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Saturated formations are closed under the product of subgroups which are connected by certain permutability
properties.

1991 Mathematics subject classification: 20F17, 20D40

All groups we consider are finite. It is well known that the product of supersolvable
normal subgroups is not supersolvable in general (see Huppert [3]).

In [1], Asaad and Shaalan proved the following result:

Let G = GtG2 be a group such that Gx and G2 are supersolvable subgroups. If every
subgroup ofGi is permutable with every subgroup of G2, then G is supersolvable.

If Gt and G2 are subgroups of a group G such that every subgroup of G, is permutable
with every subgroup of G2, we say that Gt and G2 are totally permutable.

In [6], Maier proved that Asaad and Shaalan's result is a special case of a general
completeness property of all saturated formations which contain the class of super-
solvable groups. In [6], the following theorem is proved:

Let G = GlG2 be a group such that Gt and G2 are totally permutable subgroups. Let SF be
a saturated formation which contains the class of supersolvable groups. If G{ and G2 lie in
!F, then so does G.

In this paper we give a generalization for an arbitrary number of factors of Maier's
result. We prove:

Theorem 1. Let G = GxG2...GTbe a group such that Gx, G2,... , Gr are pairwise totally
permutable subgroups of G. Let 3F be a saturated formation which contains the class of
supersolvable group. If for all i e{ l ,2 , . . . , r} the subgroups Gt are in !F, then Ge!F.

If G, and G2 are totally permutable subgroups of a group G, then <x, _y> = <x><.y> =
CvX*) is a supersolvable subgroup, for each x e G , and yeG2, by ([4, p. 722, Th.
10.1]). If G, and G2 are subgroups of a group G and i ? is a non-empty class of groups,
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we say that Gt and G2 are jSf'-connected, whenever for each xeGl and yeG2 we have

Assuming this definition, we prove the following:

Theorem 2. Let G = GiG2,...Gr be a group such that GuG2,...,Gr are pairwise
permutable subgroups of G. Let S£ = Jf be the class of nilpotent groups and let 2F be a
saturated formation such that J/'£#'. If for every pair i,je{l,2,...,r}, i^j, the subgroups
G, and Gj are J/-connected #-groups, then Ge&.

This paper follows part of the author's Doctoral Thesis written under supervision of
Professor R. Maier. The author also thanks the Brazilian Research Council (CNPq) for
the scholarship granted.

Proofs of our Theorems

To prove theorem 1, we first generalize Lemma 2 of [6]:

Lemma 1. Let the group G = G1G2...Gr be the product of the pairwise totally
permutable subgroups G1 ;G2 , . . . ,GrofG.

(a) / / | G | > 1 , then there exists ie{ l ,2 , . . . , r} such that G, contains a nonidentity
normal subgroup of G.

(b) For every pair i,je{l,2,...,r}, i^j, we have that G, n GJ^F(G,GJ), where F(G,Gj)
denotes the Fitting subgroup of Gfiy

Proof, (a) Let p denote the largest prime divisor of | G |. Certainly p divides at least
one of | G, |, | G21, . . . , | Gr |. Let x be a p-element of the union set Gx u G2 u ... u Gr of
maximal order and suppose xeGv Let R be the subgroup of order p in <x>. As in the
proof of Lemma 2 in [6], we conclude that G, normalizes R for all ie{2, . . . , r} .
Therefore the normal closure

is a nonidentity normal subgroup of G contained in Gx.
(b) This is (b) of Lemma 2 in [6].

Theorem 1. Let G = GlG2...Gr be a group such that Gx,G2,...,Gr are pairwise totally
permutable subgroups of G. Let 3F be a saturated formation which contains the class of
supersolvable groups. If for all ie{l,2,...,r} the subgroups G,- are in IF, then Ge^.

Proof. Suppose the theorem is false and let G be a counterexample of smallest order
with r least possible. Then 1 < G , < G for all i e{ l ,2 , . . . , r } . We will prove a series of
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items under this assumption. They will lead us to a contradiction. Certainly the
hypothesis is inherited by factor groups.
(i) The group G has a unique minimal normal subgroup N and the Frattini subgroup

<D(G)=1.
Since the hypothesis is inherited by quotient groups, by the minimality of | G |, every
proper quotient group G/M (1 # M 5? G) lies in !F. Since !? is a saturated formation, the
minimal normal subgroup N of G is unique and O(G) = 1.
(ii) There exists ie{1,2,...,r}, such that N^Gj.

This is Lemma 1 (a).
We suppose N^Gt.

(iii) N is an elementary abelian p-group,for some prime number p.
Otherwise N is the direct product of nonabelian simple groups. Because of the

uniqueness of N we have CJiN) = 1, the centralizer of N in G. Put H = GjG2. By Lemma
1 (b), we have that GYnG2^F(H). So, Nr\G2 = NnGxnG2^NnF(H)gF(N) = 1.

Let X^N. Since Gx and G2 are totally permutable, we have that G2X = XG2- So
X = X(N r\G2) = N r\XG2-^G2X. Hence, G2 normalizes every subgroup of N. By ([2,
Th. 2.2.1.]), the commutator group [G2, AT] is in the centre of N. Therefore, G2^
CG(N)= 1, a contradiction,
(iv) T h e r e is a complement V of N in G,\N\>p and CG(N) = N = F (G) .

This is shown in the same way as the items (iv)/(v) in [6].
It is clear that, if N^ Gh then C/, = G, n Fis a complement of N in Gf.

(v) There exists ie{2,3,...,r}, suc/i t/iat N£Gt.
Suppose N^Qj=1G,-. Then Vi = Gi n V is a complement of N in G;. Let X^N. Since

r > l , we have Xl/^l/.AT and X = X(UtnN) = NnUiX^XUf Since W is abelian, we
have .Y^G, for all ie{l,2,.. . ,r}. Therefore, by the minimality of Af, we conclude
| N | =p, against (iv).

We renumber the indices in such a way that N^Gt for all ie{l,2,...,s} and N£Gj
forallje{s+l,. . . ,r}. Let K = Gs+1Gs+2...Gr.
(vi) For allje{s+ l,...,r} we have Nn Gj=l.

Let ;e{s+l , . . . , r} and D = NnGj. Suppose D>1. Let ie{l,2,...,s}. We have that
N^G( and Ui = Vr\Gi is a complement of N in Gf. Since D^Gj and !/_/, we have

UiD. Hence DSUiD. Therefore D^G ( for all ie{l,2,...,s}. It follows that
G G G

Since K is the product of pairwise totally permutable subgroups, once more by
Lemma 1 (a) there exists l^LSK such that, for example L^Gs+i.

Consider J = N n L~SK. Since J^Gs+l we have that the subgroups G,- normalize J,
for all ie{l,2,...,s}. Hence JSG. By the minimality of N we conclude J = N or J = l .
Since N£Gs+l, we have J = l . Therefore, the commutator [JV,L]^LniV = J = l. So
L^CG(N) = N. Since L^GS+1, we have that Gt normalizes L, for all ie{l,2,...,s}.
Hence, L = N ^GJ + 1 , a contradiction.

(vii) For a// _/ e {s + 1,..., r}, we have that Gj normalizes every subgroup of N.
lfX^N, then XG, = G,X and A" = X(Gj nN) = GjXnNSGjX by (vi).

(viii) We have s=\.
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Suppose N^Gi and i > l . Let X^N and [/, = G , n K We have that [/1A
r =

(because i>l). So, Gj normalizes X. Similarly G, normalizes f̂, for all G, such that
N g G , . Hence A'rSG, by (vii). So, \N\ =p, against (ii).

By (vii) and (viii) we have that N is a minimal normal subgroup of G1.
(ix) For allje{2,...,r} we have Glr\Gj = \.

Let D = GX nGj. By Lemma 2 (b), we have DgF(G1GJ). Since N is minimal normal
in Gu (14], p. 277, Th. 4.2 (e)), we have F(Gl)^CG{N) = N. It follows that D^NnGj =
1, by (vi).

By (vi) and (vii), we have that for all js{2,...,r} the subgroups Gj are faithfully
represented on the vector space N by scalar transformations. Let U\ be a conjugate of

1 v

(x) For all j e {2,. . . , r} we /iauc t/iar G, centralizes U\.
Clearly, G, t/f = t/?G, and U\Gj nN = U^Gj nGinN = U\(Gj nGJn N = Ux

l nN =
1. So, C/jGy is faithfully represented on N. Since Gj is represented by scalar transforma-
tions, we have that Gj centralizes U\.
(xi) The contradiction

Clearly, N^GU so Ut is a non-normal subgroup of Gt. It follows that Gt =
<l/{/x6Gi>. Hence, for all;e{2,... ,r}, G; centralizes G1; by (x). Therefore Gj^CG(Af) =
N and G7 = 1, by (vi).

Theorem 2. Let G = GjG2...Gr be a group such that GuG2,...,Gr are pairwise
permutable subgroups of G. Let Z£ = Jf be the class of nilpotent groups and let ^ be a
saturated formation such that J/'£#'. If for every pair i,je{l,2,...,r}, i^j, the subgroups
G, and G} are J/ -connected !? -groups, then G e !F.

Proof. Suppose the theorem is false and let G be a counterexample of smallest order.
Since the hypothesis is inherited by quotients, we conclude that G has a unique minimal
normal subgroup N. Since SF is saturated, we have <b(G) = 1.

Let p be a prime number and i,je{l,2,...,r}, such that i / j . Let xeG( be a p-element
and yeGj a p'-element. Since <x,y> is nilpotent, we have that y centralizes x. Let
PieSylp{Gi). Since O"{Gj) is generated by all p'-elements of Gj, we have O"(GJ)gCc(/

J
I).

For the definition of Op(Gj) see ([7, p. 142]).
Set Gf=f]pO"(Gj). The above consideration implies that G.^C^Gj1). Since our

argument is true for all ie{l,2,. . .r}, such that i^j, we have that Gf^G.
(I) Suppose Gf^=l, for somej'e{1,2,...,r}.

Because of the uniqueness of N we have N ^ GJ.
(a) If N is solvable, then N=CG(N) and Gt^N^Gf, for all ie{l,2,.. . ,r}, with ijtj.

It follows that G = GJeJ5r.
(b) If N is not solvable, then CG(AO = G, = 1 for all ie{l,2,...,r} with i^j. Again we

have G = Gje&.
(II) Suppose G*=l for all ; e { l , 2 , . . . , r } . Now G} is nilpotent for all je{l,2,...,r}.

Hence, G} = P, x OP(G7), for every prime number p.
Let i j e { l , 2 , . . . , r } such that i#/ \ By ([4, p. 676, Th. 4.7]) we have that

j). Hence PlP2...PreSylp(G). Since for all i e{ l ,2 , . . . , r} we have
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O"{Gi)^CG(PlP2...Pr), we conclude that Gf^NG(P1P2...Pr) and therefore
PlP2...PrSG. It follows that

The following example shows that Theorem 2 is not true when .yTpi? S^", without
additional hypothesis (see also the Example given in [6]):

Example. Let G = S4 be the symmetric group of degree 4. Let Gj be the normal
subgroup of order 4 of G and let G2 be a subgroup of order 6 of G. Clearly, G = GlG2.
Let y = Jrstf = g;r be the class of all groups whose commutator subgroups are
nilpotent. Clearly, Gt and G2 are •/T^-connected J^-groups, but

In view of the fact that the finite simple groups are 2-generated, the following seems
to be reasonable:

Conjecture. Let y be the class of solvable groups. If the group G = GiG2...Gr is the
product of the pairwise permutable and pairwise £f-connected ̂ -subgroups G,, then G is
solvable.

To mention the solution of a particular case of this conjecture, we introduce the
following notation: Let ST be the class of groups having Sylow-tower for the prime
numbers arranged in decreasing order.

Proposition. Let G = GxG2...Gr be a group such that GuG2,...Gr are pairwise
permutable and pairwise ST-connected supersolvable subgroups of G. Then G is a 2?-group.
In particular, G is solvable.

Proof. Suppose the proposition is false. Let G be a counterexample of smallest order
with r least possible. Every quotient group of G satisfies the hypothesis of the
proposition. Because of the minimality of | G |, every proper quotient group is a
^"-group.

Let p denote the largest prime number divisor of | G |. We may assume that p divides
| Gj |. We have to produce a nonidentity normal p-subgroup N of G.

Because of the supersolvability of Gu we can choose <x> a normal subgroup of G,,
with |<x>|=p. We show <x> is subnormal in G. Then AT = <x>G is a normal
p-subgroup of G.

First we show that r<;2. If r ^ 3 , then H = GlG2...Gr-l and K = GlG2...Gr_2Gr are
^"-groups, since r is least possible. Hence <x> is subnormal in H and K. By ([5, p. 239,
Th. 7.7.1]) we have that <x> is subnormal in HK = G. So G = G!G2.

Let geG. Write g=gyg2 with gieGl and £2eG2. Since <x><lG1, we have that
x9' = x' with l ^ i^P- By hypothesis <x,g2> is a ^"-group, thus <x,g2>p^<x,g2>. where
<x>£2>p denotes the Sylow-p-subgroup of <x,#2>. Therefore x,x32e(x,g2yp and x' =
X<"« = (X'')92 = (X92)'E<X,S2>P. It follows that <x,x*> is a p-group, for all geG. By ([7, p.
195, Th. 4.8]) we have that <x> is subnormal in G.
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