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Structure in Sets with Logarithmic
Doubling
T. Sanders

Abstract. Suppose that G is an abelian group, A ⊂ G is finite with |A + A| ≤ K|A| and η ∈ (0, 1] is a
parameter. Our main result is that there is a set L such that

|A ∩ Span(L)| ≥ K−Oη (1)|A| and |L| = O(Kη log |A|).

We include an application of this result to a generalisation of the Roth–Meshulam theorem due to Liu
and Spencer.

1 Introduction

Suppose that G is an abelian group. We are interested in the structure of sets with
small doubling, the prototypical examples of which are coset progressions. A set M
is a d-dimensional coset progression if it can be written in the form

M = H + P1 + · · · + Pd,

where H ≤ G and P1, . . . , Pd are arithmetic progressions. It is easy to see that if A is
a proportion δ of a d-dimensional coset progression, then |A + A| ≤ δ−12d|A|; A has
“small doubling”. Remarkably there is something of a converse to this.

Theorem 1.1 (Green–Ruzsa–Freı̆man) Suppose that G is an abelian group and A ⊂
G has |A + A| ≤ K|A|. Then there is an Oε(K4+ε)-dimensional coset progression M such
that A ⊂ M and |M| ≤ exp(Oε(K4+ε))|A|.

This result is due to Green and Ruzsa [6] building on Ruzsa’s proof [15] of Freı̆-
man’s theorem [4] in the integers. There are other proofs (see [22], for example) and
a large body of literature which we shall not survey here.

Whilst this resolves the situation from a qualitative perspective, quantitatively
things are far less well understood. Shkredov [19] noticed that one may hope to
say something quantitatively stronger if one changes the structure sought to that of
spans: recall that if L ⊂ G, then

Span(L) :=
{∑

x∈L

σx.x : σx ∈ {−1, 0, 1} for all x ∈ L
}
.

With this notation Shkredov established the following theorem.
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Theorem 1.2 Suppose that G is an abelian group and A ⊂ G has |A + A| ≤ K|A|.
Then there is a set L such that

A ⊂ Span(L) and |L| = O(K log |A|).

Of course, a span is a type of coset progression, and so once K is about log1/3 |A|,
the above result supersedes the Green–Ruzsa–Freı̆man theorem.

As it stands the result is essentially best possible: consider a set A of K generic
points. However, if one weakens the containment hypothesis to mere correlation,
then one can hope to do better and to this end we shall prove the following.

Theorem 1.3 Suppose that G is an abelian group, A ⊂ G has |A + A| ≤ K|A|, and
η ∈ (0, 1]. Then there is a set L such that

|A ∩ Span(L)| ≥ K−O(exp(O(η−1)))|A| and |L| = O(Kη log |A|).

The reader may wish to compare this with the (much stronger) polynomial Freı̆-
man–Ruzsa conjecture.

To illustrate the utility of Theorem 1.3, we address a natural generalisation of the
Roth–Meshulam theorem [11] considered by Liu and Spencer [9].

Theorem 1.4 Suppose that F is a finite field, G := Fn, c1, . . . , cr ∈ F∗ are such that
c1 + · · · + cr = 0, and A ⊂ G contains no solutions to c1.x1 + · · · + cr.xr = 0 with
x1, . . . , xr ∈ A pair-wise distinct. Then |A| = O|F|,r(|F|n/nr−2).

The requirement that the elements be pair-wise distinct rules out degenerate so-
lutions introduced by having shorter sub-sums of the cis equal to zero. Nevertheless,
it should be noted that for a number of special equations better bounds are available.
For example, if ci = −cr−i and r is even, then a simple application of the Cauchy–
Schwarz inequality will give a power shaped saving in the bound on |A|. The different
“types” of equation are given a comprehensive analysis by Ruzsa in [14]; we shall not
address this problem here.

The result above is a special case of the work of Liu and Spencer [9] who con-
sidered r-fold sums in arbitrary abelian groups and (along with Zhao) generalised it
further to systems of equations of complexity 1 in [10].

Improving the bound in Theorem 1.4 in the case r = 3 (and |F| = 3) is a well-
known open problem sometimes called the capset problem, as discussed in [3, 7,
21]. We shall use Theorem 1.3 to show that there is a non-negative valued function
E(r) with E(r) = Ω(log r) for all r sufficiently large, such that the following theorem
holds.

Theorem 1.5 Suppose that F is a finite field, G := Fn, c1, . . . , cr ∈ F∗ are such that
c1 + · · · + cr = 0, and A ⊂ G contains no solutions to c1.x1 + · · · + cr.xr = 0 with
x1, . . . , xr ∈ A pair-wise distinct. Then |A| = O|F|,r(|F|n/nr−2+E(r)).

We emphasise that E(r) only becomes non-zero once r is sufficiently large; with
some care this can be taken to be 220.
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The paper now splits as follows. In the next section we record the basics of the
Fourier transform and structure of the spectrum which we require for the proof of
Theorem 1.3. In §3 we prove an asymmetric version of Shkredov’s theorem, and
then in §4 a symmetry set version of Chang’s theorem. These results are combined
with a proposition from [16] to prove Theorem 1.3 in §5. Following this we record
some results from additive combinatorics which we require for our application in §6.
Theorem 1.5 is then established in §7.

It should be remarked that around the same time as this paper was written Schoen
[17] came up with a far better way of using the same ingredients to prove the first
good bounds for a Freı̆man–Ruzsa-type theorem, and then a little later in an addi-
tional unpublished argument1 was able to improve Theorem 1.5.

2 The Fourier Transform and the Large Spectrum

A good introduction to the Fourier transform may be found in Rudin [13], and for
our work the more modern reference [22] of Tao and Vu. Suppose that G is a locally
compact abelian group endowed with a Haar measure µG. We define the convolution
of two functions f , g ∈ L1(µG) point-wise by

f ∗ g(x) :=

∫
f (y)g(−y + x) dµG(y),

and write Ĝ for the dual group, that is, the locally compact abelian group of ho-
momorphisms from G to S1 := {z ∈ C : |z| = 1}. Convolution operators are
diagonalized by the Fourier transform: we define the Fourier transform of a function
f ∈ L1(µG) by

f̂ : Ĝ→ C ; γ 7→
∫

f (x)γ(x)dµG(x).

If we declare G as discrete, then we take µG to be counting measure (that is the mea-
sure assigning mass 1 to every element of G) and if we declare G as compact, then we
take µG to be PG, the unique Haar probability measure on G. When G is finite, it will
be clear from context which measure we take.

Suppose now that G is compact and f ∈ L1(G). The Hausdorff–Young inequality

tells us that | f̂ (γ)| ≤ ‖ f ‖L1(G) and so it is natural to define the δ-large spectrum of f
to be

Specδ( f ) := {γ ∈ Ĝ : | f̂ (γ)| ≥ δ‖ f ‖L1(G)}.
Chang initiated work studying the structure of the spectrum in [2] and this has since
been refined by Shkredov [18].

Proposition 2.1 (Chang’s theorem) Suppose that G is a compact abelian group, f ∈
L1(G) and δ ∈ (0, 1] is a parameter. Then there is a set L such that

Specδ( f ) ⊂ Span(L) and |L| = O
(
δ−2 log ‖ f ‖2

L2(G)‖ f ‖−2
L1(G)

)
.

The functional version of this result can be read out of the proof in Chang’s origi-
nal paper, but was popularised by Green.

1Personal communication.
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3 An Asymmetric Version of Shkredov’s Theorem

In this section we use Chang’s theorem to prove the following asymmetric version of
Shkredov’s theorem. The key idea is the introduction of a certain auxiliary function,
which is a trick used in [8, Theorem 6.10] for proving a result on very similar lines.

Proposition 3.1 Suppose that G is a discrete abelian group and A ⊂ G is a finite
non-empty set with |B + A| ≤ K|A|. Then there is a set L such that

B ⊂ Span(L) and |L| = O(K log |A|).

Proof Throughout this proof the Fourier transform is the Fourier transform on the
compact group Ĝ.

Define h and k by inversion so that ĥ = 1B+A and k̂ = 1−A, and put g := hk. If
x ∈ B, then 1B+A ∗ 1−A(x) = |A|, so

B ⊂ {x : 1B+A ∗ 1−A(x) ≥ |A|} = Spec|A|/‖g‖L1(Ĝ)
(g).

Applying Chang’s theorem to this, we get a set L such that

B ⊂ Span(L) and |L| = O
(
‖g‖2

L1(Ĝ)
|A|−2 log ‖g‖2

L2(Ĝ)
‖g‖−2

L1(Ĝ)

)
.

This is an increasing function of ‖g‖L1(Ĝ) and ‖g‖L2(Ĝ), so it remains to provide upper
bounds for these quantities. First,

‖g‖L1(Ĝ) =

∫
|hk| dPĜ

≤ ‖h‖L2(Ĝ)‖k‖L2(Ĝ)

=
√
|B + A|.| − A| ≤

√
K|A|,

by the Cauchy–Schwarz inequality and Parseval’s theorem. Second,

‖g‖2
L2(Ĝ)

= ‖1B+A ∗ 1−A‖2
`2(G)

≤ ‖1B+A ∗ 1−A‖`∞(G)‖1B+A ∗ 1−A‖`1(G)

= |B + A|| − A|2 ≤ K|A|3

by Parseval’s theorem and then Hölder’s inequality. It follows that

|L| = O((
√

K|A|)2|A|−2 log(K|A|3/(
√

K|A|)2)) = O(K log |A|)

as required.
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4 Structure in Symmetry Sets

Recall from [22] that if G is a discrete abelian group, A ⊂ G is a finite non-empty set,
and η ∈ (0, 1], then the symmetry set of A at threshold η is

Symη(A) := {x ∈ G : 1A ∗ 1−A(x) ≥ η|A|}.

Symmetry sets are essentially dual to spectra so it should come as no surprise that
they also have a structure theorem along the lines of Chang’s theorem.

Proposition 4.1 (Chang’s theorem for symmetry sets) Suppose that G is a discrete
abelian group, A ⊂ G is a finite non-empty set and η ∈ (0, 1] is a parameter. Then
there is a set L such that

Symη(A) ⊂ Span(L) and |L| = O(η−2 log |A|).

Proof Symmetry sets are dual to spectra in the sense that Symη(A) = Specη( f ),

where f := |1̂A|2. To see this, note that

‖ f ‖L1(Ĝ) = ‖|1̂A|2‖L1(Ĝ) = ‖1̂A‖2
L2(Ĝ)

= ‖1A‖2
`2(G) = |A|

by Parseval’s theorem. In light of this we apply Chang’s theorem to get that Symη(A)
is contained in Span(L) for some set L with

|L| = O
(
η−2 log ‖ f ‖2

L2(PG)‖ f ‖−2
L1(PG)

)
.

The argument of the logarithm may then be bounded above by Hölder’s inequality
and the Hausdorff–Young inequality:

‖ f ‖2
L2(PG)‖ f ‖−2

L1(PG) ≤ ‖ f ‖L∞(Ĝ)‖ f ‖−1
L1(Ĝ)

= ‖|1̂A|2‖L∞(Ĝ)/|A| ≤ |A|.

The result is proved.

5 The Proof of Theorem 1.3

In light of Proposition 4.1 we should like to show that if A has small doubling, then
it correlates with a symmetry set having large threshold. To this end we recall the
following result.

Proposition 5.1 ([16, Proposition 1.3]) Suppose that G is a discrete abelian group, A
is a non-empty subset of G with |A + A| ≤ K|A|, and ε ∈ (0, 1] is a parameter. Then
there is a non-empty set A ′ ⊂ A such that

| Sym1−ε(A ′ + A)| ≥ exp(−KO(1/ log(1/(1−ε))) log K)|A|.

In fact, the above is true for non-abelian groups as well (with the obvious changes
of sums to products) but our other results are not. We shall use it in the range when
ε is close to 1; the fact that it still has content in this region is an idea due to Tao.

We now have all the ingredients necessary for the proof of our main result.
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Proof of Theorem 1.3 We begin by applying Proposition 5.1 with parameter ε =
1− Kη/2 to get that there is a non-empty set A ′ ⊂ A with

| SymK−η/2 (A ′ + A)| ≥ K− exp(O(η−1))|A|.

We apply Proposition 3.1 to get a set L such that

S := SymK−η/2 (A ′ + A) ⊂ Span(L) and |L| = O(Kη log |A|).

On the other hand, 1A ′+2A ∗ 1−A(x) ≥ |A|.1A ′+A(x) for all x ∈ G, whence

|A|2.K−η/2|A ′ + A||S| ≤ |A|2.〈1A ′+A ∗ 1−(A ′+A), 1S〉

≤ 〈1A ′+2A ∗ 1−A ∗ 1A ∗ 1−(A ′+2A), 1S〉

≤ ‖1A ′+2A ∗ 1−(A ′+2A) ∗ 1A‖`1(G)‖1A ∗ 1S‖`∞(G)

= |A ′ + 2A|2|A|‖1A ∗ 1S‖`∞(G).

Since A ′ ⊂ A and |A+A| ≤ K|A|, we have, by Plünnecke’s inequality, that |A ′+2A| ≤
K3|A|, and so

‖1A ∗ 1S‖`∞(G) ≥ K3−η/2|S| ≥ K− exp(O(η−1))|A|.

It follows that there is some x such that |A ∩ (x + S)| ≥ K− exp(O(η−1))|A|, but then
x + S ⊂ Span(L ′), where L ′ := L ∪ {x}.

6 Some Tools of the Trade in Additive Combinatorics

In this section we shall record some of the standard tools used in additive combina-
torics for the purposes of proving Theorem 1.3 in the next section.

Chang’s theorem from §2 was proved using Rudin’s inequality, and in our context
this may be seen as an estimate for the higher energy norms of the spectrum. Shkre-
dov [18] encoded this idea formally, and we shall now record a weak version of one
of his results saying that the large spectrum has large additive energy; we include a
proof since it is so short.

Proposition 6.1 Suppose that G is a compact abelian group, A ⊂ G has density α > 0
and S ⊂ Specδ(A). Then E(S) := ‖1S ∗ 1−S‖2

`2(Ĝ)
≥ δ8α|S|4.

Proof We begin by applying Plancherel’s theorem and Hölder’s inequality to the
inner product

|〈1̂A1S, 1̂A〉`2(Ĝ)| = |〈1A ∗ 1̂S, 1A〉L2(G)| ≤ ‖1A ∗ 1̂S‖L4(G)‖1A‖L4/3(G).

By a trivial instance of Young’s inequality and Parseval’s theorem we have

‖1A ∗ 1̂S‖L4(G) ≤ ‖1A‖L1(G)‖1̂S‖L4(G) = αE(S)1/4,

and even more trivially we have ‖1A‖L4/3(G) ≤ α3/4. On the other hand.

〈1̂A1S, 1̂A〉`2(Ĝ) ≥ δ
2α2|S|,

from which the result follows on rearranging.
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Shkredov [18] extended the above in two ways: first, by considering different
powers in Hölder’s inequality he got a lower bound on the 2k-th energy (that is ,
‖1̂S‖2k

L2k(G)); second, by dyadically decomposing the range of |1̂A|, he improved the δ8

to Ω(δ4).
It is easy to see from Parseval’s inequality that S has size at most δ−2α−1; the reader

should think of the situation when the size is close to this, δ is fixed but possibly small,
andα→ 0. Then |S| tends to infinity in size and E(S) ≥ δO(1)|S|3; it has large additive
energy.

In the situation described above we have the celebrated Balog–Szemerédi–Gowers
theorem (see [1, 5]) which we now recall.

Theorem 6.2 Suppose that G is an abelian group and A ⊂ G has E(A) ≥ c|A|3. Then
there is a subset A ′ ⊂ A such that |A ′| = Ω(cO(1)|A|) and |A ′ + A ′| = O(c−O(1)|A ′|).

Gowers [5] made the important observation that this could then naturally be com-
bined with a Freı̆man-type theorem in many applications, and our present work is
another such example.

Finally, we need to record how we pass from large Fourier coefficients to increased
density on a subspace when G := Fn. The key to the simplicity of this in the finite
field model is the following easy calculation. Suppose that W ≤ Ĝ. Then

P̂W⊥(γ) =

{
1 if γ ∈W,

0 otherwise.

We are now in a position to record the Roth–Meshulam increment lemma.

Lemma 6.3 (`∞(Ĝ)-increment lemma) Suppose that F is a finite field, G := Fn,
A ⊂ G has density α, and supγ 6=0Ĝ

|1̂A(γ)| ≥ εα. Then there is a subspace V ≤ G wth

cod V = 1 and ‖1A ∗ PV‖L∞(G) ≥ α(1 + ε/2).

Proof We do the obvious thing and define V = {γ}⊥ so that

((1A − α) ∗ PV )∧(γ) = 1̂A(γ),

whence by the Hausdorff–Young inequality we have ‖(1A − α) ∗ PV‖L1(G) ≥ εα. On
the other hand, ∫

((1A − α) ∗ PV )dPG = 0,

whence 2 supx∈G (1A − α) ∗ PV (x) ≥ εα. The result follows on dividing by 2 and
adding α to both sides.

It is also possible to get a very large correlation with a subspace if one has a large
`2(Ĝ) mass of 1̂A. This is an idea introduced by Szemerédi in [20] and encoded in the
model setting by the following lemma.

Lemma 6.4 (`2(Ĝ)-increment lemma) Suppose that F is a finite field, G := Fn,
A ⊂ G has density α > 0, and W ≤ Ĝ is such that

∑
γ∈W |1̂A(γ)|2 ≥ εα. Then there

is a subspace V ≤ G wth cod V = dim W and ‖1A ∗ PV‖L∞(G) ≥ ε.
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Proof We do the obvious thing and define V = W⊥ and so (1A ∗ PV )∧(γ) = 1̂A(γ)
whenever γ ∈W . Thus by Parseval’s theorem and the hypothesis we have that∫

(1A ∗ PV )2 dPG =
∑
γ∈W

|1̂A(γ)|2 ≥ εα.

The result then follows by Hölder’s inequality and the fact that∫
1A ∗ PV dPG = α,

on dividing by α.

7 Proof of Theorem 1.4

The argument follows the usual iterative method pioneered by Roth [12] and exposed
as particularly elegant in Fn

3 by Meshulam in [11]. The key quantity of interest is the
number of solutions to the given equation.

Suppose that F is a finite field, G := Fn, c ∈ (F∗)r, and A ⊂ G. Then we write

Λc(A) :=

∫
1−c1.A(c2.x2 + · · · + cr.xr)

r∏
i=2

1A(xi)dPG(x2) · · · dPG(xr).

Using the inversion formula, we may put

1A(xi) =
∑
γi∈Ĝ

1̂A(γi)γi(xi) for all xi ∈ G.

We insert this expression for 1A into each instance in Λc(A), and via the orthogonality
relations get that ci .γi = c j .γ j =: γ for all i, j. This gives a Fourier expression for
Λc(A) as follows:

(7.1) Λc(A) =
∑
γ∈Ĝ

r∏
i=1

1̂A(c−1
i .γ).

Of course, we shall use the above Fourier expression in the following driving lemma
for our argument.

Lemma 7.1 (Iteration lemma) There is a non-negative valued function ν with ν(r) =
Ω(r−1 log r) for r greater than some absolute constant such that if F is a finite field,
G := Fn, c1, . . . , cr ∈ F∗, and A ⊂ G has density α > 0, then at least one of the
following is true:

(i) (Many solutions) we have the lower bound Λc(A) ≥ αr/2;
(ii) (Small correlation with low co-dimension subspace) there is a subspace V ≤ G

with cod V = 1 such that ‖1A ∗ PV‖L∞(G) ≥ α(1 + Ω(α(1−ν(r))/(r−2)));
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(iii) (Large correlation with a large co-dimension subspace) there is a subspace V ≤ G
with cod V = Or(α−1/2(r−2)) such that ‖1A ∗ PV‖L∞(G) ≥ Ω(α1/2).

Proof If we are in the first case of the lemma we are done; assume not, so that from
(7.1) we get ∣∣∣∑

γ∈Ĝ

r∏
i=1

1̂A(c−1
i .γ)

∣∣∣ ≤ αr/2.

As usual we extract the trivial mode: we have 1̂A(γ) = α, whence∣∣∣αr +
∑
γ 6=0Ĝ

r∏
i=1

1̂A(c−1
i .γ)

∣∣∣ ≤ αr/2.

Thus, by the triangle inequality we get

∑
γ 6=0Ĝ

r∏
i=1

|1̂A(c−1
i .γ)| ≥ αr/2.

We apply the r-function version of Hölder’s inequality to this to get that

r∏
i=1

(∑
γ 6=0Ĝ

|1̂A(c−1
i .γ)|r

) 1/r
≥ α2/2.

Now each ci ∈ F∗, whence c−1
i .(Ĝ \ {0Ĝ}) = (Ĝ \ {0Ĝ}) and∑

γ 6=0Ĝ

|1̂A(c−1
i .γ)|r =

∑
γ 6=0Ĝ

|1̂A(γ)|r for all 1 ≤ i ≤ r.

Inserting this back into our inequality we see that each factor is the same and we get
that

(7.2)
∑
γ 6=0Ĝ

|1̂A(γ)|r ≥ αr/2.

This inequality will let us analyse the large spectrum of 1A: write

ε := α1/(r−2)/4 and S := Specε(1A) \ {0Ĝ}.

It follows from the definition of the spectrum and Parseval’s theorem that∑
γ 6∈Specε(1A)

|1̂A(γ)|r ≤ (εα)r−2
∑
γ∈Ĝ

|1̂A(γ)|2 = α.4−(r−2).αr−2.α ≤ αr/4,

since r ≥ 3. Thus, by the triangle inequality and (7.2) we have

(7.3)
∑
γ∈S

|1̂A(γ)|r ≥ αr/2−
∑

γ 6∈Specε(1A)

|1̂A(γ)|r ≥ αr/4.
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Now suppose that M ≥ 1 is a real to be optimised later. If

sup
γ 6=0Ĝ

|1̂A(γ)| ≥ α−M/(r−2)rεα,

then we shall be in the second case of the lemma by Lemma 6.3 once we optimise for
M. To proceed we therefore assume not, so that

sup
γ 6=0Ĝ

|1̂A(γ)| ≤ α−M/(r−2)rεα.

Inserting this into (7.3) we see that |S| . (α−M/(r−2)rεα)r ≥ αr/4, which can be rear-
ranged to give

|S| ≥ αr . 4−1 . α−r . 4r . α−r/(r−2) . αM/(r−2) = 4r−1α(M−2)/(r−2) . α−1.

Now by Proposition 6.1 S has large additive energy. Specifically

E(S) ≥ ε8α|S|4 ≥ α8/(r−2)4−84r−1α(M−2)/(r−2)|S|3

= α(M+6)/(r−2)4r−9|S|3 = Ω(αO(M/r)).

It follows by the Balog–Szemerédi–Gowers theorem that there is some set S ′ ⊂ S
such that

|S ′| ≥ Ω(αO(M/r))|S| and |S ′ + S ′| ≤ O(α−O(M/r))|S ′|.

Now apply Theorem 1.3 with some parameter η to get a set L such that

|S ′ ∩ Span(L)| ≥ Ω(α)O(exp(O(η−1))M/r)|S ′| and |L| = O(α−O(ηM/r) log |S ′|).

This means that we may pick η = Ω(1/M) such that

|S ′ ∩ Span(L)| ≥ αO(exp(O(M))/r|S ′| and |L| = O(α−1/4(r−2) log |S ′|).

Write W for the subspace generated by L and note that by the lower bound on |S ′|
we thus have∑

γ∈W\{0Ĝ}

|1̂A(γ)|2 ≥ (εα)2|S ′ ∩ Span(L)| = Ω(α1+O(exp(O(M)))/r).

It follows that if r ≥ C for some absolute constant C > 0, then we may pick M =
Ω(log r) in a way independent of A and c such that∑

γ∈W\{0Ĝ}

|1̂A(γ)|2 ≥ Ω(α1+1/2).

This is how the function ν is determined if r ≥ C : ν(r) = M/r. On the other hand,
by Parseval’s theorem we have that |S ′| ≤ |S| ≤ (εα)−2.α ≤ O(α−O(1)), whence
dim W = O(α1/4(r−2) log |S ′|) = O(α1/4(r−2) logα−1).

We now apply Lemma 6.4 to get the third conclusion of the lemma. If r ≤ C , then
ν(r) = 0 and we simply note that S is, in any case, non-empty and apply Lemma 6.3
to any character in this set to get the conclusion.
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With the above lemma we are ready to apply the usual iterative method.

Proof of Theorem 1.5 We proceed by creating a sequence of subspaces G =: V0 ≥
V1 ≥ · · · ≥ Vk and sets Ai ⊂ Vi with density αi such that

(7.4) Λc(A) ≥ |G : Vi |r−1Λc(Ai) and αi ≥ α0.

We begin by setting A0 := A and suppose that we have defined Ai and Vi . We apply
Lemma 7.1. If we are in the first or third cases, we shall terminate. If we are in the
second case, we have some x ∈ Vi and Vi+1 ≤ Vi of codimension 1 such that∫

1x+Ai dPVi+1 ≥ αi(1 + α(1−ν(r))/(r−2)
i ).

We set Ai+1 := (x + Ai) ∩ Vi+1. Since c1 + · · · + cr = 0 we certainly have (7.4).

However, we also have that αi+1 ≥ αi(1 + Ω(α(1−ν(r))/(r−2)
i )). It follows that after

I = O(α−(1−ν(r))/(r−2)
i )) iterations we have αi+I(i) ≥ 2αi . However, since the density

is always at most 1 the iteration must terminate within

O(α−(1−ν(r))/(r−2)
0 )) + O((2α0)−(1−ν(r))/(r−2))) + O((4α0)−(1−ν(r))/(r−2))) + · · ·

steps. Summing the geometric progression, we see that we are either in the first or
third cases of the lemma within Or(α−(1−ν(r))/(r−2)) iterations. In the first case we see
trivially that

Λc(A) ≥ |G : Vi |r−1Λc(Ai) ≥ |G : Vi |r−1αr
i/2

≥ exp(−O|F|,r(α
−(1−ν(r))/(r−2))).

On the other hand, since A contains no solutions to c1.x1 + · · · + cr.xr = 0 with
x1, . . . , xr ∈ A pair-wise distinct we see that Λc(A) = Or(|G|−1) and it follows that

(7.5) α = O|F|,r(n(r−2)/(1−ν(r))).

Finally, if we terminate in the third case of the iteration lemma, then we get a space
V ≤ Vi such that

|G : V | = |G : Vi |.|Vi : V | = O|F|,r(α
−(1−ν(r))/(r−2))

and the density of A on V is Ω(α1/2). If log |G : V | ≥ log |G|/2, then it follows that
we have the bound (7.5) again; otherwise apply Theorem 1.4 to see that

α = O|F|,r(n2(r−2)).

The result follows in view of the definition of ν.
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