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Abstract

Let R be a finite commutative ring of odd characteristic and let V be a free R-module of finite rank. We
classify symmetric inner products defined on V up to congruence and find the number of such symmetric
inner products. Additionally, if R is a finite local ring, the number of congruent symmetric inner products
defined on V in each congruence class is determined.
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1. Introduction

Symmetric inner products over finite fields have been widely studied and their
classification by congruence is well known [2]. In this paper, we classify the
symmetric inner products defined on a free R-module, where R is a finite commutative
ring of odd characteristic. Since a finite commutative ring can be decomposed as a
finite sum of finite local rings [4, Theorem VI.2], it suffices to classify the symmetric
inner products over finite local rings of odd characteristic. Moreover, we determine
the number of congruent symmetric inner products in each congruence class.

The paper is organised as follows. In Section 2, we study the general theory of
finite local rings. Then, in Section 3, we define a symmetric inner product on a free
R-module, where R is a finite commutative ring of odd characteristic. We prove the
results over finite local rings and generalise to finite commutative rings in a natural
way. Finally, in Section 4, we find the number of congruent symmetric inner products
over a finite local ring in each congruence class. More generally, for finite commutative
rings, we obtain the number of all symmetric inner products.

2. Finite local rings

A local ring is a commutative ring which has a unique maximal ideal. For a local
ring R, we denote its unit group by R×. It follows from [1, Proposition 1.2.11] that the
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unique maximal ideal is M = R\R× and consists of all nonunit elements. We call the
field R/M, the residue field of R. From [4, Theorem V.1]), 1 + m is a unit of R for all
m ∈ M and u + m is a unit in R for all m ∈ M and u ∈ R×.

Let R be a finite local ring of odd characteristic with unique maximal ideal M and
residue field k. The order of R is a power of an odd prime and so is that of M. From
[4, Theorem XVIII. 2], the unit group R× is isomorphic to (1 + M) × k×. Consider the
exact sequence of groups

1 −→ KR −→ R×
θ
−→ (R×)2 −→ 1,

where θ : a 7−→ a2 is the square mapping on R× with kernel KR = {a ∈ R× : a2 = 1}
and (R×)2 = {a2 : a ∈ R×}. Note that KR consists of the identity and all elements of
order two in R×. Since R is of odd characteristic and k× is cyclic, KR = {±1}. Hence,
[R× : (R×)2] = |KR| = 2.

Proposition 2.1. Let R be a finite local ring of odd characteristic with unique maximal
ideal M.

(1) The image of θ is (R×)2 and it is a subgroup of R× with index [R× : (R×)2] = 2.
(2) For z ∈ R×\(R×)2, R×\(R×)2 = z(R×)2 and |(R×)2| = |z(R×)2| = (1/2)|R×|.
(3) For u ∈ R× and a ∈ M, there exists c ∈ R× such that c2(u + a) = u.
(4) If −1 < (R×)2 and u ∈ R×, then 1 + u2 ∈ R×.
(5) If −1 < (R×)2 and z ∈ R×\(R×)2, then there exist x, y ∈ R× such that z = (1 + x2)y2.

Proof. We have proved (1) in the above discussion and (2) follows from (1). Take u ∈
R× and a ∈ M. Then u−1(u + a) = 1 + u−1a ∈ 1 + M, so (u−1(u + a))|1+M|+1 = u−1(u + a).
Since |1 + M| = |M| is odd, u−1(u + a) = (c−1)2 for some c ∈ R×. Thus c2(u + a) = u,
which proves (3).

For (4), assume that −1 < (R×)2 and let u ∈ R×. Suppose that 1 + u2 = x ∈ M. Then
u2 = −(1 − x). Since |M| is odd and 1 − x ∈ 1 + M,

(u|M|)2 = (−(1 − x))|M| = (−1)|M|(1 − x)|M| = (−1)(1) = −1,

which contradicts the fact that −1 is nonsquare. Hence, 1 + u2 ∈ R×.
Finally, observe that |1 + (R×)2| = |(R×)2| is finite. If 1 + (R×)2 ⊆ (R×)2, then they

must be equal, so there exists b ∈ (R×)2 such that 1 + b = 1, which forces b = 0, which
is a contradiction. Hence, there exists an x ∈ R× such that 1 + x2 < (R×)2. By (4),
1 + x2 ∈ R×. Therefore, for a nonsquare unit z, R× is a disjoint union of the cosets
(R×)2 and z(R×)2, so 1 + x2 = z(y−1)2 for some y ∈ R×, as desired. �

3. Symmetric inner products

Let R be a finite commutative ring of odd characteristic and let V be a free
R-module of rank n, where n ≥ 2. A symmetric bilinear function β : V × V → R
is called a symmetric inner product if the R-module morphism from V to V∗ =

HomR(V, R) given by ~x 7→ β(·, ~x) is an isomorphism. Moreover, if B = {~b1, . . . , ~bn}
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is a basis of V , then the associated matrix is [β]B = [β(~bi, ~b j)]n×n. We say that B is an
orthogonal basis if β(~bi, ~bi) = ui ∈ R× for all i ∈ {1, 2, . . . , n} and β(~bi, ~b j) = 0 for i , j.

Two matrices S 1 and S 2 ∈ Mn(R) are called congruent, denoted by S 1 ≈ S 2, if there
exists an invertible matrix P ∈ GLn(R) such that PS 1PT = S 2. Note that S ≈ c2S for
all c ∈ R×. Clearly, if S 1 ≈ S 2, then S 1 is symmetric if and only if S 2 is symmetric.
This implies that congruence of matrices over R is an equivalence relation on the set
of all n × n symmetric matrices over R. Let β1 and β2 be symmetric inner products
with the associated matrices S 1 and S 2, respectively. We also say that β1 and β2 are
congruent if S 1 ≈ S 2.

Notation 3.1. For any l × n matrix A and q × r matrix B over R, A ⊕ B is the
(l + q) × (n + r) matrix over R defined by

A ⊕ B :=
(
A 0
0 B

)
.

First, we shall concentrate on a finite local ring of odd characteristic. McDonald
and Hershberger [5] proved the following theorem.

Theorem 3.2 [5, Theorem 3.2]. Let R be a finite local ring of odd characteristic and let
V be a free R-module of rank n ≥ 2 equipped with a symmetric inner product β. Then
V possesses an orthogonal basis C, so that [β]C is a diagonal matrix whose diagonal
entries are units and hence [β]C is invertible.

We write H2ν =
(

0 Iν
Iν 0

)
. The next two lemmas are important tools.

Lemma 3.3. Let R be a finite local ring of odd characteristic and let z ∈ R×\(R×)2. Then
zI2ν and I2ν are congruent, where ν ∈ N.

Proof. If −1 = u2 for some u ∈ R×, we may choose P = 2−1
(

(1+z) u−1(1−z)
u(1−z) (1+z)

)
whose

determinant is z ∈ R×. Since R has odd characteristic, 2 is a unit. Hence, P is invertible
and PPT = zI2.

Next, assume that −1 is nonsquare. By Proposition 2.1(5), z = (1 + x2)y2 for
some units x and y in R×. Choose Q =

(
xy y
−y xy

)
. Then det Q = (1 + x2)y2 = z ∈ R×,

so Q is invertible and QQT =
(

(1+x2)y2 0
0 (1+x2)y2

)
= zI2. Therefore zI2ν =

ν times︷           ︸︸           ︷
zI2 ⊕ · · · ⊕ zI2 is

congruent to I2ν =

ν times︷        ︸︸        ︷
I2 ⊕ · · · ⊕ I2. �

Lemma 3.4. Let R be a finite local ring of odd characteristic and let z ∈ R×\(R×)2. For
ν ∈ N:

(1) if −1 ∈ (R×)2, then I2ν is congruent to H2ν and diag(1, z) ≈ diag(1,−z); and
(2) if −1 < (R×)2, then Iν ⊕ zIν ≈ H2ν and I2 ≈ diag(1,−z).
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Proof. First, observe that if −1 = u2 for some unit u, then(
1 0
0 −z

)
=

(
1 0
0 u

) (
1 0
0 z

) (
1 0
0 u

)
.

However, if −1 is nonsquare, then −1 = zc2 for some unit c ∈ R and(
1 0
0 c

) (
1 0
0 −z

) (
1 0
0 c

)
=

(
1 0
0 −zc2

)
= I2.

A simple calculation with P = 2−1
(

Iν −Iν
Iν Iν

)
shows that L = 2

(
Iν 0
0 −Iν

)
≈ H2ν. Clearly, if −1

is square, L ≈ I2ν. Assume that −1 is nonsquare. By Proposition 2.1(2), −1 = zc2 for
some unit c which also implies that 2 or −2 must be a square unit. If 2 is a square unit,
then

L ≈ Iν ⊕ (−Iν) ≈ Iν ⊕ zc2Iν ≈ Iν ⊕ zIν.

Similarly, if −2 is a square unit, then

L ≈ (−Iν) ⊕ Iν ≈ zc2Iν ⊕ Iν ≈ Iν ⊕ zIν.

Therefore, Iν ⊕ zIν ≈ H2ν. �

Let R be a finite local ring of odd characteristic and let V be a free R-module of
rank n ≥ 2 equipped with a symmetric inner product β. By Theorem 3.2, we can
choose an orthogonal basis C of V such that [β]C = diag(u1, . . . , un) is a diagonal
matrix whose diagonal entries are units. We may assume that u1, . . . , ur are squares
and that ur+1, . . . , un are nonsquares. Since R× is a disjoint union of the cosets
(R×)2 and z(R×)2 for some nonsquare unit z (Proposition 2.1), ui = w2

i for some
wi ∈ R×, i = 1, . . . , r and u j = zw2

j for some w j ∈ R×, j = r + 1, . . . , n. Thus [β]C =

diag(u1, . . . ,ur) ⊕ zdiag(wr+1, . . . ,wn), which is congruent to Ir ⊕ zIn−r. If n − r is even,
Lemma 3.3 implies that [β]C is congruent to In. If n − r is odd, then n − r − 1 is even
and so [β]C is congruent to In−1 ⊕ (z) by the same lemma. Note that In and In−1 ⊕ (z)
are not congruent since z is nonsquare. We record this result in the following theorem.

Theorem 3.5. Let R be a finite local ring of odd characteristic and let V be a free
R-module of rank n ≥ 2 equipped with a symmetric inner product β. If C is a basis for
V, then [β]C ≈ In if and only if det[β]C is a square unit and [β]C ≈ In−1 ⊕ (z) if and only
if det[β]C is a nonsquare unit, where z is a nonsquare unit in R.

Proof. The theorem follows directly from the above discussion and the observations
that det P[β]CPT = det[β]C(det P)2 and det P is a unit in R. �

Next, we apply Lemmas 3.3 and 3.4, distinguishing three cases. In the calculations,
z is a nonsquare unit and ν is a positive integer.
Case 1. Assume that −1 is square. Then:

(a) I2ν ≈ H2ν and I2ν+1 ≈ H2ν ⊕ (1); and
(b) I2ν ⊕ (z) ≈ H2ν ⊕ (z) and I2ν−1 ⊕ (z) ≈ I2(ν−1) ⊕

(
1 0
0 z

)
≈ H2(ν−1) ⊕

(
1 0
0 −z

)
.
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Case 2. Assume that −1 is nonsquare and that ν is even. Then:

(a) I2ν ≈ Iν ⊕ Iν ≈ Iν ⊕ zIν ≈ H2ν and I2ν+1 ≈ Iν ⊕ Iν ⊕ (1) ≈ Iν ⊕ zIν ⊕ (1) ≈ H2ν ⊕ (1);
and

(b) I2ν ⊕ (z) ≈ Iν ⊕ Iν ⊕ (z) ≈ Iν ⊕ zIν ⊕ (z) ≈ H2ν ⊕ (z) and

I2ν−1 ⊕ (z) ≈ Iν−2 ⊕ Iν−2 ⊕ I3 ⊕ (z) ≈ Iν−2 ⊕ zIν−2 ⊕ I3 ⊕ (z)

≈ Iν−1 ⊕ zIν−1 ⊕ I2 ≈ H2(ν−1) ⊕

(
1 0
0 −z

)
.

Case 3. Assume that −1 is nonsquare and that ν is odd. Then:

(a) I2ν ≈ Iν−1 ⊕ Iν−1 ⊕ I2 ≈ Iν−1 ⊕ zIν−1 ⊕ I2 ≈ H2(ν−1) ⊕
(

1 0
0 −z

)
and

I2ν+1 ≈ Iν−1 ⊕ Iν−1 ⊕ I2 ⊕ (1) ≈ Iν−1 ⊕ zIν−1 ⊕ zI2 ⊕ (1)
≈ Iν ⊕ zIν ⊕ (z) ≈ H2ν ⊕ (z);

(b) I2ν ⊕ (z) ≈ Iν−1 ⊕ Iν−1 ⊕ I2 ⊕ (z) ≈ Iν−1 ⊕ zIν−1 ⊕ I2 ⊕ (z) ≈ Iν ⊕ zIν ⊕ (1) ≈ H2ν ⊕ (1)
and I2ν−1 ⊕ (z) ≈ Iν−1 ⊕ Iν−1 ⊕ (1) ⊕ (z) ≈ Iν ⊕ zIν ≈ H2ν.

These calculations classify the symmetric inner products defined on a free R-module,
where R is a finite local ring of odd characteristic, and they establish the following
theorem.

Theorem 3.6. Let R be a finite local ring of odd characteristic with a fixed nonsquare
unit z and let V be a free R-module of rank n ≥ 2 with a basis C equipped with a
symmetric inner product β.

(1) If n = 2ν and det[β]C ∈ (R×)2, then

[β]C ≈

H2ν if − 1 ∈ (R×)2 or ν is even,
H2(ν−1) ⊕ diag(1,−z) otherwise.

(2) If n = 2ν and det[β]C ∈ z(R×)2, then

[β]C ≈

H2(ν−1) ⊕ diag(1,−z) if − 1 ∈ (R×)2 or ν is even,
H2ν otherwise.

(3) If n = 2ν + 1 and det[β]C ∈ (R×)2, then

[β]C ≈

H2ν ⊕ (1) if − 1 ∈ (R×)2 or ν is even,
H2ν ⊕ (z) otherwise.

(4) If n = 2ν + 1 and det[β]C ∈ z(R×)2, then

[β]C ≈

H2ν ⊕ (z) if − 1 ∈ (R×)2 or ν is even,
H2ν ⊕ (1) otherwise.
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For convenience in the next observation, we conclude here that [β]C in the above
theorem is congruent to one and only one of

S 2ν+δ,∆ =

0 Iν
Iν 0

∆

 where ∆ =


∅ (empty) if δ = 0,
(1) or (z) if δ = 1,
diag(1,−z) if δ = 2.

Now, let R be a finite commutative ring of odd characteristic. It is well known that
R is a direct product of finite local rings of odd characteristic, say,

R = R1 × R2 × · · · × Rt.

Consider Vδ = R2ν+δ, a free R-module of rank 2ν + δ, where ν ≥ 1 and δ ∈ {0, 1, 2}. We
have the canonical one-to-one correspondence

~x = (x1, x2, . . . , x2ν+δ)
ϕ
7→ ((x( j)

1 )t
j=1, (x( j)

2 )t
j=1, . . . , (x( j)

2ν+δ)
t
j=1).

Note that if ~x,~y ∈ Vδ, then this correspondence induces the orthogonal map β on Vδ by

β(~x, ~y) = β(((x( j)
1 )t

j=1, (x( j)
2 )t

j=1, . . . , (x( j)
2ν+δ)

t
j=1), ((y( j)

1 )t
j=1, (y

( j)
2 )t

j=1, . . . , (y
( j)
2ν+δ)

t
j=1))

= (β1(~x (1), ~y (1)), β2(~x (2), ~y (2)), . . . , βt(~x (t), ~y (t))),

where ~x ( j) = (x( j)
1 , x( j)

2 , . . . , x( j)
2ν+δ) ∈ V ( j)

δ := R(2ν+δ)
j and (V ( j)

δ , β j) is an orthogonal space
over R j of rank 2ν + δ associated with the matrix S 2ν+δ j,∆ j arising from Theorem 3.6,
for all j ∈ {1, 2, . . . , t}. This induces, in a natural way, a decomposition of S 2ν+δ,∆. That
is, S 2ν+δ,∆ = S 2ν+δ1,∆1 ⊕ S 2ν+δ2,∆2 ⊕ · · · ⊕ S 2ν+δt ,∆t . Therefore, we have the following
result for finite commutative rings.

Theorem 3.7. Let R be a finite commutative ring of odd characteristic and let V be a
free R-module of rank n ≥ 2 with a symmetric inner product β. Then the associated
matrix of β is congruent to one and only one of

S 2ν+δ,∆ = S 2ν+δ1,∆1 ⊕ S 2ν+δ2,∆2 ⊕ · · · ⊕ S 2ν+δt ,∆t ,

where S 2ν+δ j,∆ j is as presented above, for j ∈ {1, 2, . . . , t}.

4. Number of symmetric inner products

Let R be a finite local ring with unique maximal ideal M and residue field k = R/M
and let V be a free R-module of rank n = 2ν + δ, where ν ≥ 1 and δ ∈ {0, 1, 2}. In this
section, we use the result over a finite field in [3] to find the number of symmetric
inner products β defined on V , which are congruent to each S 2ν+δ,∆. We denote this
number by |[S 2ν+δ,∆]|. In any free R-module V of rank n ≥ 2, we let N(V) denote the
number of all symmetric inner products defined on V and let I(V) denote the number
of all symmetric inner products defined on V which are congruent to In.
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First, we discuss the results over a finite field. From MacWilliams [3], if k is a finite
field of odd characteristic and V ′ is a free k-module of rank n ≥ 2, then

N(V ′) =

bn/2c∏
i=1

|k|2i

|k|2i − 1

n−1∏
i=0

(|k|n−i − 1)

and

I(V ′) =



1
2

N(V ′) if n is odd,

1
2
|k|s + 1
|k|s

N(V ′) if n = 2s is even and −1 is a square in k,

1
2
|k|s + (−1)s

|k|s
N(V ′) if n = 2s is even and −1 is a nonsquare in k.

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and residue field k = R/M. Let V be a free R-module of rank n ≥ 2 equipped with
a symmetric inner product β. This induces an inner product space V ′ over k equipped
with β′, in an obvious manner. The results over a finite local ring may be considered
as lifts from the results over its residue field.

Theorem 4.1 (Lifting theorem). Let R be a finite local ring with unique maximal ideal
M and residue field k = R/M and let V be a free R-module of rank n = 2ν + δ, where
ν ≥ 1 and δ ∈ {0, 1, 2}, equipped with a symmetric inner product β. Suppose (V ′, β′) is
the induced symmetric inner product space over k. Then the associated matrix for β is
congruent to S 2ν+δ,∆ if and only if the associated matrix for β′ is congruent to S ′2ν+δ,∆.

Proof. We first note that, by Theorem 2.1(3), a lift of a nonsquare unit in k is a
nonsquare unit in R. This implies that a lift of S ′2ν+δ,∆ in V ′ is congruent to S 2ν+δ,∆

in V . Then the theorem follows from Theorem 3.6. �

The above theorem suggests that each symmetric inner product in a congruence
class over the residue field is liftable to symmetric inner products in a congruence
class over a given finite local ring by adding all symmetric matrices whose entries are
in the maximal ideal. This approach allows us to deduce the number of congruent
symmetric inner products in each congruence class.

Theorem 4.2. Let R be a finite local ring with maximal ideal M and residue field
k = R/M and let V be a free R-module of rank n ≥ 2 with the induced free k-module
V ′. Then

N(V) = |M|n(n+1)/2
bn/2c∏
i=1

|R|2i

|R|2i − |M|2i

n−1∏
i=0

(
|R|n−i − |M|n−i

|M|n−i

)
.

Moreover, for a fixed nonsquare unit z in R:

(1) if n = 2ν + 1 is odd, then |[S 2ν+1,∆]| = 1
2 N(V), where ∆ = (1) or (z); and
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(2) if n = 2ν + δ, δ ∈ {0, 2} is even, then

|[S 2ν,∅]| =
|R|ν + |M|ν

2|R|ν
N(V) and |[S 2ν+2,diag(1,−z)]| =

|R|ν+1 − |M|ν+1

2|R|ν+1 N(V).

Proof. Let β′ be a symmetric inner product defined on V ′ with the associated matrix
B′. It is clear that all lifting symmetric inner products of β′ defined on V have
associated matrices of the form B + mn, where B modulo M is B′ and mn ∈ Mn×n is
symmetric. Then

N(V) = |M|n(n+1)/2N(V ′).

Since |k| = |R|/|M|, we obtain N(V), as desired.
Next, assume that n = 2ν + 1 is odd. Then, by Theorem 4.1,

|[S 2ν+1,∆]| = |M|n(n+1)/2|[S ′2ν+1,∆]|.

It follows from Theorem 3.6 that |[S ′2ν+1,∆]| = I(V ′) or N(V ′) − I(V ′). In both cases,
|[S ′2ν+1,∆]| = 1

2 N(V ′), so |[S 2ν+1,∆]| = |M|n(n+1)/2 1
2 N(V ′) = 1

2 N(V).
Now assume that n = 2ν + δ, δ ∈ {0, 2} is even. Then, by Theorem 4.1,

|[S 2ν,∆]| = |M|n(n+1)/2|[S ′2ν,∆]| and |[S 2ν+2,∆]| = |M|n(n+1)/2|[S ′2ν+2,∆]|.

If −1 ∈ (R×)2, then, by Theorem 3.6,

|[S ′2ν,∆]| = I(V ′) =
1
2
|k|ν + 1
|k|ν

N(V ′), |[S ′2ν+2,∆]| = N(V ′) − I(V ′) =
1
2
|k|s − 1
|k|s

N(V ′),

so

|[S 2ν,∆]| =
|R|ν + |M|ν

2|R|ν
N(V) and |[S 2ν+2,∆]| =

|R|ν+1 − |M|ν+1

2|R|ν+1 N(V).

For the case −1 ∈ z(R×)2, the results follow by using similar arguments. �

Finally, let R be a finite commutative ring of odd characteristic and write

R = R1 × R2 × · · · × Rt

as a direct product of finite local rings of odd characteristic R j, j ∈ {1, 2, . . . , t}. Let V
be a free R-module of rank n. Then V = V1 ⊕ V2 ⊕ · · · ⊕ Vt, where each V j is a free
R j-module. From Theorem 4.2, we have the following result.

Theorem 4.3. Let R be a finite commutative ring of odd characteristic and write
R = R1 × R2 × · · · × Rt as a direct product of finite local rings of odd characteristic R j

for j ∈ {1, 2, . . . , t}. Let V be a free R-module of rank n. Then the number of symmetric
inner products defined on V is given by

N(V) =

t∏
j=1

N(V j) =

t∏
j=1

|M j|
n(n+1)/2

bn/2c∏
i=1

|R j|
2i

|R j|
2i − |M j|

2i

n−1∏
i=0

(
|R j|

n−i − |M j|
n−i

|M j|
n−i

)
.
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