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Birds employ rapid pitch-up motions close to the ground for different purposes: perching
birds use this motion to decelerate and come to a complete stop while hunting birds, such as
bald eagles, employ it to catch prey and swiftly fly away. Motivated by these observations,
our study investigates how natural flyers accomplish diverse flying objectives by rapidly
pitching their wings while decelerating near ground. We conducted experimental and
analytical investigations focusing on rapidly pitching plates during deceleration in close
proximity to the ground to explore the impact of ground proximity on the unsteady
dynamics. Initially, we executed synchronous pitch-up motion, where both pitching and
deceleration have the same motion duration, at different ground heights. Experimental
results demonstrate that as the pitching wing approaches the ground, the instantaneous
lift increases by approximately 38 % compared with a far-from-ground case, while the
initial peak drag force remains relatively unchanged. Our analytical model conforms
to this trend, predicting an increase in lift force as the wing approaches the ground,
indicating enhanced added mass and circulatory lift force due to the ground effect. Next,
we examined asynchronous pitch-up motion cases, where rapid pitching motions were
initiated at different stages of deceleration. The results reveal that initiating the wing
pitch early in the deceleration leads to the formation of larger counter-rotating vortices
at the early stage of the manoeuvre. These vortices generate stronger dipole jets that orient
backward in the later stages of the manoeuvre after impinging with the ground surface,
which hunting birds utilize to accelerate after catching prey. Conversely, when the wing
pitch is delayed, smaller vortices form, but their growth is postponed until late in the
manoeuvre. This delayed vortex growth produces lift and drag force at the end phase of
the manoeuvre that facilitates a smooth landing or perching. Thus, through strategic tuning
of a rapid pitch-up motion with deceleration, natural flyers, such as birds, achieve diverse
flying objectives.
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1. Introduction

Birds have been observed to pitch their wings for a variety of purposes: such as perching
birds that rapidly pitch their wings upward to decelerate to a complete stop while landing
(Carruthers, Thomas & Taylor 2007; Berg & Biewener 2010; Carruthers et al. 2010;
Provini et al. 2014), and hunting birds, which also use the same motion to slow down to
catch a fish out of water before flying away (Reimann 1938; Todd et al. 1982; Venable 1996;
Stalmaster & Kaiser 1997; Gerrard & Bortolotti 2014; Sörensen 2015; Collard & Brickman
2021). Such unsteady wing motions can be canonically represented by a rapidly pitching
flat plate. A review of existing research revealed that there are two major aerodynamic
questions related to pitching plates in deceleration that have not been sufficiently addressed
in the current literature. These include: (1) how ground proximity affects the unsteady
dynamics of the perching manoeuvre, and (2) how birds achieve different flying objectives
by rapidly pitching their wings during deceleration. In this paper we aim to investigate
these questions using experimental and analytical approaches.

Reducing the distance between the wing and the ground increases the lift-to-drag
ratio due to the ground effect (Zerihan & Zhang 2000; Luo & Chen 2012). Hsiun &
Chen (1996) conducted a comprehensive study on airfoil performance in ground effect
at various ground heights. Their findings indicated that lowering the ground height leads
to an increase in the lift force on the airfoil and a decrease in drag force. The use of the
ground effect has also been observed in many natural flyers and swimmers (Saffman 1967;
Baudinette & Schmidt-Nielsen 1974; Withers & Timko 1977; Blake 1979; Hainsworth
1988; Webb 1993; Park & Choi 2010), which have evolved to take advantage of the ground
effect to enhance their performance. This increase in operational efficiency has inspired
the design of wings in ground effect aircraft (Rozhdestvensky 2006).

Few efforts have been made in recent decades to understand the effect of ground on
unsteady aerodynamics (Fernández-Prats et al. 2015; Mivehchi, Dahl & Licht 2016; Zhang,
Huang & Lu 2017). Studies have revealed that the effects of ground proximity on unsteady
aerodynamics can vary depending on the type of wing kinematics. For instance, in the
study by Quinn et al. (2014) on a pitching airfoil, they found that when the airfoil is
close to the ground, it experiences increased lift force that pushes the airfoil away from
the ground. They also observed that pitching near the ground generates a vortex pair
instead of a vortex street, increasing the average thrust force. In another study, Deepthi
& Vengadesan (2021) showed that an inclined flapping wing-in-ground effect experiences
an enhanced vertical force at a stroke plane angle of 45◦ due to the interaction of the
recirculating jet with the wing. However, at other angles, the influence of the ground
on the jet is minimal or non-existent, resulting in negligible changes in the force with
varying ground height. These findings imply that natural flyers and swimmers exploit the
ground effect for improved performance, yet the varying impact of ground on unsteady
aerodynamics underscores the importance of using the specific wing motions. Therefore,
to fully quantify the performance of perching birds close to the ground, further exploration
of the ground effect experienced by a rapid pitching plate during deceleration is necessary.

Rapid pitching causes a quick change in the surface area of the wing facing the airflow,
which can significantly impact the airflow over the wing. This rapid change in the wing’s
surface area has potential implications for flow control, as it directly affects the added
mass and, consequently, influences the dynamic forces acting on the wing. Saffman (1967)
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showed that a body could propel itself by deforming its surface area through added mass
recovery. Childress, Vandenberghe & Zhang (2006) conducted an experimental study on
a flexible body in oscillating air. They concluded that exposing the variable frontal area
to the airflow due to wing flapping leads to changes in the added mass, resulting in stable
hovering. A rapid area change can lead to boundary layer separation and the shedding of
the vortices on a vanishing body (Wibawa et al. 2012). In a numerical and analytical study
of deforming bodies, Weymouth & Triantafyllou (2013) linked deforming velocity (V)
to body acceleration (a) using the shape change number, Ξ = V2/al, where l represents
the characteristic length. They found that in addition to added mass recovery, a deforming
body with a higher shape change number can prevent flow separation and achieve ultra-fast
escape. All these cases involve utilizing the added mass and avoiding the boundary layer
flow separation to achieve forward propulsion of the body that is continuously reducing its
surface area.

However, birds dynamically increase their wing’s surface area while decelerating to
achieve perching and hunting manoeuvres. Nonetheless, our understanding of how flow
behaves over an increased surface area during deceleration remains limited. Polet, Rival
& Weymouth (2015) conducted an experimental and numerical study on the unsteady
aerodynamics of a two-dimensional NACA0012 airfoil undergoing simultaneous pitch-up
and decelerating motion. They found that the significant lift and drag force on a wing
during perching is mainly caused by the added mass effect and the formation of strong
vortices at the leading and trailing edge of the wing. Jardin & Doué (2019) also performed
a numerical study on a perching airfoil and concluded that a minimum kinetic energy could
be achieved on the airfoil at the end of the perching manoeuvre at a higher pitch rate or the
lift and drag force on the airfoil can be enhanced by increasing the pitch rate. Similarly,
Fernando & Rival (2017) examined low-aspect-ratio plates undergoing deceleration and
pitch-up motion. They observed that low-aspect-ratio plates shed vortices more frequently
than equivalent two-dimensional cases, requiring faster pitching motions to achieve higher
lift and drag values. Adhikari et al. (2022) also studied the unsteady dynamics of a finite
wing undergoing a rapid pitch-up motion while decelerating and descending close to
the ground. They showed that a perching wing could generate higher forces by using
a combination of pitching and heaving motions during deceleration. However, in these
studies, although the wing generated a higher drag force by increasing the pitch rate, which
is appropriate for decelerating rapidly to a complete stop, the perching wing also generated
a higher lift force. This higher lift force causes the wing to rise in altitude (Carruthers et al.
2007), which may not be desirable for perching at the initial perching location or altitude.
Moreover, the aerodynamic mechanism behind the hunting bird’s ability to manipulate
unsteady forces through rapid wing pitching during prey capture still remains unknown.
Thus, more research is needed to understand the mechanics involved when the wing pitches
rapidly during deceleration.

Studies on rapid area change have revealed how varying the frontal area against the
incoming airflow affects the development of the flow pattern and the generation of net
unsteady forces on the body. Spagnolie & Shelley (2009) found through a numerical
simulation that by controlling the phase difference between the shape change and
background flow of an oscillating flow, a shape-changing body can generate vortex
structures that induce a downward moving dipole jet below the body. The resulting jet of
fluid enabled the body to hover or ascend vertically. Similarly, Weymouth & Triantafyllou
(2013) showed that, by deforming quickly, a rapidly shape-changing body could eliminate
the flow separation from its surface. This reduces drag and increases thrust force, which
is beneficial for escape manoeuvres. While these studies provide insight into the timing of
the shape change with the airflow and its impact on the added mass and vortex evolution,
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they were limited to oscillating or accelerating flows. Perching birds execute rapid pitch-up
motion in decelerating flow, which leads to a fundamentally different generation and
shedding of vortices, as well as manipulation of added mass force, compared with
accelerating flow (Polet et al. 2015). Therefore, this paper focuses on varying the timing of
rapid pitch-up motion relative to decelerating flow and assesses the impact of such motion
on the perching and hunting birds’ performance.

In this paper we consider two scenarios of rapid pitch-up motion of plates in decelerating
motion near the ground to better understand the aerodynamic mechanism used by perching
and hunting birds. In the first scenario, we perform a synchronous pitch-up motion where
the wing pitches up while decelerating from steady velocity to a complete stop, with the
same duration for both motions. We execute synchronous pitch-up motion at different
ground heights to understand the ground effect on perching plates. In the second scenario,
we create an asynchronous pitch-up motion where the deceleration time is longer than the
pitch time of the plate, allowing the execution of the pitch-up motion at various stages of
deceleration. By comparing the evolution of unsteady forces and flow field while varying
the start of pitch-up motion during deceleration, the current study aims to gain new insights
into the aerodynamic mechanisms natural flyers use and how these mechanisms can be
replicated in the design of next-generation flying vehicles and aircraft.

2. Methodology

2.1. Experimental set-up
The schematic diagram of the experimental set-up is shown in figure 1. The tests were
conducted in a water-filled towing tank with a free surface measuring 0.9 m in length,
0.45 m in width and 0.4 m in height. The wing model was mounted on a linear stage
powered by a servo motor (FSL120, FUYU Inc., China), which moved it along the length
of the towing tank. The wing model’s deceleration was prescribed by gradually slowing
down the linear stage. A stepper-driven linear stage (LSQ150B-T3, Zaber Tech. Inc.,
Canada) connected orthogonally to the servo-driven stage moved the wing model towards
the solid boundary, which acted as a ground in this study. A rotary stage powered by a
stepper motor (RSW60A-T3, Zaber Tech. Inc., Canada) executed the rapid pitch-up motion
around the mid-chord of the wing model. A force sensor was installed on the set-up below
the pitching motor and was connected to the wing model via a 0.10 m long cylindrical
rod. A pulse generator (9400 series, Quantum Composers Inc., USA) sent a trigger pulse
signal to synchronize the deceleration motion, the start of the pitching motor, the force
sensor and the camera. The wing model was submerged vertically in the tank, with the
wing tip positioned 0.2 m from the bottom.

2.2. Wing model and problem description
We used a finite rectangular wing planform with a chord length (c) of 0.05 m and a
planform area of 0.0075 m2 as a perching wing model. The aspect ratio (AR) of the wing
was 3 and was fabricated from 6 mm thick flat aluminum plate. The wing’s leading edge
(LE) was rounded, and the trailing edge (TE) was sharpened to meet the Kutta condition,
ensuring the flow smoothly leaves the TE.

To simulate the perching manoeuvres, two scenarios were considered: synchronous
pitch-up motion and asynchronous pitch-up motion (figure 2). In both scenarios, the wing
model was initially oriented at an angle of attack (AOA) α0 = 0◦ and then rapidly pitched
up to α = 90◦ while undergoing deceleration. Comparisons illustrated in figure 2 are
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Laser

Heaving motor

Pitching motor

Force sensor
Linear stage

Camera

Rectangular plate

Figure 1. Schematic diagram of the experimental set-up illustrating the rectangular plate, with details on the
placement of force sensor, camera and laser.

expressed as a function of non-dimensional time t∗ = t/tp, where tp denotes the time
period of the pitch-up motion.

In synchronous pitch-up motion, the wing decelerated from steady velocity U∞ of
0.1 m s−1 to a complete stop while pitching up, with both motions having the same motion
duration, t∗ds

= t∗ps
(see figure 2b). This means that the start and end of the deceleration and

rapid pitch-up motions are synchronized. The pitch-up motion causes a rapid increase in
the frontal area of the wing facing the flow. This increase, combined with simultaneous
deceleration, was quantified using the shape change number

Ξ = V
�U

, (2.1)

where V = c/t is the mean rate of change of the streamwise projection of the wing
chord throughout the manoeuvre and �U is the change in the translation speed of the
wing during deceleration. By expressing deceleration or acceleration as a = �U/t, we
can derive the shape change number, as defined by Weymouth & Triantafyllou (2013),
Ξ = V2/ac. We executed three shape change numbers (Ξ = 0.2, 0.4 and 0.6) at ten
non-dimensional ground heights ranging from h∗ = h/c = 1.5–0.04. We refer to h∗ = 1.5
as far-from-the-ground case and h∗ = 0.04 as close to the ground case.

In asynchronous pitch-up motion, the deceleration time was extended compared with
synchronous pitch-up (see figure 2a), while keeping the pitching time constant. This results
in time offsets between the two motions, with the deceleration time longer than the time
to pitch, i.e. t∗das

= 1.5 ∗ t∗pas
. This time offset allows the pitch-up motion to be executed at

various stages of the deceleration. As a result, for the same pitch rate, the change in velocity
when the wing completes the pitch-up motion is �U = U∞ ∗ t∗pas

/t∗das
= U∞ ∗ 1/1.5,

resulting in a higher shape change number Ξ for asynchronous pitch-up motion compared
with the synchronous pitch-up case, i.e. Ξas = 1.5 ∗ Ξs. For each Ξ , we considered three
starting time offsets (t∗os = 0, 0.25 and 0.5) between the decelerating and pitch-up motion.
When t∗os = 0, the start of the deceleration and pitch-up motions are in sync, but the
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Figure 2. (a) Comparison of the variation of non-dimensional velocity U∗ between synchronous pitch-up and
asynchronous pitch-up motions. Variation of velocity and angle of attack (AOA) for two perching scenarios:
(b) synchronous pitch-up motion and (c) asynchronous pitch-up motion. The symbol t∗os refers to starting
time offset between the deceleration and pitch-up motion in asynchronous motion. Comparisons shown are
represented as a function of non-dimensional time t∗ = t/tp, where tp is the time period of pitch-up motion.
Here, the decelerating velocity is scaled by the steady-state velocity, U∞, while the total change in the angle,
which is 90◦, scales the AOA during pitch-up motion. The ratio of the time period of deceleration between
synchronous, tds , and asynchronous pitch-up motion, tdas , is tr = tds/tdas = 1/1.5. For the synchronous pitch-up
case, tds = tps , whereas for the asynchronous pitch-up case, tdas = 1.5 ∗ tpas . The ratio of the pitch time period
to the deceleration time period is defined by η, where η = 1 for the synchronous pitch-up case and η = 1/1.5
for the asynchronous pitch-up case.

pitch-up motion ends before the wing decelerates to a complete stop. With t∗os = 0.5, the
start of the pitch-up motion lags the start of the deceleration motion, but the end of the
pitch-up motion and deceleration motion is synchronized. Each asynchronous pitch-up
motion case was executed at three non-dimensional ground distances (h∗ = 1.5, 0.25 and
0.04).

The steady-state velocity of the wing model was (U∞) of 0.1 m s−1. The Reynolds
number (Re) of the perching wing model, based on U∞ and c = 0.05 m, was Re = 6500.
Table 1 summarizes the kinematic parameters used in this experiment.

2.3. Measurement of instantaneous forces
We measured the instantaneous forces acting on the wing using a six-axis force and torque
sensor (NANO 17, ATI Inc., USA) connected to a 16-bit DAQ device (NI-USB-6211,
National Instrument, USA). The force-sensor data was collected at a sampling rate of
5 kHz and averaged over five test runs. The combined wing motion produced an oscillatory
frequency of approximately 4 Hz on the force-sensor data (Adhikari et al. 2022). We
filtered the force-sensor data with a Butterworth low pass filter with a cutoff frequency
of 3 Hz to remove this vibration, while retaining most of the fluid force oscillatory peaks.
Subsequently, we smoothed the data using the moving average of 20 points. We found that
the uncertainty in the force data is found to be around 6 % at the peak and less than 3 %
for the smaller magnitude of the forces.

To account for the inertial forces and the weight of the wing assembly, we performed
both dynamic and static tare experiments. In dynamic tare, we conducted tare experiments
in the air using the same kinematics as in the water. We observed that the lift force in
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Nomenclature U̇ (m s−2) α̇ (rad s−1) Ξ Synchronous Asynchronous (t∗os) tp(s)

C1 0.0351 0.550 0.2 � × 2.85
C2_0 0.0234 0.550 0.3 × �(0.00) 2.85
C2_25 0.0234 0.550 0.3 × �(0.25) 2.85
C2_50 0.0234 0.550 0.3 × �(0.50) 2.85
C3 0.0877 1.377 0.4 � × 1.14
C4_0 0.0585 1.377 0.6 × �(0.00) 1.14
C4_25 0.0585 1.377 0.6 × �(0.25) 1.14
C4_50 0.0585 1.377 0.6 × �(0.50) 1.14
C5 0.1111 1.745 0.6 � × 0.90
C6_0 0.0741 1.745 0.9 × �(0.00) 0.90
C6_25 0.0741 1.745 0.9 × �(0.25) 0.90
C6_50 0.0741 1.745 0.9 × �(0.50) 0.90

Table 1. Summary of the kinematic parameters. Note: synchronous represents synchronous pitch-up motion,
and asynchronous represents asynchronous pitch-up motion. Here Ξ indicates shape change number.
Nomenclature C6_0 refers to case 6 (Ξ = 0.9) with a starting time offset of 0 (t∗os = 0), while C6_50 indicates
case 6 (Ξ = 0.9) with a starting time offset of 0.50 (t∗os = 0.50).

water was approximately 11 times higher than in the air, indicating negligible impact of
dynamic tare in air. Since the apparent mass of the water accelerated along the model
was approximately 11 times higher than the mass of the model and the force balance,
we followed the approach proposed by Barlow, Rae & Pope (1999) and Granlund, Ol &
Bernal (2013), and disregarded dynamic tare in air. In static tare, we measured the data in
still water every 3◦ of the pitch angle up to the maximum pitch angle. The wing model
produced negligible static tare, so its contribution was not considered in our analysis.

Our vorticity field results do not explicitly exhibit the formation of Kelvin–Helmholtz
instabilities. However, we note that even if such instabilities were present in the flow,
their impact on the evolution of forces would likely be minor due to their smaller
scale and weaker strength compared with dominant vortices. While Kelvin–Helmholtz
instabilities generally have much higher frequencies than the vortex shedding frequencies,
their absence in our vorticity field suggests that the current cutoff frequency is adequate.

2.4. Particle image velocimetry measurements
We measured the velocity field at the 50 % wing span using planar particle image
velocimetry (PIV). To seed the water tank, we used neutrally buoyant, 100 μm diameter
silver-coated hollow glass spheres (Conduct-O-Fil, Potters Industries, LLC, USA). The
laser sheet for illuminating the plane of interrogation was generated by a 2 mm diameter
beam from a continuous-wave green laser (DPSS-DMPV-532-2, Egorov Scientific, USA),
which was expanded into a 2 mm thick laser sheet by using two cylindrical lenses. We
recorded images of the illuminated plane with a high-speed camera (J-Pri, AOS Tech.
AG, Switzerland) at a frame rate of 200 Hz and a resolution of 2560 × 1920 pixels. The
field of view was 0.25 m × 0.18 m with a spatial resolution of 0.097 × 0.093 mm per
pixel. The images were processed in PIVLab, a MATLAB-based software. We used a
multi-pass iterative algorithm with a window size of 64 × 64 pixels in the first pass and
32 × 32 pixels in the second pass, with a 50 % overlap between successive windows.
To remove outliers and slightly enhance vector field smoothness, we applied a 4 × 4
median filter. This field of view, measuring 0.25 m × 0.18 m, led to a velocity uncertainty
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equivalent to 3 % of the towing speed. Finally, we phase averaged the PIV data over five
runs.

To determine the circulation within the leading-edge and trailing-edge vortices, we
employed two scalar functions Γ1 and Γ2, following the approach by Graftieaux, Michard
& Grosjean (2001). The dimensionless scalar function Γ1 locates the vortex core, while
the dimensionless scalar function Γ2 identifies the vortex boundary. In this study, we set
a threshold value of |Γ1| > 0.9 to pinpoint the vortex core and |Γ2| > 2/π to define the
vortex boundary. Once the vortex contour is identified, the vorticity within the contour
was summed up to calculate the circulation inside the vortex. Circulation values were
obtained using a phased-averaged velocity field over five runs. Multiple vortices are shed
during the deceleration and pitch-up motion. Vortices that meet the Γ1 and Γ2 threshold
criteria are summed to calculate the total circulation of the leading-edge vortex (LEV) and
trailing-edge vortex (TEV). The uncertainty in normalized circulation is estimated to be
around 5 %.

3. Results and discussion

In §§ 3.1 and 3.2 we present the results separately for synchronous pitch-up and
asynchronous pitch-up motion, where synchronous pitch-up motion refers to cases
where the start and end of deceleration and pitch-up motions are in synchrony, while
asynchronous pitch-up motion refers to the cases where the two motions are not in
synchrony. We then discuss the dipole jet induced due to counter-rotating vortices in § 3.3.
Next, in § 3.4 we focus on the scaling laws for perching manoeuvres. Finally, in § 3.5 we
compare instantaneous forces between the experimental and analytical model results.

3.1. Synchronous pitch-up motion: unsteady forces and flow field
Figure 3 displays the evolution of unsteady lift and drag forces during synchronous
pitch-up motion at three different shape change numbers Ξ = 0.2, 0.4 and 0.6 (C1, C3 and
C5). Each Ξ is executed over a wide range of non-dimensional ground heights ranging
from h∗ = 1.5–0.04. For a clear and concise representation of the plot, we provided
unsteady forces at four different values of h∗.

Figure 3(a) shows that the execution of simultaneous deceleration and pitch-up motion
results in a steep rise in the lift coefficient and attains the peak value after a certain time
instant. This initial rise in the lift coefficient is mainly due to the combined effect of
non-circulatory and circulatory force. The plot indicates that the peak lift force coefficient
increases with increasing Ξ , which is consistent with the results of Polet et al. (2015)
and Jardin & Doué (2019). The peak lift coefficient increases by approximately 37 % as
Ξ increases from 0.2 to 0.6. After this initial peak force, the wing experiences a decline
in the lift coefficient. This decay in the lift is correlated to the detachment of the LEV
from the wing LE. This decline in lift coefficient can also be related to the decrease in the
non-circulatory force due to the deceleration of the wing. From figure 3(a), it is observed
that the lift force for Ξ = 0.6 starts to decay at a later stage of the motion compared
with that of Ξ = 0.2. When comparing rapidly pitching plates in deceleration versus
constant forward velocity (Granlund et al. 2013), we observed a consistent trend in overall
unsteady force evolution. However, their dynamics diverge in the rate of force variations,
attributed to the contrasting effect of generated vortices and deceleration. At constant
velocity, the plate generates stronger vortices due to the direct proportionality between
the vortex strength and the translational speed. Simultaneously, deceleration enhances the
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Figure 3. Comparisons of (a) lift and (b) drag coefficient during synchronous pitch-up motion for Ξ = 0.2,
0.4 and 0.6 (C1, C3 and C5). Each Ξ are presented at four non-dimensional ground heights, h∗.

non-circulatory forces, potentially explaining variations in forces, including the generation
of negative forces during the final deceleration phase.

Figure 3(a) also illustrates the effect of ground proximity on the instantaneous lift
coefficient of the perching plates at various non-dimensional ground heights ranging from
1.5 � h∗ � 0.04. As h∗ decreases, the initial rise in the lift force increases consistently for
each Ξ . For Ξ = 0.2, the initial peak lift force rises by approximately 19 %, whereas for
Ξ = 0.6, this rise is approximately 38 %. Although the initial peak force increases with
ground proximity, the perching plate also experiences an increase in the negative lift force
at the end of the manoeuvre as the wing approaches the ground. However, for the majority
of the perching manoeuvre, the instantaneous life force increases when the wing is close
to the ground.

The evolution of the drag coefficient on the perching plate is shown in figure 3(b). It
is observed that higher values of Ξ lead to a larger instantaneous drag coefficient, with
the peak drag coefficient increasing by approximately 10 % when Ξ is changed from 0.2
to 0.6. Interestingly, the time instant of the initial peak drag force shifts from t∗ = 0.45
for Ξ = 0.2 to t∗ = 0.62 for Ξ = 0.6. This trend is similar to that observed for the lift
coefficient, which suggests that the peak and decay of the forces occur at a higher AOA for
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higher values of Ξ . This phenomenon has also been observed by KleinHeerenbrink et al.
(2022), who concluded that perching birds pitch faster to minimize the stall distance.

In contrast to the lift, the evolution of the drag coefficient is not significantly affected
by ground proximity. For each Ξ , varying h∗ leads to a negligible change in the initial
peak drag force. However, the ground effect does impact the negative drag force (parasitic
thrust), which increases for all Ξ values when the wing is close to the ground.

To better understand our findings, we analyse the vorticity field for Ξ = 0.2 and 0.6
at two extreme ground heights, i.e. h∗ = 1.5 and 0.04. Figure 4 presents the normalized
vorticity fields at time instances, t∗ = 0.37, 0.62 and 0.85, which highlight the key changes
in the flow field due to variations in Ξ and ground height. Our PIV results demonstrate
that a rapid pitch-up motion during deceleration causes the shear layer to separate, leading
to the formation of counter-rotating LEV and TEV structures (figure 4). Although both
values of Ξ result in similar vortex formation, smaller Ξ produces larger LEV that diffuses
faster and is farther away from the plate surface, whereas higher Ξ leads to more coherent
and stronger vortex structures closer to the wing. When the plate is pitching slowly while
decelerating slowly (Ξ = 0.2), this motion generates a smaller pressure gradient on the
wing surface, which creates weaker vortices that are more spread out (Eldredge & Wang
2010; Ol et al. 2010; Jardin & Doué 2019). However, rapid pitch-up motion during rapid
deceleration induces a large pressure gradient due to the rapid change in the flow direction
and velocity, leading to the formation of stronger and more coherent vortex structures
closer to the wing. The stronger and more coherent vortex closer to the wing surface
induces more impulse on the wing than the vortices that are weaker and more spread
out, explaining the larger value of lift and drag force observed for Ξ = 0.6 compared with
Ξ = 0.2.

For both Ξ , at t∗ = 0.37 and 0.62, the size of the TEV is relatively larger at h∗ = 0.04
than at h∗ = 1.5, which is especially evident for Ξ = 0.6. The proximity of the plate to
the ground constrains the flow around the plate, leading to an increase of pressure below
the wing (Ahmed & Sharma 2005), which causes the flow to curl more strongly around
the edges of the plate (Lee & Ko 2018), resulting in the larger and stronger TEV as seen
in the near-ground case. A stronger TEV, in turn, induces stronger velocities on the LEV,
bringing them closer together. Wu et al. (1998) found that this close vortex pair induces
a stronger downwash. For Ξ = 0.6 at t∗ = 0.62, a stronger dipole jet oriented downward
is generated in the near-ground case, producing an upward force, which can explain the
higher value of lift force observed at h∗ = 0.04 compared with h∗ = 1.5.

However, at the end phase of the manoeuvre, when the wing is close to the ground, the
dipole jet gets impinged to the ground. At t∗ = 0.85, figure 4 shows that this impingement
advects the shed LEV and TEV further apart. For Ξ = 0.6, the x distance between the
LEV and TEV is 0.92c for the near-ground case compared with 0.76c for the far ground
case. This may explain the increased drop in the lift and drag force for Ξ = 0.6 at the end
of the manoeuvre on the perching wing close to the ground.

To further illustrate these findings, we examined the evolution of LEV and TEV
circulation for Ξ = 0.2 and 0.6 at two extreme ground heights, i.e. h∗ = 1.5 and 0.04.
Figure 5 presents the normalized circulation history, calculated using Γ1 and Γ2 criteria,
based on the velocity field at 50 % of the wing span. For the case with higher ground
clearance (h∗ = 1.5), the LEV circulation is consistently higher for Ξ = 0.6 compared
with Ξ = 0.2 (see figure 5a). At t∗ = 0.3, the normalized LEV circulation ΓLEV is 0.48
for Ξ = 0.6, while it is 0.4 for Ξ = 0.2. Notably, for Ξ = 0.2, the peak value of ΓLEV
occurs at approximately t∗ = 0.5 and subsequently declines, whereas for Ξ = 0.6, ΓLEV
continues to increase beyond that time instant. From the vorticity field (see figure 4
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Figure 4. Contours of the normalized vorticity field, ω∗ = ω ∗ c/U∞, for synchronous pitch-up motion at
the 50 % of the wing span at three time steps, t∗ = 0.37, 0.62 and 0.85: Ξ = 0.2 (C1) at (a) h∗ = 1.5 and
(b) h∗ = 0.04; Ξ = 0.6 (C5) at (c) h∗ = 1.5 and (d) h∗ = 0.04. To enhance clarity, only the third velocity
vector components in the x and y directions are presented.
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Figure 5. Comparison of circulation history (a) LEV and (b) TEV during synchronous pitch-up motion at
50 % of the wing span for Ξ = 0.2 (C1) and 0.6 (C5). Each Ξ is shown at two non-dimensional ground
heights, h∗ = 1.5 and 0.04.

for reference), we observed that Ξ = 0.6 shows stronger and more coherent vorticity
compared with Ξ = 0.2, where the vorticity appears larger but less coherent. Delery
(1994) demonstrated that rapid expansion of the vortex leads to a gradual decrease in the
rotational speed, eventually forming a stagnation point. This causes substantial fluctuation
in the velocity field, ultimately resulting in vortex breakdown. The observed larger but
less coherent LEV for Ξ = 0.2 may have encountered an earlier vortex breakdown,
as discussed above, leading to a rapid decrease in the ΓLEV after reaching its peak at
approximately t∗ = 0.5.

Figure 5 also reveals an increase in the LEV and TEV circulation with the decrease
of ground height for both Ξ . This increase in circulation can explain the larger value
of lift force observed for near-ground cases. Although LEV and TEV circulation initially
increases with the increase in ground proximity, figure 5 also shows a rapid decrease in the
circulation value at the latter stage of the motion for the near-ground case compared with
far-from-the-ground case, which is more evident for ΓTEV . The higher vortex circulation
with the increase of ground proximity and a rapid drop in the latter stage is also supported
by Lee & Ko (2018). They concluded that an increase in ground proximity generates
stronger and larger vortices, which ultimately leads to an earlier vortex breakdown due
to an enhanced adverse pressure gradient.

3.2. Asynchronous pitch-up motion: unsteady forces and flow field
To investigate the influence of phase differences between deceleration and pitching during
perching, we employed asynchronous pitch-up motion with three starting time offsets,
t∗os = 0, 0.25 and 0.5 between the decelerating and pitch-up motions. Figures 6(a) and 6(b)
present the evolution of lift and drag coefficient on the rectangular plate for three values
of Ξ and three values of t∗os (C2_0, C2_25 and C2_50 for Ξ = 0.3; C4_0, C4_25 and
C4_50 for Ξ = 0.6; C6_0, C6_25 and C6_50 for Ξ = 0.9). Note that in the asynchronous
pitch-up case, the pitch rate is the same as in the synchronous pitch-up case, but we reduced
the deceleration value, resulting in an increase in Ξ by a factor of 1/η.

986 A22-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.325


Rapidly pitching plates in decelerating motion

0

1.0

1.0

0.5

–0.5

–1.0

–1.5

0

1.5 1.0

0.5

–0.5

–1.0

0

0.5

–0.5

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6

0 0.5 1.0 1.5 0 0.5 1.0 1.5

(d)(c)

(b)(a)

t∗os

0 0.2 0.4 0.6

t∗os

LinesColour

Ξ0.9

Ξ0.6

Ξ0.3

Ξ0.9

Ξ0.6

Ξ0.3

Ξ0.9

Ξ0.6

Ξ0.3

t∗os = 0.25

t∗os = 0

t∗os = 0.50

LinesColour

Ξ0.9

Ξ0.6

Ξ0.3

t∗os = 0.25

t∗os = 0

t∗os = 0.50

t∗ t∗

C
L

a
vg

C
D

a
vg

CL CD

Figure 6. Comparisons of the instantaneous (a) lift and (b) drag coefficient during asynchronous pitch-up
motion for Ξ = 0.3, 0.6 and 0.9 at non-dimensional ground height, h∗ = 1.5. Time averaged (c) lift and
(d) drag coefficient during asynchronous pitch-up motion. Each Ξ is presented at three time offsets between
the decelerating and pitch-up motion: C2_0, C2_25 and C2_50 for Ξ = 0.3; C4_0, C4_25 and C4_50 for
Ξ = 0.6; C6_0, C6_25 and C6_50 for Ξ = 0.9 as specified in table 1.

From figure 6(a) it is observed that increasing Ξ enhances the instantaneous
lift coefficient, similar to the behaviour observed in the synchronous pitch-up case.
For t∗os = 0, although the pitch rate is the same for both synchronous pitch-up and
asynchronous pitch-up motions, the asynchronous pitch-up motion produces a peak lift
coefficient approximately 40 % higher due to the higher translational velocity experienced
by the pitching plate. However, for higher time offsets t∗os = 0.25 and 0.5, the lift
coefficient starts to rise later and generates a lower peak lift coefficient compared with
t∗os = 0. This delay in the rise of the lift coefficient is consistent with the delayed start of
the pitch-up motion and the reduction in the lift coefficient can be correlated with the lower
translational speed caused by the deceleration of the wing. These trends are consistent for
all Ξ considered in this study, with smaller Ξ resulting in a lower peak lift coefficient.

For t∗os = 0, the perching plate generates a high initial lift force but also experiences
a rapid drop-off in the lift, which may reduce the control authority of landing birds.
However, delaying the rapid pitch-up motion until late in the deceleration can delay the
drop-off of lift force, allowing the wing to generate lift at the end of the motion and
enhance control authority during this highly unsteady manoeuvre.
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The evolution of the drag coefficient for asynchronous pitch-up motion is presented in
figure 6(b). At t∗os = 0, each value of Ξ exhibits an increase in the peak drag coefficient
compared with the synchronous pitch-up case. As the starting time offset between the two
motions increases, there is a reduction in the peak drag coefficient. Although the peak
drag force is reduced at t∗os = 0.5, the perching plate generates a positive drag force for
the majority of the flight, as opposed to negative drag or parasitic thrust in the latter stage
of the manoeuvre for t∗os = 0. Furthermore, as we increase t∗os, we observe a delay in the
onset of parasitic thrust generation and a decrease in its magnitude. These results suggest
that perching birds may have better control over the aerodynamic forces during landing at
higher t∗os due to continuous drag generation and reduced parasitic thrust.

We further analysed the influence of asynchronous pitch-up motion by plotting the
time-averaged lift and drag coefficients in figure 6(c,d). Increasing the starting time offset,
t∗os, results in a decrease in the time-averaged lift coefficient, CLavg , as shown in figure 6(c).
For Ξ = 0.9, the CLavg decreases from 0.7 to near zero as t∗os increases from 0 to 0.5. While
the drag plot in figure 6(d) also shows a reduction in the time-averaged drag coefficient,
CDavg , with increasing t∗os, the decrease in drag is small compared with that of the CLavg .
For Ξ = 0.9, the CDavg decreases from 0.52 to 0.4 as t∗os increases from 0 to 0.5. The
resulting near-zero lift force and positive drag force can help birds perch on the original
landing or perching location without gaining altitude, providing a beneficial perching
strategy.

Figure 7 shows the behaviour of unsteady forces for Ξ = 0.9 (C6_0, C6_25 and C6_50)
at three non-dimensional ground heights: h∗ = 1.5, 0.5 and 0.04. As the perching plate
approaches the ground, the instantaneous lift coefficient increases similarly to synchronous
pitch-up cases, and this behaviour is consistent across all starting time offsets. The results
indicate that reducing the ground height provides more lift enhancement, with the greatest
benefits observed at t∗os = 0 (C6_0), where the peak lift force experiences an approximate
18 % increase. In contrast, ground proximity has less impact on drag force at the early stage
of the manoeuvre (see figure 7), but once the perching plate attains its peak at t∗os = 0, the
drag force drops rapidly for the near-ground case, creating higher negative drag force or
parasitic thrust force at the end of the manoeuvre. While a similar drop in drag force
is observed at t∗os = 0.5 (C6_50), this decrease in drag force is relatively small compared
with the drop at t∗os = 0. This indicated that introducing a time offset could be the optimum
way to execute a perching manoeuvre during landing, as it helps reduce the risk of losing
control authority over aerodynamic forces.

We investigated the normalized vorticity field to analyse the flow field observed
in the asynchronous pitch-up motion. Specifically, we focused on the highest shape
change number, Ξ = 0.9, and examined two starting time-offset cases, t∗os = 0 and 0.5,
corresponding to executing rapid pitching at different deceleration stages. Figure 8 displays
the normalized vorticity field at three time instants, t∗ = 0.5, 1.0 and 1.5, and at two
extreme ground height cases, h∗ = 1.5 and 0.04.

In asynchronous pitch-up motion, examining figure 8 reveals the generation of a
coherent LEV and TEV by the pitching plate at t∗ = 0.5, particularly in the case of
zero starting time offset (t∗os = 0). Noticeably, these vortex structures exhibit greater
compactness and strength at t∗os = 0 compared with t∗os = 0.5, resulting in enhanced lift
and drag forces on the wing. Meanwhile, at t∗ = 1.0, the vortices are fully developed and
shed from the wing surface for t∗os = 0 cases, but for t∗os = 0.5 cases, the vortices are still
growing. This difference in the vortex development explains why the unsteady forces drop
for t∗os = 0 cases but continue to increase for t∗os = 0.5 cases at t∗ = 1.0. In the former case,
stronger and more coherent vortex structures developed earlier in the manoeuvre induce a
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Figure 7. Comparisons of (a) lift and (b) drag coefficient during asynchronous pitch-up motion for Ξ = 0.9
at three non-dimensional ground heights, h∗. Cases include C6_0 (t∗os = 0), C6_25 (t∗os = 0.25) and C6_50
(t∗os = 0.50).

stronger dipole jet, which impinges on the grounds and separates the shed vortices further
apart, as seen in figure 8(b) at t∗ = 1.0 and t∗ = 1.5. At t∗ = 1.5, for the t∗os = 0 case close
to the ground, the x distance between the LEV and TEV is 1.24c, contributing to the more
pronounced drop-off of the unsteady force. In contrast, for t∗os = 0.5 cases, the weaker
vortices result in a slower jet and closer separation between the shed vortices (0.6c) and
the wing surface, resulting in a less pronounced drop-off of the unsteady force.

The evolution of unsteady forces in asynchronous pitch-up motion is best explained
by the circulation history shown in figure 9. The figure illustrates the normalized LEV
and TEV circulation over time at two starting time offsets, t∗os = 0 and 0.5. For t∗os = 0,
both the LEV and TEV circulation start to rise from t∗ = 0. However, for t∗os = 0.5, the
circulation starts to increase later, specifically from t∗ = 0.5. In the far-from-the-ground
case (h∗ = 1.5) at t∗ = 0.5, the normalized LEV circulation ΓLEV is 0.90 for t∗os = 0,
whereas it is near zero for t∗os = 0.5. This higher circulation can be attributed to a higher
lift coefficient for t∗os = 0. Moreover, at the same time instant (t∗ = 0.5), the ΓLEV is 0.75
for Ξ = 0.6 during synchronous pitch-up motion, revealing that, for the same pitch rate,
conducting a pitch-up motion at a higher translation velocity generates enhanced vortex
circulation and increased circulatory force. In the case of t∗os = 0, the LEV and TEV
circulation peaks at t∗ = 0.85 and plateaus thereafter, while for t∗os = 0.5, the LEV and
TEV circulation continues to grow until t∗ = 1.35, correlating with the delayed stall for the
t∗os = 0.5 case.

Additionally, figure 9 shows an increase in circulation with the decrease of ground
height, consistent with the results observed in synchronous pitch-up motion. Interestingly,
for the near-ground case, both the LEV and TEV circulation rapidly drops after the peak,
indicating an earlier breakdown of the vortex in the ground effect. This drop in the vortex
circulation also explains the rapid decrease in the unsteady forces at the latter stage of the
motion for the wing-in-ground effect.
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Figure 8. Contours of the normalized vorticity field, ω∗, for asynchronous pitch-up motion at 50 % of the wing
span for Ξ = 0.9 at three time steps, t∗ = 0.5, 1.0 and 1.5: t∗os = 0 (C6_0) at (a) h∗ = 1.5 and (b) h∗ = 0.04;
t∗os = 0.5 (C6_50) at (c) h∗ = 1.5 and (d) h∗ = 0.04.

3.3. Discussion on dipole jet
Here we investigate the mechanics of the formation of a dipole jet by rapidly pitching
plates during deceleration near the ground. By executing rapid pitching at different stages
of deceleration, such as when the forward translational velocity is still high versus when it
is low, we observe distinct changes in the evolution of the vortex dipole.
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Figure 10. Schematics showing the evolution of the dipole jet and its interaction with the ground during
asynchronous pitch-up motion, specifically for the C6_50 case. The sequence progresses from left to right,
highlighting three key moments: formation of the dipole jet, its impingement with the ground surface and its
subsequent redirection.

Executing a rapid pitch-up motion during deceleration causes the shear layer to separate,
forming counter-rotating LEV and TEV vortex structures, as shown by our PIV results.
The pitch-up motion combines the counter-rotating vortices to form a comoving vortex
dipole. Once a vortex dipole is created they will interact with each other, creating a region
of high vorticity gradient. This region acts as a fluid source, moving it outward and creating
the jet flow of the dipole. At the same time, the region between the two vortices experiences
a low-pressure zone due to the centrifugal forces generated by the counter-rotating vortices.
This low-pressure region acts as a sink flow, drawing fluid between the two vortices.
This combination of source flow and sink flow forms a dipole jet that is characteristic
of counter-rotating vortices (Drucker & Lauder 2000; Deepthi & Vengadesan 2021). The
schematic diagram in figure 10 illustrates the pitch-up motion of the wing and the resulting
formation of the dipole jet. This dipole jet moves a considerable amount of momentum
carrying fluid with it, which can be used to generate unsteady forces on the wing.

Figure 11 displays the dipole jet formation during the asynchronous pitch-up motion
by analysing the velocity field at two different starting time-offset cases, t∗os = 0 and 0.5.
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Figure 11. Velocity field during asynchronous pitch-up motion for C6_0 (a–c) and C6_50 (d–f ) at h∗ = 0.04.
Results are shown for (a–c) t∗os = 0, (d–f ) t∗os = 0.5; (a,d) t∗ = 0.5, (b,e) t∗ = 1, (c, f ) t∗ = 1.5.

For the t∗os = 0 case, pitch-up motion is executed at a high forward translational velocity,
resulting in larger, stronger counter-rotating vortices (see figure 8 for reference) and a
more significant induced dipole jet (as seen in figure 11a). The dipole jet reaches the
maximum velocity of U∗ = 0.95 and is carrying a larger amount of momentum carrying
fluid with it, as evident from a larger high-intensity contour region. This dipole jet is
initially directed downward and forward, producing lift and drag forces. However, when
the wing pitches up to its final effective AOA, i.e. at t∗ = 1, the dipole jet gets deflected
on the ground surface. This deflected jet moves the vortex pair apart, reducing the impulse
they generate on the wing and causing a rapid drop in the lift and drag force at the
end phase of the manoeuvre. At t∗ = 1.5, some deflected jets are reversed and oriented
backward, producing a parasitic thrust force. Weymouth & Triantafyllou (2013) showed
that to achieve the ultra-fast escape, the deforming body stores added mass energy in
the fluid during the early phase of the manoeuvre by deforming. This energy is then
recovered in the later phase of the manoeuvre to accelerate the deformed body. Drucker &
Lauder (2000) also suggested that fish can enhance their swimming speed by increasing
and redirecting the wake momentum backward. In the present study, the pitching plates
recover the deflected jet, which is oriented backward in the later phase of the motion, as
parasitic thrust. Hunting birds like eagles can use this parasitic thrust to accelerate after
catching their prey.

On the other hand, when executing a pitch-up motion at a low forward translational
velocity (t∗os = 0.5), smaller and weaker vortex structures are formed, which induce a
slower dipole jet (U∗

max = 0.75) and move a smaller amount of momentum carrying fluid
with it (see figure 11e). This motion generates vortices, and the dipole jet at the end phase
of the manoeuvre, providing lift and drag force suitable for a smooth touch down. As this
motion induces a slower dipole jet, it does not displace the vortex pair further apart upon
impact with the ground, reducing its influence on the rapid drop-off of the lift and drag
force compared with the t∗os = 0 scenario.
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Rapidly pitching plates in decelerating motion

Several experimental and mathematical models have demonstrated the transport of
fluid by the dipolar vortices (Fuentes, van Heijst & Cremers 1995; Eames & Flor 1998).
This accelerated or displaced volume of fluid, induced by the dipole vortices, has been
associated with a change in the added mass (Eames & Flor 1998; Dabiri 2006). In this
study we correlated the induced dipole jet with increased added mass during the frontal
area expansion. The one-dimensional added mass force for an expanding body can be
rewritten as

FAM = − ∂

∂t
(maU) = −∂ma

∂t
U − ma

∂U
∂t

. (3.1)

From this equation, for an expanding body, the addition of added mass from a frontal
area change creates drag from −(∂ma/∂t)U. However, this frontal area expansion also
increases total added mass, making the body difficult to stop at the latter stage of the
manoeuvre due to the generation of the net thrust through −ma(∂U/∂t).

In asynchronous pitch-up motion the zero starting time-offset case, t∗os = 0, induces
a larger, stronger dipole jet, increasing the added mass early in the manoeuvre. This
increased added mass generates higher parasitic thrust through −ma(∂U/∂t) later in the
manoeuvre, which the bird can use to accelerate after catching the prey. Conversely, when
the frontal area expansion occurs at the low velocity (i.e. t∗os = 0.5), a slower dipole jet is
induced, leading to a smaller increment in the added mass and a lower value of parasitic
thrust, resulting in smooth touch down during landing or perching.

In summary, this study demonstrates the importance of dipole jets in achieving specific
flying objectives. These findings provide new insight into the intricate relationship between
the dipole jet and the added mass forces, offering a new perspective on the performance
of the bird’s flight and the design for safer flying vehicles.

3.4. Scaling laws
We developed a new scaling law to describe the performance of the rapidly pitching
plates in decelerating motion near the ground. In synchronous pitch-up motion at
a non-dimensional ground height of h∗ = 1.5, we observed a linear increase in the
time-averaged forces with increasing Ξ (for reference, see figures 12(a) and 12(b)
represented by •). This finding is consistent with a previous study by Polet et al. (2015).
However, in asynchronous pitch-up motion we found that executing pitch-up motion at
different stages of deceleration generated a more complex relation between time-averaged
forces and Ξ (represented by � in figure 12a,b). Specifically, we found that increasing the
starting time offsets, t∗os, from 0 to 0.5, at the same Ξ , led to a decrease in time-averaged
lift and drag forces.

To account for this complex relationship, we introduced new scaling relations by
considering the rate of change of maximum lift and drag coefficient, dCLmax/dt and
dCDmax/dt, which were found to be inversely proportional to the starting time offsets, t∗os
(for reference, see figure 13). We multiplied this rate of change with the Ξ and the averaged
lift coefficient (CLavg) by a factor of a, which is the ratio of pitch to deceleration time
period. We used the new scaling laws (Ξ(dCL/dt), Ξ(dCD/dt)) to scale the time-averaged
lift and drag coefficient for all tested scenarios, and our experimental data demonstrate
good agreement with this new scaling law (see figure 14a,b).

The main improvement of the new scaling laws (Ξ(dCL/dt), Ξ(dCD/dt)) is the
connection between the execution of the pitch-up motion during the decelerating
motion and the generation of total lift and drag forces. Our findings indicate that the
timing of pitch-up motion influences the evolution of the flow field around the plates,
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Figure 12. Time-averaged (a) lift and (b) drag coefficient on a finite rectangular wing at the non-dimensional
ground height of h∗ = 1.5 as a function of Ξ . For colour specs, see legends in figure 6.
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Figure 13. Formulation of scaling relation.

leading to changes in the development of lift and drag forces. The new scaling laws
(Ξ(dCL/dt), Ξ(dCD/dt)) can be applied to all pitching plates in decelerating motion,
regardless of the ground height, as shown in figures 14(a) and 14(b). This modification
simplifies the prediction of unsteady forces on rapidly pitching plates in decelerating
motion, enabling an accurate prediction across a broad range of parameter space.

3.5. Modelling the variation of unsteady forces during a perching manoeuvre
The perching wing experiences two main types of forces: added mass force and circulatory
force.
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Figure 14. Scaling of the (a) lift and (b) drag coefficients for all the Ξ and ground heights considered in
the experiment. Here CLavg is multiplied by a factor of η, which is the ratio of the pitch time period to the
deceleration time period. For colour specs, see legends in figure 6.

Added mass force, also known as non-circulatory force, arises due to the acceleration
or deceleration of the fluid during the unsteady motion of the wing. For a rapidly pitching
plate in decelerating motion, the added mass force coefficient can be determined using the
following equation (Milne-Thomson 1968):

CFnc = πc
2U2∞

[α̇ cos(α)U + sin(α)U̇ + cα̈(1/2 − x∗
p)]. (3.2)

The first term in this equation denotes the rate of change of added mass, while the second
and third term corresponds to the added mass due to the acceleration or deceleration of
the wing and rotational acceleration, α̈, respectively. Here, the pivot location on the wing
is at the mid-chord, resulting in the relative distance of (1/2 − x∗

p) equal to zero. When a
body is close to the ground, the acceleration of the fluid between the wing and the ground
increases leading to a substantial increase in the added mass force (Brennen 1982). To
account for this effect, we modified the added mass equation as

CFnc = πc
2U2∞

[α̇ cos(α)U + sin(α)U̇ + cα̈(1/2 − x∗
p)][1 + k(1/2h∗)2], (3.3)

where k is the constant determined experimentally, with k = 0.002, following the approach
similar to Mivehchi et al. (2021).

In this study we developed a simplified three-dimensional (3-D), unsteady aerodynamic
model that incorporates both finite wing effects and ground effects. We incorporated
the finite wing and unsteady effect by using a combination of Wagner’s theory and the
unsteady lifting line model (LLT) following Boutet & Dimitriadis (2018). Specifically,
lifting line theory is employed to compute a 3-D downwash generated by a finite wing,
while Wagner’s unsteady theory is used to model the downwash resulting from the
wing’s unsteady motion. To capture the 3-D downwash generated by the wake in this
unsteady problem, we employed a quasi-steady version of lifting line theory, characterized
by a time-varying circulation distribution. This quasi-steady approximation enabled us
to integrate this 3-D downwash with other unsteady downwash sources modelled using
Wagner’s theory. While LLT typically assumes small AOA and attached flow, a number
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of researchers have successfully adopted LLT for various unsteady cases, such as a
periodically pitching wing (Sclavounos 1987), flapping wings (Phlips, East & Pratt 1981)
or a generic rotorcraft application (Leishman 2006). Here, we modified the LLT to include
the ground effect behaviour using image vortices.

To represent the flat plate and the trailing vortex sheet, we used the lifting line approach.
From Prandtl’s lifting line theory, the downwash velocity, wy, induced at spanwise location
y is given by

wy = −1
4π

∫ S/2

−S/2

dΓ

dy0

y − y0
dy0. (3.4)

Here, Γ is the strength of the vortex. For the unsteady case involving a finite wing, Γ is a
function of time (t) and span location (y) distribution and can be represented by a Fourier
series with time-varying Fourier coefficients, an, as

Γ (t, y) = 1
2

a0c0U
N∑

n=1

an(t) sin(nθ), (3.5)

where a0 is the lift curve slope, with a0 = 2π for an ideal airfoil, c0 is the chord length
of the wing and N is the number of spanwise stripes. Here the coordinate transformation
of y = (S/2) cos(θ) is applied to map the angle, θ , to the semi-span, S/2, position of the
wing. Substituting (3.5) into (3.4) and applying the Glauert integral (Glauert 1983) leads
to a simplified form of downwash velocity as

wy(t) = −a0c0U
4S

N∑
n=1

nan(t)
sin(nθ)

sin(θ)
. (3.6)

To include the ground effect, we incorporate an image vortex system that satisfies
the zero normal flow boundary condition on the ground (figure 15). This image vortex
system induces an upwash on the finite wing, effectively modifying the tip vortex-induced
downwash velocity. The upwash velocity, wIy , induced by the image lifting line can be
represented following Ariyur (2005):

wIy(t) = cos(2β)

4π

∫ S/2

−S/2

( y − y0)
dΓ (t)
dy0

dy0

[( y − y0)2 + 4h2 cos2(θ)]
. (3.7)

This upwash velocity is the main contribution of the ground effect, which alters the lift
forces on the plate. After coordinate transformation and substitution of the derivative of Γ

into (3.7), the upwash velocity can be expressed as

wIy(t) = cos(2β)

π

∫ π

0

(cos(θ0) − cos(θ))

m∑
n=1

nan cos(nθ0)

[
(cos(θ0) − cos(θ))2 + 16

(
h
b

)2

cos2(β)

]dθ0, (3.8)

where β is the angle between the vortex sheet and the horizontal plane.
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Figure 15. Geometry and vortex system of a flat wing-in-ground effect.

The unsteady sectional lift coefficient, cc
l (t), can be obtained in terms of an(t) using the

unsteady Kutta–Joukowski theorem (Katz & Plotkin 2001):

cc
l (t) = 2Γ

Uc
+ 2Γ̇

U2 . (3.9)

By substituting the Fourier series representation of the vortex strength (3.5) for Γ , cc
l (t)

can be expressed as

cc
l (t) = a0

N∑
n=1

(c0

c
an + c0

U
ȧn

)
sin(nθ). (3.10)

The unsteady motion of the flat plate causes a step change in the downwash velocity,

w( y), along the span. The variation of the circulatory lift coefficient due to this step
change is given in terms of indicial function:

cc
l (t) = a0Φ(t)


w( y)
U

. (3.11)

Here, Φ(t) represents the Wagner function, which can be expressed as

Φ(t) = 1 − Ψ1e− ε1U
b

t − Ψ2e− ε2U
b

t, (3.12)

where the constants Ψ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3 are derived from
Jones’ approximation of the Wagner function (Jones 1938).

To capture the continuous lift response of an airfoil that undergoes arbitrary motion,
we use Duhamel’s integral. This method involves superimposing the step response of the
Wagner function Φ(t) with the differential variation of the downwash velocity, w(t, y).
However, in our case, the flat plate experiences gradual deceleration, and the free-stream
velocity decreases with time. To account for this variation, we modify Duhamel’s integral
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formulation by considering U = U(t), as suggested by Van der Wall (1992) and Hansen,
Gaunaa & Madsen (2004). Based on this, we rewrite Duhamel’s integral formulation with
the time-varying free-stream velocity as

cc
l (s) = a0

U

(
w(0)Φ(s) +

∫ s

0

∂w(τ )

∂τ
Φ(s − τ) dτ

)
, (3.13)

where s is the non-dimensional time scale, which is calculated as s = (2/c)
∫ t

0 U dt.
Applying integration by parts to Duhamel’s integral and substituting the first-order

differential equation derived by differentiating the two time lag terms of the Φ(t) with
respect to t, yields the following expression of the sectional circulatory lift coefficient
along the wing span:

cc
l (t, y) = a0

U
(w(t, y)(1 − Ψ1 − Ψ2) + y1(t) + y2(t)) . (3.14)

Here the state variables yi are defined as

yi(t) = Ψiεi
2
c

∫ t

0
w(t′, y)U(t′) exp

(
−εi

2
c

∫ t

t′
U(τ ) dτ

)
dt′. (3.15)

The step-by-step derivation of (3.13) and (3.14) is presented in Appendix A.
In this study the downwash on the wing is caused by both the motion of the wing and the

3-D wake. The motion of the wing contributes to the downwash through pitch and AOA.
The 3-D downwash is calculated using modified lifting line theory, which considers both
downwash from the trailing vortex sheet and upwash from the image vortex sheet. The
total downwash w(t, y) on the wing is expressed as

w(t, y) = Uαy(t) + α̇y(t)d + wy(t) + wIy(t), (3.16)

where d represents Theodersen’s non-dimensional distance.
To remove the integrals from the state variables, new state variables, zk, are introduced:

zk(t, y) =
∫ t

0
exp

(
−εi

2
c

∫ t

t′
U(τ ) dτ

)
vk(t′, y) dt′, i = 1, 2. (3.17)

Here k = 1, 2, . . . 6, v1,2 = α, v3,4 = wy/U and v5,6 = wIy/U. We use i = 1 for k = 1, 3
and 5 and i = 2 for k = 2, 4 and 6.

To express the first-order differential equation of (3.17), we used Leibniz’s integral rule:

żk(t, y) = vk − εiU
b

zk(t, y), i = 1, 2. (3.18)

After combining (3.10), (3.14) and (3.16), and performing the substitution of zk into yi,
we can now turn (3.14) at the jth stripe into a Wagner lifting line matrix equation:

Dyjȧn = κ(Jjṗ + Kjp + Ljz) + (r( y)(Wyj + WIyj) − Ayj)an,

ż = Ejz + Fjp + G
U

(Wyj + WIyj)an.

⎫⎬
⎭ (3.19)
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Here

F j = [1 1 0 0 0 0]T,

Dyj = a0

N∑
n=1

c0

U
sin(nθj),

Ayj = a0

N∑
n=1

c0

c
sin(nθj),

Ej = −U
b

diag(εi=1, εi=2, . . .),

z = [zk=1 zk=2 . . .]T,

G = [0 0 1 1 0 0; 0 0 0 0 1 1]T,

p = [α(t, y)],

J j = a0

U
Φ(0)d,

K j = a0

U
[UΦ(0) + dΦ̇(0)],

Lj = a0U
b

[
Ψ1ε1

(
1 − ε1

d
b

)
Ψ2ε2

(
1 − ε2

d
b

)
Ψ1ε1 Ψ2ε2 Ψ1ε1 Ψ2ε2

]T

,

r( y) = a0Φ(0)

U
and

κ = 2.0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

In this study the wing is divided into N = 15 spanwise sections. When we apply (3.19)
to all the N sections, a system of 7N differential equations is formed. A MATLAB-built
ordinary differential equation (ODE) function, ode15s, is used to solve the given systems
of ODEs. After computing the Fourier coefficients, an, (3.9) is used to calculate the lift
coefficient along the wing span.

Figure 16(a) illustrates the non-circulatory lift coefficient, CLnc , and circulatory lift
coefficient, CLc , predicted by the analytical model during synchronous pitch-up motion for
three different shape change numbers: Ξ = 0.2 (C1), 0.4 (C3) and 0.6 (C5) at h∗ = 1.5.
For each Ξ value, the model predicts an initial increase in both the CLnc and CLc as
the motion starts, with CLnc being more dominant in the early phase of the manoeuvre.
However, CLnc starts to decrease after reaching its initial peak, while CLc continues to rise
and becomes a pronounced lift component in the mid-phase of the manoeuvre. At t∗ = 0.5,
CLc reaches its peak value and gradually decreases thereafter. Meanwhile, after t∗ = 0.5,
CLnc generates negative lift force and emerges as a dominant component during the late
manoeuvre. This consistent trend is observed across all Ξ values, with an increasing
magnitude in the peak force as Ξ increases.

Figure 16(b) compares the predicted total lift coefficient, CL, with the experimental
results. The model predicts a steep rise in CL during the initial deceleration phase for
all values of Ξ , consistent with the experimental findings. This indicates that both the
non-circulatory and the circulatory forces play a dominant role in generating unsteady
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Figure 16. Comparison of lift coefficient between the model and experiment during the synchronous pitch-up
motion case. (a) Non-circulatory and circulatory lift coefficients predicted by the model for Ξ = 0.2 (C1), 0.4
(C3) and 0.6 (C5) at h∗ = 1.5. (b) Total experimental and predicted lift coefficients for three values of Ξ at
h∗ = 1.5. (c) Non-circulatory and circulatory lift coefficients predicted by the model for Ξ = 0.6 (C5) at two
extreme ground heights, h∗ = 1.5 and 0.04. (d) Experimental and predicted lift coefficients for Ξ = 0.6 (C5)
across four non-dimensional ground heights. (e) Maximum and minimum CL as a function of h∗ at each Ξ .
Note: ‘nc’ represents the non-circulatory and ‘c’ represents the circulatory lift component.
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forces in pitching plates during deceleration. Subsequently, as observed in the experiment,
CL decreases due to a reduction in non-circulatory and circulatory forces. The agreement
of the model’s predicted results with the experimental data improves with increasing
Ξ , possibly because the analytical model emulates the dynamics of these unsteady
manoeuvres more effectively at higher pitch rates.

From figure 16(c) we observe that as the ground height decreases, there is a noticeable
increase in the initial peak force for both CLnc and CLc . Notably, the model indicates
that for the wing-in-ground effect, the rapid reduction in the CL at the end phase of
the manoeuvre is mainly due to the decrease in the CLnc . When comparing the lift
coefficient between the experiment and the model, we observe that predicted results align
closely with the experimental values across all ground heights considered in this study
(see figure 16d). However, a slight deviation in CL exists, primarily due to the model’s
limitation in accurately estimating vortex growth and detachment from the wing surface.
Figure 16(e) further compares the maximum and minimum CL values as a function of
h∗ for both methods. Interestingly, the absolute values of both increases with decreasing
ground height, with closer agreement between the experiment and model observed at
Ξ = 0.6 and 0.4. While the maximum CL aligns well at Ξ = 0.2, some disparity persists
in the minimum CL. Despite these limitations, the present model effectively captures the
overall trends in the evolution of CL and the influence of the ground effect on rapidly
pitching plates during deceleration.

4. Conclusion

Using a simple model of a rapidly pitching finite flat plate (AR = 3) in a decelerating
flow, we investigated the impact of frontal area change on unsteady forces and flow
dynamics during perching or hunting behaviours in birds. Our findings reveal that during
synchronous pitch-up motion, an increase in the shape change number Ξ results in higher
lift and drag forces on the wing. Using PIV, we observed that higher Ξ values generate
more coherent and stronger LEV closer to the wing, while smaller Ξ values lead to weaker
LEV that diffuses more rapidly and is farther away from the plate surface.

Regarding ground heights (0.04 < h∗ < 1.5), our results demonstrate that the ground
proximity influences the initial rise in the lift force, with lift increasing as the wing
gets closer to the ground. Vorticity field data showed interactions of the vortices with
the ground boundary layer, especially in near-ground cases. Furthermore, the evolution
of circulation history highlights an augmentation in LEV and TEV circulation with the
increase in ground proximity, correlating with the observed higher lift force values for
near-ground cases.

We then expanded our study to an asynchronous pitch-up motion, varying the starting
time offsets between the deceleration and pitch-up motion t∗os. For t∗os = 0, initial lift and
drag forces were high but rapidly dropped later in the motion. Conversely, delaying the
rapid pitch-up motion until late in the deceleration (i.e. t∗os = 0.5) allowed the wing to
sustain lift and drag until late in the manoeuvre. The PIV measurements reveal that,
for t∗os = 0, the plate generates stronger, more compact vortices early in the manoeuvre,
inducing a stronger dipole jet that gets reversed upon impinging with the ground.
Interestingly, hunting birds like bald eagles can harness this reversed jet as a parasitic
thrust to accelerate after catching their prey. Conversely, the delayed time-offset case
(i.e. t∗os = 0.5) delays vortex formation, correlating with the continuous generation of
lift and drag until late in the manoeuvre. These crucial findings demonstrate that birds
utilize rapid wing pitching during deceleration to achieve diverse flying objectives, either
by recovering the reversed jet later in the manoeuvre or delaying vortex formation towards
the end of the motion.
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Our analytical model successfully captures the general trend in the evolution of
instantaneous CL on rapidly pitching plates during deceleration. It predicts that the initial
rise in the CL is the combined effect of non-circulatory and circulatory forces, and
increasing the pitch rate increases both force components. As the wing approaches the
ground, the model predicts an increase in the CL, accurately reflecting the influence
of ground proximity and demonstrating strong agreement with the experimental results.
The agreement of the model’s predicted results with the experimental data improves
with increasing Ξ , possibly because the model emulates the dynamics of these unsteady
manoeuvres more effectively at higher pitch rates. However, we acknowledge the
limitations of solely considering longitudinal trailing vortex sheets using the lifting line
approach in our investigation. This limitation is crucial to acknowledge, especially when
addressing the complexities of 3-D vortex dynamics. Also, our model has an AR of 3,
which affects the ground effect due to the presence of a dominant wing tip vortex, unlike
in an infinite-span wing. This suggests that our findings might not be directly applicable
to wings with significantly different aspect ratios. In future work, exploring the inclusion
of additional vortex components and investigating the aspect ratio’s effect could enhance
the model’s accuracy, especially in handling complex 3-D vortex interactions.

Overall, this study highlights the significance of tuning rapid pitching with deceleration,
as observed in perching and hunting birds, which employ strategies such as the recovery
of jets for acceleration or the delayed formation of vortices for smooth landing or
perching. This improved understanding of the highly unsteady performance of natural
flyers contributes to the design of safer and more efficient flying vehicles.
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Appendix A

This appendix presents the detailed derivation of (3.13) and (3.14). We employ the
Duhamel integral to predict the response of a time-varying system by superimposing
time-shifted indicial responses. The general expression for the indicial response, denoted
as Φ(t), is used to predict the time-varying output, y(t), in response to the time-varying
input, x(t). This prediction is achieved through the convolution with the time derivative of
input ẋ(t) (Ghoreyshi & Cummings 2014; Hiller et al. 2020):

y(t) = x(0)Φ(t) +
∫ t

0

∂x(σ )

∂σ
Φ(t − σ) dσ. (A1)

Here, x(0) represents the system input at t = 0. By applying the Duhamel superposition
integral, as expressed in (A1), we can represent the unsteady lift on a plate with
time-varying downwash velocity as

cc
l (s) = a0

U

(
w(0)Φ(s) +

∫ s

0

∂w(τ )

∂τ
Φ(s − τ) dτ

)
. (A2)
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Here, s is the non-dimensional time scale. Applying integration by parts to the second term
of the Duhamel integration:∫ s

0

∂w(τ )

∂τ
Φ(s − τ) dτ = w(s)Φ(0) − w(0)Φ(s) −

∫ s

0
w(τ )

∂Φ(s − τ)

∂τ
dτ. (A3)

Substituting (A3) into (A2) results in

cc
l (s) = a0

U

(
w(s)Φ(0) −

∫ s

0
w(τ )

∂Φ(s − τ)

∂τ
dτ

)
. (A4)

Taking

τ = 2
c

∫ t′

0
U dt′,

dτ

dt′
= d

dt′

(
2
c

∫ t′

0
U dt′

)
= 2

c
U (A5a,b)

and
∂Φ()

∂τ
dτ = ∂Φ()

∂t′
∂t′

∂τ
dτ = ∂Φ()

∂t′
( c

2U

)(2U
c

dt′
)

= ∂Φ()

∂t′
dt′. (A6)

Implementing the variable substitution provided for s and τ :

cc
l (s) = a0

U

(
w(s)Φ(0) −

∫ s

0
w(τ )

∂Φ

∂t′

(
2
c

∫ t

0
U dt − 2

c

∫ t′

0
U dt′

)
dt′
)

. (A7)

Here the variables t and t′ are defined in terms of the non-dimensional time scales s and τ ,

and
∫ t

0 U dt − ∫ t′
0 U dt′ = ∫ t

t′ U(σ ) dσ.

If c and U are constants (or at least functions of t only), then s depends strictly on t.
In this case, w(s) can potentially be written as w((2/c)

∫ t
0 U dt) and further simplified to

w(t), if w depends only on its final value (Taha, Hajj & Beran 2014). This yields

cc
l (t) = a0

U

(
w(t)Φ(0) −

∫ t

0
w(t′)

∂Φ

∂t′

(
2
c

∫ t

t′
U(σ ) dσ

)
dt′
)

. (A8)

The Wagner function Φ(s) is expressed as

Φ(s) = 1 − Ψ1e−ε1s − Ψ2e−ε2s,

Φ(0) = 1 − Ψ1 − Ψ2.

}
(A9)

Here, s = (2/c)
∫ t

t′ U(σ ) dσ . Differentiating Φ with respect to t′ results in

∂Φ

∂t′

(
2
c

∫ t

t′
U(σ ) dσ

)

=
∂

(
1 − Ψ1 exp

(
−ε1

2
c

∫ t

t′
U(σ ) dσ

)
− Ψ2 exp

(
−ε2

2
c

∫ t

t′
U(σ ) dσ

))

∂

(
2
c

∫ t

t′
U(σ ) dσ

)

×

⎛
⎜⎜⎝

∂

(
2
c

∫ t

t′
U(σ ) dσ

)
∂t′

⎞
⎟⎟⎠ . (A10)
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Implementing the derivative of the integral function, we have

d
dt′

(∫ t

t′
f (x) dx

)
= f (t)

dt
dt′

− f (t′)
dt′

dt′
. (A11)

Here, a unit impulse is applied at time t′ and the response is observed at time t. Notably,
this response depends solely on the elapsed time (t − t′), and with no explicit dependency
on either t or t′ individually. This suggests that the coefficients of the differential equations
remain invariant over time (Karman & Biot 1940). This results in

∂Φ

∂t′

(
2
c

∫ t

t′
U(σ ) dσ

)

=
(

Ψ1ε1 exp
(

−ε1
2
c

∫ t

t′
U(σ ) dσ

)
+ Ψ2ε2 exp

(
−ε2

2
c

∫ t

t′
U(σ ) dσ

))(
−2

c
U(t′)

)
,

(A12)

∂Φ

∂t′

(
2
c

∫ t

t′
U(σ ) dσ

)
= −2U(t′)

c

2∑
i=1

Ψiεi exp
(

−εi

(
2
c

∫ t

t′
U(σ ) dσ

))
, (A13)

yi(t) = Ψiεi
2
c

∫ t

0
w(t′)U(t′) exp

(
−εi

(
2
c

∫ t

t′
U(σ )dσ

))
dt′. (A14)

Substituting (A13) and (A14) into (A8) yields

cc
l (t) = a0

U
(w(t) (1 − Ψ1 − Ψ2) + y1(t) + y2(t)) , (A15)

which represents (3.14).
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