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Tangle equations, the Jones conjecture,
slopes of surfaces in tangle complements,
and q-deformed rationals
Adam S. Sikora
Abstract. We study systems of two-tangle equations

⎧⎪⎪
⎨
⎪⎪⎩

N(X + T1) = L1 ,
N(X + T2) = L2 ,

which play an important role in the analysis of enzyme actions on DNA strands.
We show that every system of framed tangle equations has at most one-framed rational solution.

Furthermore, we show that the Jones unknot conjecture implies that if a system of tangle equations
has a rational solution, then that solution is unique among all two-tangles. This result potentially
opens a door to a purely topological disproof of the Jones unknot conjecture.

We introduce the notion of the Kauffman bracket ratio {T}q ∈ Q(q) of any two-tangle T and we
conjecture that for q = 1 it is the slope of meridionally incompressible surfaces in D3 − T . We prove
that conjecture for algebraic T. We also prove that for rational T, the brackets {T}q coincide with
the q-rationals of Morier-Genoud and Ovsienko.

Additionally, we relate systems of tangle equations to the cosmetic surgery conjecture and the
nugatory crossing conjecture.

1 Introduction

1.1 Systems of tangle equations

A system of tangle equations has the form

(1.1)

where T1 ≠ T2 are rational two-tangles and L1 , L2 are links and X is an unknown two-
tangle. (From now on, two-tangles will be referred to as “tangles.”) Such systems play
an important role in the analysis of entanglement of DNA molecules (see Section 2.3).
We study them in the settings of both unframed and framed links, by combining
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2 A. S. Sikora

topological methods (surgery theory on double branched covers of links and tangles)
and algebraic methods involving the Jones polynomial and the Kauffman bracket.

We prove foundational results in Sctions 2.2 and 2.3. In particular, we show that
every tangle equation has infinitely many solutions when L is not the unlink of two
components. We also exhibit systems (1.1) which have an arbitrarily large numbers of
solutions.

The Kauffman bracket of a framed two-tangle T is [T] = ( [T]0[T]∞
) , where

[T]0 , [T]∞ ∈ Z[A±1] are determined by applying the Kauffman bracket skein relations
reducing T to a linear combination

(cf. [10, 27, 41]).
A rational solution of (1.1) is one given by a rational tangle. We prove the following.

Proposition (Proof in Section 8) Every framed system (1.1) has at most one-framed
rational solution.

We propose, more generally, the following.

Conjecture If a framed system (1.1) has a rational solution X, then it is unique (among
all solutions X).

The Jones unknot conjecture, henceforth, called the Jones conjecture, states that
the Jones polynomial distinguishes all nontrivial knots from the trivial one (see [19]).
One of the main results of this paper relates the above two conjectures.

Theorem 1.3 (Proof in Section 9) The Jones conjecture implies Conjecture 1.2.

A stronger version of this statement, formulated in Section 9, shows that because
the Jones conjecture holds up to 24 crossings (see [42]), Conjecture 1.2 holds for
tangles up to 11 crossings.

The topological meaning of the Jones polynomial is rather obscure, despite much
research devoted to it in the last decades. Hence, we find this purely topological
consequence of the Jones conjecture intriguing. In particular, this result opens a door
to disproving the Jones conjecture through purely topological methods.

We will show in Proposition 2.1 that there is no upper bound on the number of
solutions of systems (1.1) (framed and unframed ones).

Conjecture 1.2 does not hold for unframed systems. However, every unframed
system has at most two rational solutions (see [11]). Conjecture 1.2 suggests the
following unframed version of it.

Conjecture If an unframed system (1.1) has a rational solution X , then its every
solution is rational.

The importance of this conjecture stems from the fact that a counterexample to
it may lift to a framed counterexample of Conjecture 1.2; thus, disproving the Jones
conjecture. We will prove cases of this conjecture and connect it with the theory of
strongly invertible knots in an upcoming work.
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Tangle equations, the Jones conjecture, q-deformed rationals 3

1.2 Approach through the surgery theory

Taking double branched covers of tangles and of links translates equations (1.1) into
the language of surgery theory of three-manifolds. Apart from the Kauffman bracket,
this is the second main source of methods utilized in this paper. In particular, we show
the following.

Proposition (Proof in Section 3) If L1 = L2 is either a nontrivial rational knot or a
nontrivial torus knot, then system (1.1) has no algebraic tangle (framed or unframed)
solutions for any T1 , T2 .

(This result settles, in particular, Conjecture 1.2 when L1 = L2 is a nontrivial rational
knot or a torus knot.) We will relate systems of tangle equations to cosmetic surgery
conjecture in Section 3.

1.3 Connection with q-rationals and slopes of essential surfaces

Theorem 1.6 (Proof in Section 7) For any tangle T,

{T}q ∶= A−2[T]∞/[T]0
is well defined (i.e., not 0/0) and independent of the framing of T. Furthermore,

{T}q ∈ Q̂(q) = Q(q) ∪ {∞},

where q = −A4 .

We call {T}q the Kauffman bracket ratio of T or the KB ratio for short.

Theorem 1.7 (Proof in Section 7) For any x ∈ Q̂, {⟨x⟩}q is the q-rational of [33].

q-Rationals are q-deformations of rational numbers, in the sense that {⟨x⟩}q
evaluates to x at q = 1. (They were independently discovered by us in the first version of
this paper on arXiv.) Interestingly, much of the theory of continued fractions extends
to these q-rational numbers. We believe that our approach to q-rational numbers
provides a useful new geometric intuition.

Finally, we relate the Kauffman bracket ratios to slopes of dividing surfaces in
tangle complements in Section 10. A surface S properly embedded in the complement
of a tangle, B3 − T , is meridionally incompressible if every two-disk D2 in B3 with
boundary in S intersecting T transversely precisely once can be deformed to a disk in
S ∪ T . A surface S is m-essential (for “meridionally essential”) if it is incompressible,
meridionally incompressible and not boundary-parallel in D3/T (see [34, 35]).

We say that a loop γ in S2
4 is dividing if it separates the punctures of S2

4 into two
groups of two. Such loops are classified by their slope s(γ) ∈ Q̂ = Q ∪ {∞} which can
be defined by lifting γ to the torus being the double cover of S2 branched over the four
ends of T (see Section 10).

If the boundary of an m-essential surface contains a dividing loop γ, we call S
dividing and we call s(γ) the slope s(S) of S. (Then it is easy to see that all other
dividing loops of ∂S must be parallel.) This definition is inspired by that in [35], where
the slopes are defined for algebraic tangles.
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4 A. S. Sikora

Figure 1: The −1, 0, 1 and∞ tangles and the tangle addition T + T′. (We follow here Conway’s
notation [7]. Kauffman’s and his collaborators’ papers use opposite signs, e.g., [24].)

Conjecture Every dividing m-essential surface in the complement of any tangle T has
slope {T}1.

For the above reason, we call {T}1 ∈ Q̂ the algebraic slope of T. This conjecture is
related to [35, Question 3.4] which asks more broadly if the slopes of such surfaces are
determined by T.

Theorem 1.9 (Proof in Section 10) Our algebraic slope coincides with Ozawa’s slope for
algebraic tangles. In other words, the above conjecture holds for algebraic tangles.

2 Preliminaries

2.1 Rational and algebraic tangles and links

Throughout, two-tangles will be called tangles for brevity. They are proper tame
embeddings of one-manifolds into D3 = D2 × (−1, 1) with ends at NE, SE, SW, NW
points of ∂D2 , where D2 is a compact disk identified with D2 × {0}. Tangles are
considered up to isotopies fixing ∂D2. A two-string tangle is one which consists of
two strings only (no loops). The ⟨−1⟩, ⟨0⟩, ⟨1⟩ and ⟨∞⟩ tangles and the tangle addition
are depicted in Figure 1.

The result of adding n tangles ⟨1⟩ (resp. ⟨−1⟩) together is denoted by ⟨n⟩ (resp.
⟨−n⟩), for n = 1, 2, 3, . . . These tangles, together with ⟨0⟩, are called integral.

The mirror image −T of T is obtained by switching all crossings of T. The tangle
rotation R(T) is the 90○ clockwise rotation and the tangle inversion is the tangle
rotation followed by the mirror image.

All tangles obtained from the integral ones by the operations of addition and rota-
tion are called algebraic. (This class is closed under the mirror image and inversion.)
Among them are rational tangles defined as follows:

By ⟨an , .., a1⟩, we denote the tangle obtained from ⟨0⟩ by adding ⟨a1⟩ followed by
the inversion, then by adding ⟨a2⟩ followed by the inversion, and so on, until this
construction is finished by adding an at the end, as in Figure 2 (left). Tangles of this
form, for a1 , . . . , an ∈ Z, are called rational because as observed by Conway [7] (and
proved in [6, 24, 32])

⟨an , .., a1⟩ → an +
1

an−1 + 1
⋱+ 1

a1

defines a bijection between rational tangles (up to tangle isotopy) and Q̂ = Q ∪ {∞}.
Under this bijection, tangle inversion corresponds to the fraction inversion, x → 1/x ,
and the mirror image operation corresponds to the negation, x → −x .

This association does not preserve addition.
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Tangle equations, the Jones conjecture, q-deformed rationals 5

Figure 2: Rational tangle ⟨−2,−3, 2⟩, and the numerator, and the denominator closures.

Figure 3: A satellite of a long trefoil.

By applying the numerator or the denominator closure (defined in Figure 2) to a
rational tangle, we obtain a rational link, also referred to as a two-bridge link or four-
plat.

2.2 Tangle equations

A tangle equation has the form

N(X + T) = L,(2.1)

where a rational tangle T and a link L are given and the tangle X is unknown. Finding
all solutions of (2.1) is usually exceedingly difficult.

Let us denote by B and D the three-balls in which X and T lie, and let S be the
four-punctured sphere S2

4 = ∂B − X = ∂D − T . For any ϕ in the mapping class group,
MCG(S2

4), the action of ϕ on S2
4 extends to maps of B − X and of D − T to B − X′ and

D − T ′, respectively, such that N(X + T) = N(X′ + T ′). In other words, MCG(S2
4)

acts on all pairs (X , T) while preserving N(X + T). (The orbits of that action on
tangles are the isotopy classes of tangles moving their endpoints around.) We call pairs
(X , T) and ϕ(X , T), for ϕ ∈ MCG(S2

4) equivalent. Since all rational tangles belong to
a single orbit of MCG(S2

4), this equivalence defines a 1–1 correspondences between
solutions of tangle equations (2.1) for different T’s.

Recall that a tangle is two-string if it has no loops.

Proposition (1) If L is the unlink of two components, then Eq. (2.1) has infinitely many
solutions but only one two-string one.
(2) If L is a knot or a nontrivial link then Eq. (2.1) has infinitely many two-string
solutions.

Proof Since every tangle equation is equivalent to one with T = ⟨0⟩, we assume that
for the proof. Hence, clearly it has at least one solution, X. For L the unlink, X = ⟨0⟩.

Assume that L is not the unlink now. For any long knot K, let SatX(K) be its satellite
with X as a companion tangle, as in Figure 3. Then N(SatX(K)) = N(X). Hence, if
X is a solution of Eq. (2.1), then SatX(K) is a solution as well. Since SatX(K) and
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6 A. S. Sikora

SatX(K′) are non-isotopic for different K and K′ (here, we assume that X ≠ ⟨0⟩), there
are infinitely many different tangles of this form. ∎

For a nontrivial rational L [11, Theorem 2.2] shows infinitely many rational solu-
tions to Eq. (2.1).

Finally, we remark that Proposition 2.1 does not hold if T is allowed to be nonra-
tional. For example, Eq. (2.1) has no solutions for certain pretzel tangles T and L the
unknot, since one can show that some pretzel tangles do not embed into the unknot.
(That fact is an easy application of Proposition 5.1.)

2.3 Systems of tangle equations

A system of tangle equations has the form (1.1) or, equivalently,
⎧⎪⎪⎨⎪⎪⎩

N(X + T1) = L1 ,
N(X + T2) = L2 ,

where T1 ≠ T2.
Systems of tangle equations play a crucial role in the analysis of entanglement of

DNA molecules. The reason for that is that certain enzymes (called recombinase)
separate circular DNA substrate molecules into two tangles: T1, consisting of the part
of the DNA molecule bound to the enzyme, and the other part, X, not bound to the
enzyme. Then the enzyme replaces T1 by a tangle T2. The substrate knot L1 is controlled
by the experiment. The link L2 is observable in the experiment. Since tangles T1 and
T2 are known, DNA recombination processes lead to systems (1.1), where X is the
unknown (see, e.g., [1, 5, 8, 9, 11, 38, 39, 43, 44] for further discussion of such systems).

The action MCG(S2
4) on tangles of the previous section extends onto an action on

triples (X , T1 , T2). By analogy, we call triples (X , T1 , T2) and ϕ(X , T1 , T2) equivalent
for any ϕ ∈ MCG(S2

4). This equivalence defines a 1–1 correspondences between
solutions of systems of tangle equations (1.1) for equivalent pairs (T1 , T2) and (T ′1 , T ′2).

Proposition For every pair (T1 , T2) not equivalent to (⟨0⟩, ⟨k⟩) for k ∈ Z ∪ {∞} and
for every n > 0 there are links L1 and L2 such that (1.1) has at least n solutions.

A Montesinos tangle is a sum of rational ones, R1 + ⋅ ⋅ ⋅ + Rk . The numerator closure
of a Montesinos tangle is a Montesinos link. In the above proposition, one can further
assume that L1 , L2 and the solutions X are Montesinos.

Proof of Proposition 2.3 By utilizing an equivalence, we can assume that equations
(1.1) have form

N(X) = L1 , N(X + T) = L2 ,

for some L1 , L2 and T = ⟨x0⟩, for some x0 ∈ Q̂ −Z. Let

X i = T + ⋅ ⋅ ⋅ + T + ⟨x1⟩ + T + ⋅ ⋅ ⋅ + T ,

for some x1 ∈ Q̂, where there are iT’s on the left and 2n − iT’s on the right. By a
cyclic symmetry, N(X i) coincide for i = 0, . . . , n − 1 and also N(X i + T) coincide for
i = 0, . . . , n − 1.
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Tangle equations, the Jones conjecture, q-deformed rationals 7

We claim that choosing x1 ∈ Q̂ so that x1 ≠ x0 mod 1 guarantees that all X1 , . . . , Xn
are distinct. Indeed, the links N(X i + ⟨x0⟩) are Montesinos. By the classification of
Montesinos links [4], they are all distinct if x0 ≠ x1 mod 1.

In the case of systems of tangle equations, the conditions for the existence and
uniqueness or finiteness of solutions seem unknown in general. We propose the
following.

Conjecture Every system (1.1) have finitely many solutions X only.

We are going to see later (e.g., in Section 8) that the uniqueness of solutions is easier
to analyze in the context of framed tangles and links.

3 Surgery methods, cosmetic surgery conjecture

We denote by Σ(T) the double cover of the three-ball B3 branched along a tangle T
in it. Similarly, Σ(L) denotes the double cover of S3 branched along a link L. Since the
double branched cover of a rational tangle T is a solid torus, every solution X of (1.1)
defines a knot (the core of Σ(T)) in Σ(L).

As an application of surgery methods, we obtain Proposition 1.5 which we recall
here.

Proposition 1.5 If L1 = L2 is either a nontrivial rational knot or a nontrivial torus knot,
then system (1.1) has no algebraic tangle (framed or unframed) solutions for any T1 , T2 .

Proof Suppose that X is an algebraic tangle solution to

N(X + T1) = L = N(X + T2),(3.1)

for T1 ≠ T2 . By the above discussion, there is a nontrivial surgery of Σ(L) yielding
Σ(L). If L is rational then Σ(L) is a lens space and if L is a torus knot then Σ(L) is
Seifert with base the teo-sphere and three exceptional fibers (see, e.g., [18, Section 3.1]).
Either way, it is irreducible and atoroidal. Furthermore, Σ(X) is a graph manifold and,
hence, non-hyperbolic. Hence, [31, Corollary 1.4] implies that Σ(Ti) lies in a three-
ball. Since Σ(L) ≠ S3 , the boundary of that ball is incompressible in Σ(X), making it
reducible. Since X is rational or prime, that is impossible by [29, Theorem 5]. ∎

As observed in the proof above, every solution of (3.1) yields a cosmetic surgery on
Σ(L). Such surgeries are rare and are subject of the cosmetic surgery conjecture, (see
[15, 25]). A special case of that conjecture is the nugatory crossing conjecture, asserting
that if a change of a sign of a crossing c in a knot diagram D results in an isotopic knot
then c is nugatory, that is K has form below (see [2, 3, 21, 30, 40]).

We say that a tangle X ⊂ B3 is unlinked if it is a two-string tangle whose components
can be isotoped so that they do not intersect each other. (They can be all obtained by
knotting the arcs of ⟨0⟩ or of ⟨∞⟩.) The following is straightforward.

Proposition Nugatory crossing conjecture is equivalent to the following statement: If
N(X + ⟨1⟩) = N(X + ⟨−1⟩) is a knot, then X is unlinked.
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8 A. S. Sikora

Figure 4: A nugatory crossing in knot. Disks denote one-tangles.

Proof (1)⇒ Suppose the nugatory crossing conjecture holds and

N(X + ⟨1⟩) = N(X + ⟨−1⟩)
is a knot K. Then the crossing in ⟨±1⟩ is nugatory in K. By the nugatory crossing
conjecture, K consists of two arcs, each in a disjoint ball, as in Figure 4. Since these
balls can be placed in the three-disk B3 to form X, the statement follows.
⇐ Any knot with a nugatory crossing can be realized as N(X + ⟨1⟩) where the

nugatory crossing is in ⟨1⟩. Since X is unlinked the statement follows. ∎
It is worth noting that N(X + ⟨1⟩) = N(X + ⟨−1⟩) cannot be a link for a two-

string X.
Finally, the following example shows that the assumption of nontriviality of L1 = L2

in Proposition 1.5 is essential. It will be useful later.
Lemma 3.2 X = ⟨∞⟩ and ⟨−1/2⟩ are the only solutions to

N(X) = U = N(X + ⟨1⟩),(3.2)

where U denotes the unknot.
Proof The numerator closure N(⋅) and the operation N(⋅ + ⟨1⟩), on the level of the
double covers correspond to two different Dehn fillings of Σ(X). Each of them yields
the double cover of S3 branched along U, i.e., S3 . By a theorem of Gordon and Luecke
[16, Theorem 2], Σ(X)must be a solid torus and, hence, X is rational, X = ⟨p/q⟩.

By a theorem of Schubert,

N(⟨p/q⟩) = U = N(⟨1⟩)

only if p = 1 (see [24, 37]). Since N(⟨ 1
q ⟩ + ⟨1⟩) = U , it is easy to see that q is either 0

or −1/2. ∎

4 Framed tangles and systems of equations

Framed links are tame embeddings of annuli S1 × I ∪ ⋅ ⋅ ⋅ ∪ S1 × I into R3, where I is
an open interval. Similarly, framed tangles are proper tame embeddings

J1 × I ∪ J2 × I ↪ D2 × (−1, 1),
where J1 , J2 are closed intervals and the end arcs ∂J1 × I, ∂J2 × I lie disjointly in
∂D2 = ∂(D2 × {0}) each containing a different point from among NE , SE , SW , NW
in ∂D2. Clearly, every link diagram and tangle diagram defines a framed link or tangle
with its framing parallel to the page. We require that every framed link and tangle
can be represented in that way. (Hence, components with a half-twist framing are not
allowed.)

For our purposes, it will be convenient to consider framed links and tangles up
to balanced isotopy given by the balanced Reidemeister moves, presented in Figure 5.
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Figure 5: Balanced Reidemeister moves. (Diagrams have blackboard framing.)

Note that this is a somewhat more flexible isotopy than the standard isotopy of framed
links or tangles.

A framed rational tangle is a rational tangle with an arbitrary framing. Given a
diagram D of a tangle or a link, we will denote by Dn the framed diagram obtained
from the page framing of D by adding ∣n∣ positive or negative twists, depending
on the sign of n. Note that location of these twists does not matter up to balanced
Reidemeister moves.

Definitions of tangle addition and of numerator and denominator closures gener-
alize immediately to framed tangles. Consequently, systems (1.1) can be considered in
the context of framed tangles and links.

4.1 Systems of framed tangle equations

Framed links and tangles seem more appropriate for modeling DNA molecules which
are double stranded. Additionally, we will see soon, that it sometimes easier to solve
tangle equations in the framed setting and framed solutions inform on unframed ones.

Let us assume that T1 , T2 are framed rational tangles now. As before, we assume
that T1 , T2 are unequal as unframed tangles. (Note that if T1 and T2 in (1.1) differ by
framing twists only, then by adjusting the framing of L2, one can reduce (1.1) to a form
in which T1 = T2 as framed tangles. In that form, (1.1) is either inconsistent or reduces
to a single equation.)

Note that Proposition 2.1 easily extends to framed equations.
Given an unframed system (1.1), its framing is a choice of a framing for

L1 , L2 , T1 , T2 . Let us consider the following framed version of system (3.2) which will
be useful later:

N(X) = U n and N(X + ⟨1⟩) = U m ,(4.1)

for some n, m ∈ Z, where as defined above, U n denotes the unknot with ∣n∣ twists of
framing, positive or negative, depending on the sign of n.

Lemma 4.1 (1) If m = n + 1, then ⟨∞⟩n is the only solution to (4.1).
(2) If m = n − 3, then ⟨−1/2⟩n+2 is the only solution to (4.1).
(3) If m − n is neither 1 or −3, then (4.1) has no framed solution.

Proof Suppose that X satisfies the above equations. Then stripped of its framing, it
is either X = ⟨∞⟩ or ⟨−1/2⟩, by Lemma 3.2. Since
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10 A. S. Sikora

where the dashed square marks the tangle ⟨∞⟩ f , for some f ∈ Z, the tangle X = ⟨∞⟩
lifts to a framed solution only iff m − n = 1 and that solution is ⟨∞⟩ f , where f = n. (For
reader’s convenience, we marked the signs of crossings in the diagrams.) Similarly,

shows that X = ⟨−1/2⟩ lifts to a framed solution only iff m − n = −3 and that solution
is ⟨−1/2⟩ f for f = n − 2.

For m − n ≠ 1,−3, these equations are contradictory. ∎

Note that every framed system (1.1) defines an unframed one and every framed
solution descends to an unframed one. Lemmas 3.2 and 4.1 show that not every
solution to the unframed system can be lifted to a framed one. In fact, there may be
no framing of (1.1) for which all unframed solutions can be framed.

5 The Kauffman bracket of a tangle

The Kauffman bracket [L] ∈ Z[A±1] is an invariant of framed unoriented links L up to
isotopy, satisfying the skein relations

(with the blackboard framing), where δ = −A2 − A−2 , normalized so that the bracket
of the trivially framed unknot U 0 is [U 0] = 1.

By the above skein relations, each framed tangle can be expressed as

where [T]0 , [T]∞ ∈ Z[A±1] are uniquely defined. Recall that we call the vector [T] =

( [T]0[T]∞
) the Kauffman bracket of T .

Kauffman brackets of tangles provide a criterium for embedding them into links.
The KB determinant of T denoted by detKB(T) ∈ Q[A±1] is gcd([T]0 , [T]∞) in

Q[A±1]. Note that it is well defined for unframed tangles up to a multiplicative factor
of An , for n ∈ Z.

Proposition A necessary condition for a tangle T embedding into a link L is that
detKB(T) divides [L] in Q[A±1].

This result generalizes the main result of [26] which treats A = eπi/4 case (see also
[36]). (This idea was utilized for the trivial L in [41].) More generally, a necessary
condition is that [L] ∈ Z[A±1] lies in the ideal ⟨[T]0 , [T]∞⟩ ◁Z[A±1].
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Figure 6: 1 and −1 tangle types oriented vertically (on the left) and horizontally (on the right).

Proof of Proposition 5.1

and, therefore, a tangle T embeds into a link L only if gcd([T]0 , [T]∞) divides [L] in
Q[A±1]. (Formally, one needs framed tangles and links for that, but since framing affects
the bracket by a multiplicative factor of (−A3)n which is a unit inQ[A±1], that statement
makes sense in the unframed setting as well.)

Note that [T]0 , [T]∞ are integers for that A = eπi/4. The topological meaning of
gcd([T]0 , [T]∞) for that A seems to be an interesting question. It appears to be related
to the order of the torsion of the double branched cover of T, however, it is not always
equal to it, as observed in [36].

The following discussion will be useful later. We say that an unframed two-string
tangle T is of type 0, ±1, or ∞ if it can be reduced to one of these rational tangles
through crossing changes. Note that each tangle is of precisely one of these three types,
depending on connections between its endpoints. Type±1 has two subtypes:+1 and−1,
depending on whether one can get from the original tangle T to tangle +1 in an even
or odd number of crossing changes between different components. For the statement
below, we will need to consider oriented tangles. The orientation will be considered
up to the total orientation reversal, hence

Every oriented tangle of type ±1 is either oriented vertically or horizontally depending
on whether one can reduce it to the vertically or horizontally oriented tangles of
Figure 6, by crossing changes which involve an even number of changes between
different components.

If we denote the writhe of a framed oriented link L by w(L), then (−A)−3w(L)[L] is
the Jones polynomial J(L) for t = A−4 . Since J(L) ∈ t(∣L∣−1)/2Z[t±1], where ∣L∣ denotes
the number of components of L, the bracket [L] can be written with all exponents of
A congruent to

3w(L) + 2(∣L∣ − 1) mod 4.

We extend this property to Kauffman brackets of tangles.
Let ∣T ∣ denote the number of connected components of a tangle T .
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Proposition For any oriented tangle T, the bracket [T]τ , for τ is 0 or∞, can be written
with all exponents of A congruent to

3w(T) + 2∣T ∣ + 2η(T) + δτ mod 4,

where δτ = 0 or 2 depending on whether τ is 0 or ∞ and η(T) = 0 for T of type ±1
vertically oriented (see Figure 6) and for type 0. Otherwise, η(T) = 1; that is for type ±1
oriented horizontally and for T of type∞.

Proof We prove it for all oriented tangle diagrams D by induction on the crossing
number c(D) of D. The statement is obvious for c(D) = 0. Assume that the statement
holds for all diagrams with c(D) ≤ C. We are going to prove the statement for
diagrams D with C + 1 crossings by the induction on the undescendedness ud(D), of
D, which measures the failure of being a descending diagram.

It is defined as follows: We will refer to the connected components of the tangle
represented by D as the components of D for simplicity. Let us also orient and order
all these components and let us choose a base point on each loop component of D
away from crossings. Next, let us follow all components of D according to their order,
and according to their orientations, starting with their beginning (if they are arcs) or
their base points (if they are loops). A crossing of D is improper if its underpass is
transversed before its overpass is. (The improperness of a crossing will depend on the
above choices.) The undescendedness, ud(D), of D is the minimum of the numbers
of improper crossings in D over all choices of basepoints and choices of orientations
and orderings of the components of the tangle represented by D. In particular,

0 ≤ ud(D) ≤ c(D).
If ud(D) = 0 then D is isotopic to ⟨0⟩, ⟨±1⟩ or ⟨∞⟩ depending on the type of

the tangle represented by D, with possibly some additional unlinked trivial loop
components. It is easy to see that the statement follows in this case. Assume that
the statement holds for all diagrams D with c(D) = C + 1 and ud(D) ≤ u. Let D be
a diagram with c(D) = C + 1 and ud(D) = u + 1, and let v be one of the improper
crossings counted in ud(D) (according to a certain choice of base points, orientations,
and of ordering). Assume that this crossing has sign ε = ±. Then

A[D+] − A−1[D−] = (A2 − A−2)[D0],
where Dε is D, and D−ε is D with the crossing v reversed and D0 is D with v smoothed
out. Consequently,

[D] = A−2ε[D−ε] + ε ⋅ A−ε(A2 − A−2)[D0].
Since

ud(D−ε) < ud(D), c(D0) < c(D),
and

w(D−ε) = w(D) − 2ε and w(D0) = w(D) − ε,

by the inductive assumption, the exponents of A−2ε[D−ε]τ are

−2ε + 3(w(D) − 2ε) + 2∣D∣ + 2η(D) + δτ mod 4
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which equals

3w(D) + 2∣D∣ + 2η(D) + δτ mod 4.(5.1)

Similarly, the exponents of A−ε(A2 − A−2)[D0]τ are

−ε ± 2 + 3(w(D) − ε) + 2∣D0∣ + 2η(D0) + δτ mod 4

which equals

±2 + 3w(D) + 2∣D0∣ + 2η(D0) + δτ mod 4.(5.2)

To complete the argument, let us assume first that v is a single component crossing.
Then D, D−ε , D0 have the same type and

∣Dε ∣ = ∣D−ε ∣ = ∣D0∣ ± 1,

Hence, the quantities in (5.1) and (5.2) coincide and imply that the exponents of [D]τ
are

3w(D) + 2∣D∣ + 2η(D) + δτ mod 4,

as claimed in the statement, thus completing the proof of the inductive step in the
single-component crossing case.

If v is a two-component crossing, then D, D−ε have the same type and

∣Dε ∣ = ∣D−ε ∣ = ∣D0∣.

A two-component crossing smoothing transforms tangle types and orientations in
one of the following three ways:

(Since these are tangle types, no crossing signs are indicated.)
Consequently, η(D) ≠ η(D0). Hence, the quantities in (5.1) and (5.2) coincide and

imply that the the exponents of [D]τ are

3w(D) + 2∣D∣ + 2η(D) + δτ mod 4,

as claimed in the statement, thus completing the proof of the inductive step in the
two-component crossing case. ∎

6 The KB ratio of a tangle

Let

Q(T) = [T]∞/[T]0 ∈ Q(A) ∪ {∞}.

It is well defined, because [T]∞ and [T]0 cannot both vanish. (This follows, for exam-
ple, from Proposition 5.1 and the fact that [N(T)] ≠ 0, because [N(T)] = (−2)∣N(T)∣
for A = ±1.)

Note that Q(T) is preserved by the first Reidemeister move and, hence, it is an
invariant of unframed tangles.
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Let

q = −A4 and {T}q = A−2Q(T).

Proposition 5.2 implies

{T}q ∈ Q(q) ∪ {∞},

thus proving Theorem 1.6. We call it the Kauffman bracket ratio, or the KB-ratio of T,
for short. KB-ratios will play an important role in the remainder of the paper.

Proposition For any tangle T ,
(1) {−T}q = −q−1{T}q−1 , where the subscript on the right-hand side indicates q substi-
tuted by q−1. (Recall that −T is the mirror image of T.)
(2) {R(T)}q = −q−1/{T}q , where R denotes the rotation operation, as before.

Additionally, for any T ′,
(3) {T + T ′}q = {T}q + {T ′}q + (q − 1){T}q{T ′}q .

Proof (1) {−T}q = A−2Q(−T) = A−2Q(T)A−1 = A−4{T}q−1 .
(2) Since Q(R(T)) = 1/Q(T),

{R(T)}q = A−2Q(R(T)) = A−2/Q(T) = A−4/(A−2Q(T)) = −q−1/{T}q .

(3) By the following identity

Q(T + T ′) = Q(T) + Q(T ′) + δQ(T)Q(T ′),

and, hence,

{T + T ′}q = {T}q + {T ′}q + A2δ{T}q{T ′}q . ∎

7 q-Deformed rationals

Quantum integers,

[n]q =
⎧⎪⎪⎨⎪⎪⎩

1−qn

1−q , for n ≠ 0,
0, for n = 0,

for n ∈ Z, appear already in the 1808 work of Gauss on binomial coefficients [14, 17].
They are at the foundation of quantum calculus (see [20]), and are indispensable in
quantum algebra and in quantum topology (see, e.g., [23]).

Quantum integers were extended in [33] to “q-deformed rationals” [x]q for x ∈ Q.
They satisfy the following identities:

[x + 1]q = q[x]q + 1, [−x]q = −q−1[x]q−1 , [1/x]q =
1

[x]q−1
(7.1)

(cf. [28]).
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They can be defined also through our bracket {⋅}q and, in fact, in this way, they
have been discovered independently by us in the first version of this paper on arXiv.

Note that the first two identities of Eq. (7.1) are satisfied by {⋅}q by Proposi-
tion 6.1. The last one is satisfied as well: According to Conway’s correspondence
⟨1/x⟩ = R(−⟨x⟩) and, hence,

{⟨1/x⟩}q = {R(−⟨x⟩)}q = −q−1/{−⟨x⟩}q = −q−1/(−q−1{⟨x⟩}q)q→q−1 = 1/{⟨x⟩}q−1 .

By the theory of continued fractions, the above identities determine the values of [x]q
and of {x}q for all x ∈ Q. (In fact, the formulas for x + 1 and −1/x are sufficient.) This
implies the following statement from the Introduction.

Theorem 1.7 For every x ∈ Q̂, [x]q = {⟨x⟩}q .

Let {⟨x⟩}1 denote {⟨x⟩}q evaluated at q = 1. By the above theorem and Eq. (7.1), we
have the following.

Corollary 7.1 ([33]) For every x ∈ Q̂, {⟨x⟩}1 = x.

Corollary 7.2 The Kauffman bracket distinguishes all framed tangles among rational
ones.

Proof Any two framed rational tangles T , T ′ with {T}q = {T ′}q must represent
the same rational number and, hence, may differ by framing only. However, if T ′ is
obtained from T by adding n twists to it (where negative n means ∣n∣ negative twists)
then [T ′] = (−A)3n[T]. Hence, n = 0. ∎

8 The uniqueness of the KB of a solution of a system of tangle
equations

Theorem 8.1 For any system of framed tangle equations (1.1), [X] is unique.

Proof Let X be a solution of framed (1.1). Then

and analogously for T2 . Hence,

([N(X + T1)]
[N(X + T2)]

) = B ⋅ ( [X]0[X]∞
) ,

where

B = ([T1]0δ + [T1]∞ [T1]0 + [T1]∞δ
[T2]0δ + [T2]∞ [T2]0 + [T2]∞δ) .

Note that

det B = (δ2 − 1) ⋅ det([T1]0 [T1]∞
[T2]0 [T2]∞

)

is nonzero, even for q = 1 by Corollary 7.1.
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Given a system of equations (1.1), let

qμ =
det([L1] [T1]0 + μ[T1]∞
[L2] [T2]0 + μ[T2]∞

)

(δ − μ) ⋅ det([T1]0 [T1]∞
[T2]0 [T2]∞

)
for μ = ±1.

Then, by Cramer’s rule, one can verify that

[X]0 = det([L1] [T1]0 + [T1]∞δ
[L2] [T2]0 + [T2]∞δ)/det B = 1

2
(q1 − q−1)

and

[X]∞ = det([T1]0δ + [T1]∞ [L1]
[T2]0δ + [T2]∞ [L2]

) /det B = 1
2
(q1 + q−1). ∎

The above equations provide necessary algebraic conditions for the existence of a
framed solution of (1.1). In particular, we have the following.
Corollary 8.2 A necessary condition for the existence of a framed solution to (1.1) is
that

p0 ∶=
1
2
(q1 − q−1), p∞ ∶=

1
2
(q1 + q−1) ∈ Z[A±1]

and that A−2 p∞/p0 ∈ Q(A4).
Note that Theorem 8.1 together with Corollary 7.2 implies Proposition 1.1 stating

that every framed system (1.1) has at most one-framed rational solution.

9 Jones conjecture for tangles

Recall that U n denotes the unknot with framing n ∈ Z.
Lemma 9.1 (Kauffman bracket version of Jones conjecture)
The Jones conjecture (JC) is equivalent to its Kauffman bracket version (KBJC):
if [K] = r ⋅ Ak , for some r, k ∈ Z, then K = U n for some n ∈ Z.
Proof KBJC ⇒ JC: Suppose that the Jones polynomial of K is J(K) = 1 for some
knot K. Then K with some framing has its Kauffman bracket equal to (−A3)n for some
n ∈ Z. By KBJC, K = U n . Hence, K is trivial as an unframed knot.

JC ⇒ KBJC: Suppose that [K] = r ⋅ Ak , for some r, k ∈ Z. Then J(K) =
r(−A)−3w(K)Ak . By [13, Corollary 3], J(K) = 1. Hence, K is (unframed) trivial, by the
Jones conjecture. ∎

Now, we can formulate three versions of the Jones conjecture for tangles.
Theorem 9.2 The Jones conjecture is equivalent to each of the following statements:

(a) For any framed tangle T, if [T] = (1
0) then T = ⟨0⟩0 .

(b) If [T] = (r ⋅ An

0 ) for some r, n ∈ Z, then T = ⟨0⟩ as an unframed tangle.

(c) If [T ′] = [T] and T is rational, then T ′ = T as framed tangles.
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It is worth noting that statement (c) above does not hold for rational knots. That is,
there are examples of distinct rational knots with coinciding Jones polynomials [22].

Proof of Theorem 9.2 JC implies (a): Assume the Jones conjecture holds and that [T] =
(1, 0). (For convenience, in this proof we will write all vertical vectors horizontally.) Then
[R(T)] = (0, 1) and it is easy to check that

[N(R(T))] = 1 and [N(R(T) + ⟨1⟩)] = −A3 .

By Lemma 9.1,

N(R(T)) = U 0 and N(R(T) + ⟨1⟩) = U 1 .

Now, by Lemma 4.1, R(T) = ⟨∞⟩ and, hence, T = ⟨0⟩.
(a) implies (c): Suppose that T is rational and [T ′] = [T]. Then T can be transformed

T = T1 → ⋅ ⋅ ⋅ → Tk = ⟨0⟩

by the operations of rotation, R(⋅), of addition of one, P(T) = T + ⟨1⟩, its inverse,
P−1(T). and adding a positive or negative kink, F±1(T), ( for framing changes). Let us
apply the same operations to T′ ∶

T ′ = T ′1 → ⋅ ⋅ ⋅ → T ′k = T ′′ .(9.1)

Since

the operations R and P induce linear transformations of the Kauffman brackets:

[R(T)] = (0 1
1 0) [T], [P(T)] = [T + ⟨1⟩] = (A−1 0

A −A3) ⋅ [T].

Since R, P and F are invertible, [Ti] = [T ′i ] for every i and, hence, [T ′′] = (1, 0). By
(a), T ′k = ⟨0⟩, implying that T ′ = T .

(c) implies (b): Assume that [T] = (r ⋅ An , 0), for some r, n ∈ Z. Then [D(T)] = r ⋅
An and by [13, Corollary 3] (as in the proof of Lemma 9.1), J(D(T)) = 1. That implies
that [T] = ((−A3)k , 0) has the bracket of ⟨0⟩ with some framing k ∈ Z. Hence, by (c),
T = ⟨0⟩, as unframed tangle.

(b) implies (a): Suppose [T] = (1, 0). Then by (b), T = ⟨0⟩ as an unframed tangle.
Since [T] = (1, 0), the framing of T must be trivial.

(a) implies JC: Let K be a knot with trivial Jones polynomial. Let us frame it so
that [K] = 1. Let K#⟨0⟩ be the connected sum of K with the lower strand of ⟨0⟩. Then
[K#⟨0⟩] = (1, 0) and K#⟨0⟩ = ⟨0⟩ as unframed tangles, by (b) (which we proved is
implied by (a)), implying that K is trivial.

Theorem 9.2 can be further refined to consider its statements up to a certain
numbers of crossings. The crossing number, c(T) of a framed or unframed tangle
T is the minimal number of crossings in its unframed isotopy class. Then we can
strengthen the implication JC⇒ (c) above as follows.
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Proposition Assume that the Jones conjecture holds for knots up to N crossings. If
[T ′] = [T], and c(T) + c(T ′) < N and T is rational then T ′ = T (as framed tangles).

Proof follows the above proof for JC ⇒ (a) ⇒ (c). Note that the tangle T ′′ in Eq.
(9.1) has at most c(T) + c(T ′) crossings. Now, observe that the Jones conjecture up to
N crossings implies statement (a) up to N − 1 crossings. ∎

Note that Theorems 8.1 and 9.2 imply Theorem 1.3.

10 Slopes of tangles

Recall that we call {T}1 ∈ Q̂ the algebraic slope of T and that we postulate in
Conjecture 1.8 that if an m-essential surface in the complement of T has a slope,
that slope is {T}1 . In this section, we define the slope of a surface and we prove our
conjecture for algebraic tangles.

Let us denote by T the double cover of the boundary S2 of the three-ball containing
T, branched around T ∩ S2, and let θ ∶ T → T be the Deck transformation of that
covering. The arc μ of the denominator closure arc connecting SW and NW and its
image θ(μ) under θ form a loop which we call the meridian of T, cf. Figure 7. (By
considering the numerator arc SE–NE, we get a parallel loop in T.) Similarly, the arc
SW–SE of the numerator closure together with its θ-image forms a loop which we call
the longitude. We orient the meridian and longitude as in Figure 7.

Recall that a loop γ in S2
4 is dividing if it separates the punctures of S2

4 into two
groups of two. Its slope s(γ) is the slope of its lift to T in the longitude–meridian basis
of T, so that the slopes of the longitude and the meridian in T are of the slope 0 and
∞, respectively. It is well defined by [12, Proposition 2.6].

As before, consider an m-essential surface S properly embedded in D3/T . Recall
that if its boundary contains a dividing loop γ we say that S is dividing and has slope
s(γ). (Then it is easy to see that all other dividing loops of ∂S must be parallel.) This
definition is inspired by that in [35], where the slopes are defined for algebraic tangles.

For example, T = ⟨0⟩ has a horizontal disk S = D2 in its complement which is m-
essential. Since ∂D2 lifts to the longitude in T, the slope of ⟨0⟩ is 0. One can construct
any rational tangle from ⟨0⟩ by the operations of rotation and addition of ±1 which
modify S accordingly. Consequently, it is easy to see that the slope of any rational
tangle ⟨x⟩ is x .

Ozawa proves that for every algebraic tangle T, every m-essential surface in B3 − T
is dividing and its slope depends on T only (see [35]). This is the slope of T, s(T) ∈ Q̂.

Recall Theorem 1.9.

Figure 7: The double cover of a sphere ∂B3 branched along the endpoints of a tangle in B3 .
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Theorem 1.9 For every algebraic tangle T, {T}1 = s(T).

Proof By [35, Proposition 2.4],

s(T1 + T2) = s(T1) + s(T2), s(−T) = −s(T), s(R(T)) = −1/s(T)

for algebraic tangles. Furthermore, s(⟨n⟩) = n, for n ∈ Z. Since {⋅}1 satisfies the same
properties by Proposition 6.1 and since these properties determine the values of s(T)
and of {T}1 for algebraic tangles, the statement follows. ∎

The following provides an interpretation of the algebraic slope in terms of algebraic
topology.

Proposition ∣{T}1∣ = det(N(T))/det(D(T)) where det denotes the link determi-
nant.

Proof The determinant of N(T) is

∣J(N(T),−1)∣ = ∣(−A3)−w(N(T))[N(T)]∣ = ∣[N(T)]∣,

where A = eπi/4, w(N(T)) is the writhe of N(T) (with some orientation) and

Taking an analogous formula for [D(T)], we have

det(N(T))/det(D(T)) = ∣[T]∞/[T]0∣ = ∣Q(T)1∣ = ∣A2{T}1∣ = ∣{T}1∣.
∎

Acknowledgment The author thanks V. Ovsienko and M. Ozawa for helpful discus-
sions.
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