mathbb{Z} \Delta$-graded \mathcal{E}-bimodule.

Lemma 3.33. Let Q be a projective finitely generated $\mathbb{Z} \Delta$-graded \mathcal{E}-module. Then, $Q \otimes_{\mathcal{E}}$ $\mathcal{E}(B) \simeq Q * B$.

Proof. Let Q_{ν} be the ν-th graded piece of Q, where $\nu \in \mathbb{Z} \Delta$. Let $p \in Q_{\nu}$ and let φ_{p} be the corresponding element in $\operatorname{Hom}_{\operatorname{Mod}_{Z \Delta}(\mathcal{E})}(\mathcal{E}, Q(\nu))$. Here (ν) is the shift of the grading. Then, $\varphi_{p} * B$ gives $\mathcal{E} * B \rightarrow Q(\nu) * B$. By the definition, $\mathcal{E} * B=\mathcal{E}(B)$. Therefore, for $m \in \mathcal{E}(B)$, we have $\varphi_{p}(m) \in Q(\nu) * B \simeq(Q * B)(\nu)$. Hence, we get $Q \otimes_{\mathcal{E}} \mathcal{E}(B) \rightarrow Q * B$ by $p \otimes m \mapsto \varphi_{p}(m)$. This is an isomorphism if $Q=\mathcal{E}$. Hence, it is an isomorphism for any $Q \in \operatorname{Proj}_{\mathbb{Z} \Delta}(\mathcal{E})$.

Now for $\mathbb{Z} \Delta$-graded right \mathcal{E}-module M, put $M * B=M \otimes_{\mathcal{E}} \mathcal{E}(B)$. By the above lemma, $\mathcal{E}\left(B_{1}\right) \otimes_{\mathcal{E}} \mathcal{E}\left(B_{2}\right) \simeq \mathcal{E} * B_{1} * B_{2}=\mathcal{E} *\left(B_{1} \otimes B_{2}\right) \simeq \mathcal{E}\left(B_{1} \otimes B_{2}\right)$. Hence, $\left(M * B_{1}\right) * B_{2}=\left(M \otimes_{\mathcal{E}}\right.$ $\left.\mathcal{E}\left(B_{1}\right)\right) \otimes_{\mathcal{E}} \mathcal{E}\left(B_{2}\right) \simeq M \otimes_{\mathcal{E}}\left(\mathcal{E}\left(B_{1}\right) \otimes_{\mathcal{E}} \mathcal{E}\left(B_{2}\right)\right) \simeq M \otimes_{\mathcal{E}} \mathcal{E}\left(B_{1} \otimes B_{2}\right)=M *\left(B_{1} \otimes B_{2}\right)$. It is easy to see that this gives an action of $\mathcal{S B i m o d}$ on $\operatorname{Mod}_{\mathbb{Z} \Delta}(\mathcal{E})$ and therefore, on $\mathcal{C}_{\mathbb{K}, 0}$.

3.8. Characters

Assume that \mathbb{K} is an algebraically closed field of $p>h$, where h is the Coxeter number. Any object $P \in \operatorname{Proj}\left(\mathcal{C}_{S, 0}\right)$ has a baby Verma flag. Let $\left(P: Z_{S}\left(w \cdot{ }_{p} \lambda_{0}\right)\right)$ be the the multiplicity of $Z_{S}\left(w \cdot p \lambda_{0}\right)$ in P. The following lemma is obvious from the constructions.

Lemma 3.34. Let $P \in \operatorname{Proj}\left(\mathcal{C}_{S, 0}\right)$ and $M \in \mathcal{K}_{P}$ such that $\mathcal{V}(P) \simeq \mathcal{F}(M)$. Then, we have $\left(P: Z_{S}\left(w \cdot{ }_{p} \lambda_{0}\right)\right)=\operatorname{rank}\left(M_{\left\{w A_{0}\right\}}\right)$ for $w \in W_{\mathrm{aff}}^{\prime}$.
The projective module $P_{S}(\lambda)$ is characterized by

- $P_{S}(\lambda)$ is indecomposable.
- $\left(P_{S}(\lambda): Z_{S}(\lambda)\right)=1$.
- $\left(P_{S}(\lambda): Z_{S}(\mu)\right)=0$ unless $\mu-\lambda \in \mathbb{Z}_{\geq 0} \Delta^{+}$.

The module $\mathcal{V}^{-1}\left(\mathcal{F}\left(Q\left(w A_{0}\right)\right)\right)$ satisfies these conditions with $\lambda=w \cdot{ }_{p} \lambda_{0}$ by the above lemma. We get the following.

Proposition 3.35. Let $w \in W_{\text {aff }}^{\prime}$. Then $\mathcal{V}\left(P_{S}\left(w \cdot{ }_{p} \lambda_{0}\right)\right) \simeq \mathcal{F}\left(Q\left(w A_{0}\right)\right)$.
The following corollary is obvious from the above proposition.
Corollary 3.36. We have $\left[P_{\mathbb{K}}\left(w \cdot{ }_{p} \lambda_{0}\right): Z_{\mathbb{K}}\left(v \cdot{ }_{p} \lambda_{0}\right)\right]=\operatorname{rank}\left(Q\left(w A_{0}\right)_{\left\{v A_{0}\right\}}\right)$.

3.9. Lusztig's conjecture

For $B \in \mathcal{S}$ Bimod and $w \in W_{\text {aff }}$, let B^{w} be the image of $B \hookrightarrow B \otimes_{R} R^{\emptyset}=\bigoplus_{x \in W_{\text {aff }}} B_{x}^{\emptyset} \rightarrow$ B_{w}^{\emptyset}. Put $\operatorname{ch}(B)=\sum_{w \in W_{\text {aff }}} v^{-\ell(w)} \operatorname{grk}\left(B^{w}\right)$. Then, $[B] \mapsto \operatorname{ch}(B)$ induces an isomorphism $[\mathcal{S B i m o d}] \simeq \mathcal{H}$. For each $w \in W_{\text {aff }}$, there exists an indecomposable object $B(w) \in \mathcal{S}$ Bimod unique up to isomorphism such that $\operatorname{ch}(B(w)) \in H_{w}+\sum_{x<w} \mathbb{Z}\left[v, v^{-1}\right] H_{x}$. We say that $B(w)$ satisfies the Soergel conjecture if $\operatorname{ch}(B(w))$ is a Kazhdan-Lusztig basis; namely, $\operatorname{ch}(B(w)) \in H_{w}+\sum_{x<w} v \mathbb{Z}[v] H_{x}$. It is known that the Soergel conjecture is satisfied by any $B(w)$ over a characteristic zero field. Therefore, for a fixed w, if p is sufficiently large, $B(w)$ satisfies the Soergel conjecture (cf. [EW14]). We fix $\lambda \in(\mathbb{R} \Delta)_{\text {int }}$ and $w \in W_{\text {aff }}$ such that $A_{\lambda}^{+} w \in \Pi_{\lambda}$. Here, A_{λ}^{+}is the maximal element in $W_{\lambda}^{\prime} A_{\lambda}^{-}$.
Lemma 3.37. Let $w_{\lambda} \in W_{\text {aff }}$ such that $A_{\lambda}^{+} w_{\lambda}=A_{\lambda}^{-}$. Then, we have $S_{A_{\lambda}^{+}} * B\left(w_{\lambda}\right) \simeq$ $Q_{\lambda}\left(\ell\left(w_{0}\right)\right)$.

Proof. By the translation as in the proof of Lemma 2.31, we may assume $\lambda=0$. Then, $W_{\lambda}^{\prime}=W_{\mathrm{f}}$ and it is generated by $S_{\mathrm{aff}} \cap W_{\mathrm{f}}$. Moreover, the element w_{λ} is equal to the longest element w_{0}.

It is sufficient to prove: $B\left(w_{0}\right) \simeq\left\{\left(z_{w}\right) \in R^{W_{f}} \mid z_{w t} \equiv z_{w}\left(\bmod \alpha_{t}\right)\right\}\left(\ell\left(w_{0}\right)\right)$, where t runs through the set of reflections in W_{f} and α_{t} the corresponding element in $\Lambda_{\mathbb{K}}$ [Abe21, 2.1]. Let $\left(G_{\mathbb{C}}^{\vee}, B_{\mathbb{C}}^{\vee}, T_{\mathbb{C}}^{\vee}\right)$ be the reductive group over \mathbb{C}, the Borel subgroup and the maximal torus with the root datum $\left(X^{\vee}, \Delta^{\vee}, X, \Delta\right)$ and the positive system $\Delta^{+} \subset \Delta$. Then, the category of \mathbb{K}-coefficient parity $B_{\mathbb{C}}^{\vee}$-equivariant sheaves on $G_{\mathbb{C}}^{\vee} / B_{\mathbb{C}}^{\vee}$ is equivalent to the category of Soergel bimodules attached to ($W_{\mathrm{f}}, X_{\mathbb{K}}^{\vee}$) [RW18]. The object $B\left(w_{0}\right)$ corresponds to the indecomposable parity sheaf such that the restriction to the big cell $B_{\mathbb{C}}^{\vee} w_{0} B_{\mathbb{C}}^{\vee} / B_{\mathbb{C}}^{\vee}$ is $\mathbb{K}_{B_{\mathrm{C}}^{\vee} w_{0} B_{\mathrm{C}}^{\vee} / B_{\mathrm{C}}^{\vee}}\left[\ell\left(w_{0}\right)\right]$. It is obvious that the constant sheaf $\mathbb{K}_{G_{\mathrm{C}}^{\vee} / B_{\mathbb{C}}^{\vee}}\left[\ell\left(w_{0}\right)\right]$ satisfies this condition, and therefore, the constant sheaf corresponds to $B\left(w_{0}\right)$. By the main theorem of [FW14], the corresponding Soergel bimodule is given as above.
Recall that we took $w \in W_{\text {aff }}$ and $\lambda \in\left(\mathbb{R} \Phi_{\text {int }}\right)$ such that $A_{\lambda}^{+} w \in \Pi_{\lambda}$. Define $S_{A_{\lambda}^{+}} \in \widetilde{\mathcal{K}}^{\prime}(S)$ as follows: $S_{A_{\lambda}^{+}}=S$ as a left S-module and R acts through $f \mapsto f_{A}$. We have $\left(S_{A_{\lambda}^{+}}^{)_{A_{\lambda}^{+}}^{\emptyset}}=S^{\emptyset}\right.$ and $\left(S_{A_{\lambda}^{+}}\right)_{A^{\prime}}^{\emptyset}=0$ for $A^{\prime} \in \mathcal{A} \backslash\left\{A_{\lambda}^{+}\right\}$.

Theorem 3.38. If $B(w)$ satisfies the Soergel conjecture, then $S_{A_{\lambda}^{+}} * B(w) \simeq Q\left(A_{\lambda}^{+} w\right)$.
Proof. First, we prove that $S_{A_{\lambda}^{+}} * B(w) \in \mathcal{K}_{P}$. By the translation as in Lemma 2.31, we may assume $\lambda=0$. Then, $W_{\lambda}^{\prime}=W_{\mathrm{f}}$, and this is isomorphic to the subgroup of $W_{\text {aff }}$ generated by $s \in S_{\text {aff }}$ which contains a hyperplance through 0 . We identify $W_{\mathrm{f}} \hookrightarrow$ $W_{\text {aff }}$. We have $s w<w$ for any $s \in W_{\mathrm{f}} \cap S_{\text {aff }}$. Therefore, $H_{s} \operatorname{ch}(B(w))=v^{-1} \operatorname{ch}(B(w))$ by [JW17, Lemma 4.3]. Hence, $H_{x} \operatorname{ch}(B(w))=v^{-\ell(x)} \operatorname{ch}(B(w))$ for any $x \in W_{\mathrm{f}}$. Take $a_{y}=\sum_{n \in \mathbb{Z}} a_{y, n} v^{n} \in \mathbb{Z}_{\geq 0}\left[v, v^{-1}\right]$ such that $\operatorname{ch}\left(B\left(w_{0}\right)\right)=\sum_{y \in W_{\mathrm{f}}} a_{y} H_{y}$ (one can write a_{y} explicitly, but we do not do this here because we will not use this). Then, we have $\operatorname{ch}\left(B\left(w_{0}\right) \otimes B(w)\right)=\sum_{y \in W_{\mathrm{f}}} a_{y} v^{-\ell(y)} \operatorname{ch}(B(w))$. Hence, we get $B\left(w_{0}\right) \otimes B(w) \simeq$ $\bigoplus_{y \in W_{\mathrm{f}}, n \in \mathbb{Z}} B(w)^{a_{y, n}}(n-\ell(y))$. Therefore, up to shift, $S_{A_{0}^{+}} * B(w)$ is a direct summand of $S_{A_{0}^{+}} *\left(B\left(w_{0}\right) \otimes B(w)\right) \simeq Q_{0}\left(\ell\left(w_{0}\right)\right) * B(w) \in \mathcal{K}_{P}$. Hence, $S_{A_{0}^{+}} * B(w) \in \mathcal{K}_{P}$.

We return to the proof of the theorem. By [Lus80, Theorem 5.2] $\operatorname{ch}\left(S_{A_{\lambda}^{+}} * B(w)\right)=$ $A_{\lambda}^{+} \operatorname{ch}(B(w))$ is described by periodic Kazhdan-Lusztig polynomials; namely, we have $A_{\lambda}^{+} \operatorname{ch}(B(w))=v^{-n} \underline{P}_{A_{0}}$ for some $A_{0} \in \mathcal{A}$ and $n \in \mathbb{Z}$. Here, $\underline{P}_{A^{\prime}} \in \mathcal{P}^{0}$ is the element given in [Soe97, Proposition 4.16]. We know $A_{\lambda}^{+} \operatorname{ch}(B(w)) \in A_{\lambda}^{+} w+\sum_{A^{\prime}>A_{\lambda}^{+} w} \mathbb{Z}\left[v, v^{-1}\right] A^{\prime}$. Comparing with [Soe97, Lemma 4.21], we have $n=\ell\left(w_{0}\right)$ and $\operatorname{ch}\left(S_{A_{\lambda}^{+}} * B(w)\right) \in A_{\lambda}^{+} w+$ $\sum_{A^{\prime}>A_{\lambda}^{+} w} v^{-1} \mathbb{Z}\left[v^{-1}\right] A^{\prime}$. By the self-duality of $\underline{P}_{A_{0}}$, we have $\overline{\operatorname{ch}\left(S_{A_{\lambda}^{+}} * B(w)\right)}=v^{\ell\left(w_{0}\right)} \underline{P}_{A_{0}} \in$ $v^{2 \ell\left(w_{0}\right)} A_{\lambda}^{+} w+\sum_{A^{\prime}>A_{\lambda}^{+} w} v^{2 \ell\left(w_{0}\right)-1} \mathbb{Z}\left[v^{-1}\right] A^{\prime}$. Therefore, by Theorem 3.10, we have

$$
\operatorname{grk} \operatorname{Hom}_{\mathcal{K}}^{\bullet}\left(S_{A_{\lambda}^{+}} * B(w), S_{A_{\lambda}^{+}} * B(w)\right) \in 1+v^{-2} \mathbb{Z}\left[v^{-1}\right]
$$

Hence, $\operatorname{End}_{\mathcal{K}}\left(S_{A_{\lambda}^{+}} * B(w)\right)$ is one-dimensional, and therefore, 1 and 0 are only its idempotents. Therefore, $S_{A_{\lambda}^{+}} * B(w)$ is indecomposable. Since $Q\left(A_{\lambda}^{+} w\right)$ is a direct summand of $S_{A_{\lambda}^{+}} * B(w)$, we get the theorem.

From the above theorem and Corollary 3.36, the multiplicity of the baby Verma modules in the projective cover of an irreducible module is given by the value at 1 of the KazhdanLusztig polynomial. Hence, the Lusztig's conjecture holds for sufficiently large p.
Acknowledgements. The question treated in this paper was asked by Masaharu Kaneda. The author had many helpful discussions with him. He also thank the referees giving helpful comments and pointing out errors. The author was supported by JSPS KAKENHI Grant Number 18H01107.

Competing Interest. None.

References

[Abe20a] N. Abe, A homomorphism between Bott-Samelson bimodules, arXiv:2012.09414.
[Abe20b] N. Abe, On singular Soergel bimodules, arXiv:2004.09014.
[Abe21] N. Abe, A bimodule description of the Hecke category, Compos. Math. 157(10) (2021), 2133-2159.
[AJS94] H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : Independence of p, Astérisque $\mathbf{2 2 0}$ (1994), 321.
[AMRW19] P. N. Achar, S. Makisumi, S. Riche and G. Williamson, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32(1) (2019), 261-310.
[And98] H. H. Andersen, Tilting modules for algebraic groups, in R. W. Carter and J. Saxl (eds.), Algebraic Groups and Their Representations vol. 517 (Kluwer Acad. Publ., Dordrecht, 1998), 25-42.
[BR22] R. Bezrukavnikov and S. Riche, Hecke action on the principal block, Compos. Math. 158 (2022), no. 5, 953-1019.
[EW14] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. 2 180(3) (2014), 1089-1136.
[EW16] B. Elias and G. Williamson, Soergel calculus, Represent. Theory 20 (2016), 295-374.
[Fie11] P. Fiebig, Sheaves on affine Schubert varieties, modular representations, and Lusztig's conjecture, J. Amer. Math. Soc. 24(1) (2011), 133-181.
[Fie12] P. Fiebig, An upper bound on the exceptional characteristics for Lusztig's character formula, J. Reine Angew. Math. 673 (2012), 1-31.
[FL15] P. Fiebig and M. Lanini, Sheaves on the alcoves I: Projectivity and wall crossing functors, arXiv:1504.01699.
[FW14] P. Fiebig and G. Williamson, Parity sheaves, moment graphs and the p-smooth locus of Schubert varieties, Ann. Inst. Fourier (Grenoble) 64(2) (2014), 489-536.
[JMW14] D. Juteau, C. Mautner and G. Williamson, Parity sheaves, J. Amer. Math. Soc. 27(4) (2014), 1169-1212.
[JW17] L. T. Jensen and G. Williamson, The p-canonical basis for Hecke algebras in Categorification and Higher Representation Theory (Contemporary Mathematics) vol. 683 (Amer. Math. Soc., Providence, RI, 2017), 333-361.
[KL93] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6(4) (1993), 905-947, 949-1011.
[KL94a] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7(2) (1994), 335-381.
[KL94b] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7(2) (1994), 383-453.
[KT95] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77(1) (1995), 21-62.
[KT96] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84(3) (1996), 771-813.
[Lib08] N. Libedinsky, Sur la catégorie des bimodules de Soergel, J. Algebra 320(7) (2008), 2675-2694.
[Lus80] G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math. 37(2) (1980), 121-164.
[RW18] S. Riche and G. Williamson, Tilting modules and the p-canonical basis, Astérisque 397 (2018), ix+184.
[RW22] S. Riche and G. Williamson, Smith-Treumann theory and the linkage principle, Math. Inst. Hautes Études Sci. 136 (2022), 225-292.
[Sob20] P. Sobaje, On character formulas for simple and tilting modules, Adv. Math. 369(8) (2020), 107172.
[Soe97] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory 1 (1997), 83-114 (electronic).
[Wil17] G. Williamson, Schubert calculus and torsion explosion, J. Amer. Math. Soc. 30(4) (2017), 1023-1046. With a joint appendix with A. Kontorovich and P. J. McNamara.

