A NOTE ON THE PRODUCT OF *F*-SUBGROUPS IN A FINITE GROUP

by ANGEL CAROCCA

(Received 3rd March 1994)

Saturated formations are closed under the product of subgroups which are connected by certain permutability properties.

1991 Mathematics subject classification: 20F17, 20D40

All groups we consider are finite. It is well known that the product of supersolvable normal subgroups is not supersolvable in general (see Huppert [3]).

In [1], Asaad and Shaalan proved the following result:

Let $G = G_1G_2$ be a group such that G_1 and G_2 are supersolvable subgroups. If every subgroup of G_1 is permutable with every subgroup of G_2 , then G is supersolvable.

If G_1 and G_2 are subgroups of a group G such that every subgroup of G_1 is permutable with every subgroup of G_2 , we say that G_1 and G_2 are totally permutable.

In [6], Maier proved that Asaad and Shaalan's result is a special case of a general completeness property of all saturated formations which contain the class of super-solvable groups. In [6], the following theorem is proved:

Let $G = G_1G_2$ be a group such that G_1 and G_2 are totally permutable subgroups. Let \mathscr{F} be a saturated formation which contains the class of supersolvable groups. If G_1 and G_2 lie in \mathscr{F} , then so does G.

In this paper we give a generalization for an arbitrary number of factors of Maier's result. We prove:

Theorem 1. Let $G = G_1 G_2 \dots G_r$ be a group such that G_1, G_2, \dots, G_r are pairwise totally permutable subgroups of G. Let \mathcal{F} be a saturated formation which contains the class of supersolvable group. If for all $i \in \{1, 2, \dots, r\}$ the subgroups G_i are in \mathcal{F} , then $G \in \mathcal{F}$.

If G_1 and G_2 are totally permutable subgroups of a group G, then $\langle x, y \rangle = \langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ is a supersolvable subgroup, for each $x \in G_1$ and $y \in G_2$, by ([4, p. 722, Th. 10.1]). If G_1 and G_2 are subgroups of a group G and \mathscr{L} is a non-empty class of groups,

ANGEL CAROCCA

we say that G_1 and G_2 are \mathscr{L} -connected, whenever for each $x \in G_1$ and $y \in G_2$ we have $\langle x, y \rangle \in \mathscr{L}$.

Assuming this definition, we prove the following:

Theorem 2. Let $G = G_1G_2, \ldots, G_r$ be a group such that G_1, G_2, \ldots, G_r are pairwise permutable subgroups of G. Let $\mathcal{L} = \mathcal{N}$ be the class of nilpotent groups and let \mathcal{F} be a saturated formation such that $\mathcal{N} \subseteq \mathcal{F}$. If for every pair $i, j \in \{1, 2, \ldots, r\}, i \neq j$, the subgroups G_i and G_j are \mathcal{N} -connected \mathcal{F} -groups, then $G \in \mathcal{F}$.

This paper follows part of the author's Doctoral Thesis written under supervision of Professor R. Maier. The author also thanks the Brazilian Research Council (CNPq) for the scholarship granted.

Proofs of our Theorems

To prove theorem 1, we first generalize Lemma 2 of [6]:

Lemma 1. Let the group $G = G_1G_2...G_r$ be the product of the pairwise totally permutable subgroups $G_1, G_2, ..., G_r$ of G.

- (a) If |G| > 1, then there exists $i \in \{1, 2, ..., r\}$ such that G_i contains a nonidentity normal subgroup of G.
- (b) For every pair $i, j \in \{1, 2, ..., r\}$, $i \neq j$, we have that $G_i \cap G_j \leq \mathbf{F}(G_i G_j)$, where $\mathbf{F}(G_i G_j)$ denotes the Fitting subgroup of $G_i G_j$.

Proof. (a) Let p denote the largest prime divisor of |G|. Certainly p divides at least one of $|G_1|$, $|G_2|, \ldots, |G_r|$. Let x be a p-element of the union set $G_1 \cup G_2 \cup \ldots \cup G_r$ of maximal order and suppose $x \in G_1$. Let R be the subgroup of order p in $\langle x \rangle$. As in the proof of Lemma 2 in [6], we conclude that G_i normalizes R for all $i \in \{2, \ldots, r\}$. Therefore the normal closure

$$R^{G} = R^{G_{2}G_{3}...G_{r}G_{1}} = R^{G_{1}} \leq G_{1}$$

is a nonidentity normal subgroup of G contained in G_1 .

(b) This is (b) of Lemma 2 in [6].

Theorem 1. Let $G = G_1 G_2 \dots G_r$ be a group such that G_1, G_2, \dots, G_r are pairwise totally permutable subgroups of G. Let \mathcal{F} be a saturated formation which contains the class of supersolvable groups. If for all $i \in \{1, 2, \dots, r\}$ the subgroups G_i are in \mathcal{F} , then $G \in \mathcal{F}$.

Proof. Suppose the theorem is false and let G be a counterexample of smallest order with r least possible. Then $1 < G_i < G$ for all $i \in \{1, 2, ..., r\}$. We will prove a series of

38

items under this assumption. They will lead us to a contradiction. Certainly the hypothesis is inherited by factor groups.

(i) The group G has a unique minimal normal subgroup N and the Frattini subgroup $\Phi(G) = 1$.

Since the hypothesis is inherited by quotient groups, by the minimality of |G|, every proper quotient group G/M ($1 \neq M \leq G$) lies in \mathcal{F} . Since \mathcal{F} is a saturated formation, the minimal normal subgroup N of G is unique and $\Phi(G) = 1$.

(ii) There exists $i \in \{1, 2, ..., r\}$, such that $N \leq G_i$.

This is Lemma 1 (a).

We suppose $N \leq G_1$.

(iii) N is an elementary abelian p-group, for some prime number p.

Otherwise N is the direct product of nonabelian simple groups. Because of the uniqueness of N we have $C_G(N) = 1$, the centralizer of N in G. Put $H = G_1G_2$. By Lemma 1 (b), we have that $G_1 \cap G_2 \leq F(H)$. So, $N \cap G_2 = N \cap G_1 \cap G_2 \leq N \cap F(H) \leq F(N) = 1$.

Let $X \leq N$. Since G_1 and G_2 are totally permutable, we have that $G_2X = XG_2$. So $X = X(N \cap G_2) = N \cap XG_2 \leq G_2X$. Hence, G_2 normalizes every subgroup of N. By ([2, Th. 2.2.1.]), the commutator group $[G_2, N]$ is in the centre of N. Therefore, $G_2 \leq C_G(N) = 1$, a contradiction.

(iv) There is a complement V of N in G, |N| > p and $C_G(N) = N = F(G)$.

This is shown in the same way as the items (iv)/(v) in [6].

It is clear that, if $N \leq G_i$, then $U_i = G_i \cap V$ is a complement of N in G_i .

(v) There exists $i \in \{2, 3, ..., r\}$, such that $N \leq G_i$.

Suppose $N \leq \bigcap_{i=1}^{r} G_i$. Then $U_i = G_i \cap V$ is a complement of N in G_i . Let $X \leq N$. Since r > 1, we have $XU_i = U_iX$ and $X = X(U_i \cap N) = N \cap U_iX \leq XU_i$. Since N is abelian, we have $X \leq G_i$ for all $i \in \{1, 2, ..., r\}$. Therefore, by the minimality of N, we conclude |N| = p, against (iv).

We renumber the indices in such a way that $N \leq G_i$ for all $i \in \{1, 2, ..., s\}$ and $N \leq G_j$ for all $j \in \{s+1, ..., r\}$. Let $K = G_{s+1}G_{s+2} \dots G_r$.

(vi) For all $j \in \{s+1, \ldots, r\}$ we have $N \cap G_j = 1$.

Let $j \in \{s+1,...,r\}$ and $D=N \cap G_j$. Suppose D>1. Let $i \in \{1,2,...,s\}$. We have that $N \leq G_i$ and $U_i = V \cap G_i$ is a complement of N in G_i . Since $D \leq G_j$ and $i \neq j$, we have $DU_i = U_i D$. Hence $D \leq U_i D$. Therefore $D \leq G_i$ for all $i \in \{1,2,...,s\}$. It follows that $N = D^G = D^{G_{s+1}...G_r} \leq G_{s+1}...G_r = K$.

Since K is the product of pairwise totally permutable subgroups, once more by Lemma 1 (a) there exists $1 \neq L \trianglelefteq K$ such that, for example $L \leqq G_{s+1}$.

Consider $J = N \cap L \trianglelefteq K$. Since $J \leqq G_{s+1}$ we have that the subgroups G_i normalize J, for all $i \in \{1, 2, ..., s\}$. Hence $J \trianglelefteq G$. By the minimality of N we conclude J = N or J = 1. Since $N \nleq G_{s+1}$, we have J = 1. Therefore, the commutator $[N, L] \leqq L \cap N = J = 1$. So $L \leqq C_G(N) = N$. Since $L \leqq G_{s+1}$, we have that G_i normalizes L, for all $i \in \{1, 2, ..., s\}$. Hence, $L = N \leqq G_{s+1}$, a contradiction.

(vii) For all $j \in \{s+1,...,r\}$, we have that G_j normalizes every subgroup of N. If $X \leq N$, then $XG_j = G_jX$ and $X = X(G_j \cap N) = G_jX \cap N \leq G_jX$ by (vi). (viii) We have s = 1.

ANGEL CAROCCA

Suppose $N \leq G_i$ and i > 1. Let $X \leq N$ and $U_1 = G_1 \cap V$. We have that $U_1X = XU_1$, (because i > 1). So, G_1 normalizes X. Similarly G_i normalizes X, for all G_i such that $N \leq G_i$. Hence $X \leq G$, by (vii). So, |N| = p, against (ii).

By (vii) and (viii) we have that N is a minimal normal subgroup of G_1 .

(ix) For all $j \in \{2, \ldots, r\}$ we have $G_1 \cap G_j = 1$.

Let $D = G_1 \cap G_j$. By Lemma 2 (b), we have $D \leq \mathbf{F}(G_1G_j)$. Since N is minimal normal in G_1 , ([4], p. 277, Th. 4.2 (e)), we have $\mathbf{F}(G_1) \leq \mathbf{C}_G(N) = N$. It follows that $D \leq N \cap G_j = 1$, by (vi).

By (vi) and (vii), we have that for all $j \in \{2, ..., r\}$ the subgroups G_j are faithfully represented on the vector space N by scalar transformations. Let U_1^x be a conjugate of $U_1 = G_1 \cap V$ in G_1 .

(x) For all $j \in \{2, ..., r\}$ we have that G_j centralizes U_1^x .

Clearly, $G_j U_1^x = U_1^x G_j$ and $U_1^x G_j \cap N = U_1^x G_j \cap G_1 \cap N = U_1^x (G_j \cap G_1) \cap N = U_1^x \cap N =$ 1. So, $U_1^x G_j$ is faithfully represented on N. Since G_j is represented by scalar transformations, we have that G_j centralizes U_1^x .

(xi) The contradiction

Clearly, $N \neq G_1$, so U_1 is a non-normal subgroup of G_1 . It follows that $G_1 = \langle U_1^x / x \in G_1 \rangle$. Hence, for all $j \in \{2, ..., r\}$, G_j centralizes G_1 , by (x). Therefore $G_j \leq C_G(N) = N$ and $G_j = 1$, by (vi).

Theorem 2. Let $G = G_1G_2...G_r$ be a group such that $G_1, G_2, ..., G_r$ are pairwise permutable subgroups of G. Let $\mathcal{L} = \mathcal{N}$ be the class of nilpotent groups and let \mathcal{F} be a saturated formation such that $\mathcal{N} \subseteq \mathcal{F}$. If for every pair $i, j \in \{1, 2, ..., r\}$, $i \neq j$, the subgroups G_i and G_j are \mathcal{N} -connected \mathcal{F} -groups, then $G \in \mathcal{F}$.

Proof. Suppose the theorem is false and let G be a counterexample of smallest order. Since the hypothesis is inherited by quotients, we conclude that G has a unique minimal normal subgroup N. Since \mathscr{F} is saturated, we have $\Phi(G) = 1$.

Let p be a prime number and $i, j \in \{1, 2, ..., r\}$, such that $i \neq j$. Let $x \in G_i$ be a p-element and $y \in G_j$ a p'-element. Since $\langle x, y \rangle$ is nilpotent, we have that y centralizes x. Let $P_i \in Syl_p(G_i)$. Since $\mathbf{O}^p(G_j)$ is generated by all p'-elements of G_j , we have $\mathbf{O}^p(G_j) \leq \mathbf{C}_G(P_i)$. For the definition of $\mathbf{O}^p(G_j)$ see ([7, p. 142]).

Set $G_j^* = \bigcap_p \mathbf{O}^p(G_j)$. The above consideration implies that $G_i \leq \mathbf{C}_G(G_j^*)$. Since our argument is true for all $i \in \{1, 2, ..., r\}$, such that $i \neq j$, we have that $G_j^* \leq G$.

(I) Suppose $G_j^* \neq 1$, for some $j \in \{1, 2, \dots, r\}$.

Because of the uniqueness of N we have $N \leq G_j^*$.

- (a) If N is solvable, then $N = \mathbb{C}_G(N)$ and $G_i \leq N \leq G_j^*$, for all $i \in \{1, 2, ..., r\}$, with $i \neq j$. It follows that $G = G_j \in \mathcal{F}$.
- (b) If N is not solvable, then $C_G(N) = G_i = 1$ for all $i \in \{1, 2, ..., r\}$ with $i \neq j$. Again we have $G = G_j \in \mathscr{F}$.
- (II) Suppose $G_j^* = 1$ for all $j \in \{1, 2, ..., r\}$. Now G_j is nilpotent for all $j \in \{1, 2, ..., r\}$. Hence, $G_j = P_j \times \mathbf{O}^p(G_j)$, for every prime number p.

Let $i, j \in \{1, 2, ..., r\}$ such that $i \neq j$. By ([4, p. 676, Th. 4.7]) we have that $P_i P_j \in Syl_p(G_i G_j)$. Hence $P_1 P_2 \dots P_r \in Syl_p(G)$. Since for all $i \in \{1, 2, ..., r\}$ we have

A NOTE ON THE PRODUCT OF *F*-SUBGROUPS IN A FINITE GROUP 41

 $\mathbf{O}^{p}(G_{i}) \leq \mathbf{C}_{G}(P_{1}P_{2}\dots P_{r})$, we conclude that $G_{i} \leq \mathbf{N}_{G}(P_{1}P_{2}\dots P_{r})$ and therefore $P_{1}P_{2}\dots P_{r} \leq G$. It follows that $G \in \mathcal{N} \leq \mathcal{F}$.

The following example shows that Theorem 2 is not true when $\mathcal{N} \cong \mathcal{L} \subseteq \mathcal{F}$, without additional hypothesis (see also the Example given in [6]):

Example. Let $G = S_4$ be the symmetric group of degree 4. Let G_1 be the normal subgroup of order 4 of G and let G_2 be a subgroup of order 6 of G. Clearly, $G = G_1G_2$. Let $\mathscr{L} = \mathscr{N} \mathscr{A} = \mathscr{F}$ be the class of all groups whose commutator subgroups are nilpotent. Clearly, G_1 and G_2 are $\mathscr{N} \mathscr{A}$ -connected \mathscr{F} -groups, but $G \notin \mathscr{F}$.

In view of the fact that the finite simple groups are 2-generated, the following seems to be reasonable:

Conjecture. Let \mathscr{S} be the class of solvable groups. If the group $G = G_1 G_2 \dots G_r$ is the product of the pairwise permutable and pairwise \mathscr{S} -connected \mathscr{S} -subgroups G_i , then G is solvable.

To mention the solution of a particular case of this conjecture, we introduce the following notation: Let \mathcal{T} be the class of groups having Sylow-tower for the prime numbers arranged in decreasing order.

Proposition. Let $G = G_1G_2...G_r$ be a group such that $G_1, G_2, ...G_r$ are pairwise permutable and pairwise \mathcal{T} -connected supersolvable subgroups of G. Then G is a \mathcal{T} -group. In particular, G is solvable.

Proof. Suppose the proposition is false. Let G be a counterexample of smallest order with r least possible. Every quotient group of G satisfies the hypothesis of the proposition. Because of the minimality of |G|, every proper quotient group is a \mathcal{T} -group.

Let p denote the largest prime number divisor of |G|. We may assume that p divides $|G_1|$. We have to produce a nonidentity normal p-subgroup N of G.

Because of the supersolvability of G_1 , we can choose $\langle x \rangle$ a normal subgroup of G_1 , with $|\langle x \rangle| = p$. We show $\langle x \rangle$ is subnormal in G. Then $N = \langle x \rangle^G$ is a normal *p*-subgroup of G.

First we show that $r \leq 2$. If $r \geq 3$, then $H = G_1 G_2 \dots G_{r-1}$ and $K = G_1 G_2 \dots G_{r-2} G_r$ are \mathscr{T} -groups, since r is least possible. Hence $\langle x \rangle$ is subnormal in H and K. By ([5, p. 239, Th. 7.7.1]) we have that $\langle x \rangle$ is subnormal in HK = G. So $G = G_1 G_2$.

Let $g \in G$. Write $g = g_1g_2$ with $g_1 \in G_1$ and $g_2 \in G_2$. Since $\langle x \rangle \subseteq G_1$, we have that $x^{g_1} = x^i$ with $1 \leq i \leq p$. By hypothesis $\langle x, g_2 \rangle$ is a \mathscr{T} -group, thus $\langle x, g_2 \rangle_p \subseteq \langle x, g_2 \rangle$, where $\langle x, g_2 \rangle_p$ denotes the Sylow-*p*-subgroup of $\langle x, g_2 \rangle$. Therefore $x, x^{g_2} \in \langle x, g_2 \rangle_p$ and $x^g = x^{g_1g_2} = (x^{g_2})^i \in \langle x, g_2 \rangle_p$. It follows that $\langle x, x^g \rangle$ is a *p*-group, for all $g \in G$. By ([7, p. 195, Th. 4.8]) we have that $\langle x \rangle$ is subnormal in G.

ANGEL CAROCCA

REFERENCES

1. M. ASAAD and A. SHAALAN, On the supersolvability of finite groups, Arch. Math. 53 (1989), 318-326.

2. C. COOPER, Power automorphisms of a group, Math. Z. 107 (1968), 335-356.

3. B. HUPPERT, Monomiale Darstellungen endlicher Gruppen, Nagoya Math. J. 6 (1953), 93-94.

4. B. HUPPERT, Endliche Gruppen I (Springer-Verlag, Berlin/Heidelberg/New York, 1967).

5. J. LENNOX and St. E. STONEHEWER, Subnormal Subgroups of Groups (Clarendon Press, Oxford, 1987).

6. R. MAIER, A completeness property of certain formations, Bull. London Math. Soc. 24 (1992), 540-544.

7. M. SUZUKI, Group Theory I (Springer-Verlag, Berlin/Heidelberg/New York, 1982).

DEPARTAMENTO DE MATEMÁTICAS Universidad Técnica Federico Santa Maria Casilla 110-V, Valparaíso Chile

Current address FACULTAD DE MATEMÁTICAS PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE CASILLA 306 SANTIAGO 22 CHILE *E-mail address*: ACAROCCA@MAT.PUC.CL