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Abstract

By work of Looijenga and others, one understands the relationship between Geometric
Invariant Theory (GIT) and Baily–Borel compactifications for the moduli spaces of
degree-2 K3 surfaces, cubic fourfolds, and a few other related examples. The similar-
looking cases of degree-4 K3 surfaces and double Eisenbud–Popescu–Walter (EPW)
sextics turn out to be much more complicated for arithmetic reasons. In this paper, we
refine work of Looijenga in order to handle these cases. Specifically, in analogy with the
so-called Hassett–Keel program for the moduli space of curves, we study the variation
of log canonical models for locally symmetric varieties of Type IV associated to D-
lattices. In particular, for the 19-dimensional case, we conjecturally obtain a continuous
one-parameter interpolation between the GIT and Baily–Borel compactifications for the
moduli of degree-4 K3 surfaces. The analogous 18-dimensional case, which corresponds
to hyperelliptic degree-4 K3 surfaces, can be verified by means of Variation of Geometric
Invariant Theory (VGIT) quotients.

Introduction

An important problem in algebraic geometry is to construct a geometric compactification for
the moduli space of polarized degree-d K3 surfaces Kd. By global Torelli, Kd is isomorphic to a
locally symmetric variety Fd and hence it has natural compactifications such as the Baily–Borel
compactification F ∗d , Mumford’s toroidal compactifications, and more generally Looijenga’s
semitoric compactifications. However, a priori, these compactifications are only birational to
the ‘geometric’ compactifications, obtained, for example, by Geometric Invariant Theory (GIT).
It is natural to compare the two kinds of compactifications. An understanding of the relationship
between the Baily–Borel and GIT compactifications leads to deep results about the period map
(e.g. see [Sha80, Loo09]) and to results about the structure of the GIT quotient. The simplest
instance of such comparison results is the isomorphism

(H/SL(2,Z))∗ ∼= |OP2(3)|//SL(3)(∼= P1)

between the compactified j-line and the GIT moduli space of plane cubic curves. In a vast
generalization of this fact, Looijenga [Loo03a, Loo03b] has devised a comparison framework
that applies to locally symmetric varieties associated to type IV or I1,n Hermitian symmetric
domains. This framework was successfully applied in the case of moduli of degree-2 K3 surfaces
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[Loo86, Sha80], cubic fourfolds [Loo09, Laz10], and a few other related examples (e.g. cubic
threefolds, del Pezzo surfaces, etc.). The nominal purpose of the present paper is to investigate the
analogous cases of degree-4 K3 surfaces [Sha81] and double Eisenbud–Popescu–Walter (EPW)
sextics [O’Gr15, O’Gr16]. While studying these cases, we uncovered a rich and intriguing picture.

The starting point of our investigation are two limitations in Looijenga’s construction. First
of all, a certain technical assumption in Looijenga’s work does not hold for quartic K3 surfaces
(nor for double EPW sextics), while it does hold for K3 surfaces of arbitrary degree d 6= 4 (see
Lemma 8.1 in [Loo03b]). Namely, for arithmetic reasons, the combinatorics of the hyperplane
arrangement involved in Looijenga’s construction [Loo03b] is much richer for polarized K3
surfaces of degree 4 than for polarized K3 surfaces of degree d 6= 4 (similarly, the hyperplane
arrangement involved in the period map for double EPW sextics is much richer than the
hyperplane arrangement relevant to cubic fourfolds). Secondly, and this is a consideration which
applies to K3 surfaces of any degree, there exist a plethora of GIT models. In the low-degree
cases considered here and in the literature, there might be a ‘natural’ choice for GIT, but this is
misleading (see [CMJL14] for a hint of what would happen already in degree 6). The solution that
we propose in order to handle these two issues is to give flexibility to Looijenga’s construction
by considering a continuous variation of models. More precisely, we recall that for a locally
symmetric variety F = D/Γ, Baily and Borel have shown that the homonymous compactification
F ∗ is the Proj of the ring of automorphic functions, i.e. F ∗ = ProjR(F , λ), where λ is the Hodge
bundle. Looijenga’s deep insight was to observe that in certain situations of geometric interest, a
certain GIT quotient M is nothing but the Proj of the ring of meromorphic automorphic forms
with poles on a (geometrically meaningful) Heegner (i.e. Noether–Lefschetz) divisor ∆, and thus
M = ProjR(F , λ + ∆). Furthermore, Looijenga has shown that under a certain assumption
on ∆ (which fails for quartic K3 surfaces and for double EPW sextics), ProjR(F , λ + ∆) has
an explicit combinatorial/arithmetic description. Our approach is to continuously interpolate
between the two models by controlling the order of poles for the meromorphic automorphic
function, i.e. to consider ProjR(F , λ+ β∆), where β ∈ [0, 1]. This allows us to understand the
case of quartics and, more importantly, to capture more GIT quotients.

While a variation of models ProjR(F , λ + β∆) makes sense for general Type IV locally
symmetric varieties (and also ball quotients), we focus here on the so-called D-tower of locally
symmetric varieties, i.e. Type IV locally symmetric varieties associated to lattices U2 ⊕ Dn.
More precisely, we let F (N) be the N -dimensional locally symmetric variety corresponding to
the lattice ΛN := U2 ⊕DN−2, and an arithmetic group ΓN , which is intermediate between the
orthogonal group O+(ΛN ), and the stable orthogonal subgroup Õ+(ΛN ). With these definitions
in place (see § 1 for details), F (19) is the period space for quartic K3 surfaces, F (20) is
the period space for double EPW sextics modulo the duality involution (or EPW cubes), and
F (18) is the period space for hyperelliptic quartic surfaces. Thus, we compare the Baily–Borel
compactifications F (N)∗ for N ∈ {18, 19, 20} to the GIT moduli spaces M(N), where

M(18) := |OP1(4)� OP1(4)|//Aut(P1 × P1),

M(19) := |OP3(4)|//PGL(4),

M(20) := LG
( 3∧

C6
)
//PGL6(C).

(Actually, for N = 20, we should take the quotient of M(20) modulo the duality involution;
see (2.3.4).) We let λ(N) be the Hodge (or automorphic) orbiline bundle on F (N) and we choose
the boundary divisor ∆(N) so that ProjR(F (N), λ(N) + ∆(N)) ∼= M(N). (We emphasize that
∆(N) is a divisor inside the locally symmetric variety F (N) and in particular it has nothing
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to do with the boundary of the Baily–Borel compactification or toroidal compactifications. We
use the word ‘boundary’ in accordance with standard terminology in minimal model program
(MMP) and specifically variations of log canonical models.)

We will show that F (N) is isomorphic to a Heegner divisor Hh(N+1) ⊂F (N+1), which is
the ‘main’ component of the boundary divisor ∆(N). Hence, the varieties F (N) fit into a tower
joining periods of hyperelliptic quartics, quartic surfaces, and double EPW sextics (something
which has a clear geometric counterpart). By a careful analysis of the D-tower, and an application
of Borcherds’ results, we arrive at a conjecture predicting the behavior of the models

F (N, β) := ProjR(F (N), λ(N) + β∆(N))

as β varies between 0 and 1. Below we summarize our predictions.

Conjecture. Let 15 6 N 6 23. The ring of sections R(F (N), λ(N) + β∆(N)) is finitely
generated for β ∈ [0, 1] ∩Q, and the walls of the Mori chamber decomposition of the cone

{λ(N) + β∆(N) | β ∈ Q, β > 0}

are generated by λ(N)+(1/k)∆(N), where k ∈ {1, . . . , N−10} and k 6= N−11. The behavior of
λ(N) + (1/k)∆(N), for k as above, is described as follows. For k = 1, F (N, 1) is obtained from
F (N, 1− ε) by contracting the strict transform of supp ∆(N). If 2 6 k, then the birational map
between F (N, 1/k− ε) and F (N, 1/k+ ε) is a flip whose center is described in Prediction 5.1.1.

Specifically, let us spell out the conjecture for the case of quartic surfaces.

Prediction. The variation of models ProjR(F (19), λ(19) + β∆(19)) interpolating between
the Baily–Borel compactification F ∗4 (∼= F (19)) for quartic K3 surfaces (β = 0) and the GIT
quotient for quartic surfaces (β = 1) undergoes birational transformations (flips, except for the
two boundary cases) at the following critical values for β:

β ∈ {0, 1
9 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1}.

Furthermore, the centers of the flips for β < 1
5 correspond to T3,3,4, T2,4,5, and T2,3,7 marked K3

surfaces (loci inside the period space F (19)) and those loci are flipped to the loci in M(19) of
quartics with E14, E13, and E12 singularities, respectively (see Shah [Sha80]).

The birational modifications at the two ends of the interval were known by Shah and
Looijenga, respectively. In [LO18b], we have given a complete geometric (partly conjectural,
partly provable) matching between a slight refinement of Shah’s Type IV stratification [Sha81,
Theorem 2.4] (the indeterminacy locus of the period map) in the GIT quotient M and the
strata resulting from the flips predicted above (see [LO18b, § 4.3]). Furthermore, the behavior at
β = 1

9 ,
1
7 ,

1
6 and β = 1

2 is understood (see [LO18b, § 6] and [LO18b, § 5.4], respectively).
In [LO18a], we have proved that our conjecture holds for N = 18 (hyperelliptic quartic K3

surfaces) by means of techniques similar to those employed in [CMJL14]. Since our constructions
are inductive, and since the geometric behavior (for hyperelliptic quartics) identified in [LO18a]
matches what we predicted in [LO18b] (for quartics), we have no doubt of the validity of our
conjecture for quartic K3 surfaces. Similarly, earlier work on EPW sextics [O’Gr15, O’Gr16]
seems compatible with our conjectures; presumably our predictions (for N = 20) can be checked
inductively.
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Remark. By decomposing the period map for quartic surfaces into elementary birational
transformations, we open the door to wall-crossing arguments. For instance, starting from the
cohomology of the GIT quotient for quartic surfaces (see Kirwan [Kir89]) and, following the flips
discussed above, one can compute the cohomology of the Baily–Borel compactification F ∗4 . For
comparison’s sake, we recall that in the case of degree-2 K3 surfaces, there is no intermediate flip
and thus the two extremal cases suffice to compare the GIT and the Baily–Borel compactifications
(see [Sha80] and [Loo86], and [KL89] for the computation of the cohomology).

The variational approach to the analysis of birational maps is the natural one from the
perspective of contemporary MMP, and its power in the context of moduli has been in
evidence since the appearance of Thaddeus’ work on Variation of Geometric Invariant Theory
(VGIT) [Tha96]. An inspiration for our work is the so-called Hassett–Keel program (see [HH13])
for moduli of curves (which studies the variation of log canonical models ProjR(Mg,K + α∆)
of the Deligne–Mumford compactification Mg). Experts in the field have speculated on the
existence of an analogue of the Hassett–Keel program for (special) surfaces; our study can be
viewed as a first example of a Hassett–Keel program for surfaces. Indeed, beyond the obvious
analogy (λ + β∆ may easily be rewritten as KF + α∆′), the modular behavior is also similar:
for instance, the first birational wall crossing for quartic K3 surfaces is associated to Dolgachev
singularities in a manner similar to the case of curves with cusp singularities.

On the other hand, there is a richer structure compared to the Hassett–Keel program. Namely,
the birational transformations that occur in our situation are controlled by the arithmetic and
combinatorics of the hyperplane arrangement associated to ∆. The emerging picture of periods
of quartic K3 surfaces is more complex and subtle than that of periods of degree-2 K3 surfaces,
but nonetheless Looijenga’s insight that arithmetic controls the birational models of F ∗d is still
valid. We view our work as a quantitative and qualitative refinement of Looijenga’s seminal work
[Loo03b].

The birational geometry of moduli spaces of K3 surfaces was previously studied from the
perspective of the Kodaira dimension by Gritsenko et al. [GHS07]. We share with them the
main technical tool, namely Borcherds’ construction [Bor95] of automorphic forms for Type IV
domains (and subsequent improvements due to Bruinier [Bru02] and Bergeron et al. [BLMM17]).

Structure of the paper
In § 1, we introduce the D-tower of period spaces {F (N)}N>3. The focus here is on the arithmetic
of D-lattices. We define the main Heegner divisors, namely the nodal, hyperelliptic, and unigonal
divisors in F (N), denoted respectively Hn(N), Hh(N), and Hu(N). If N = 19 (the period
space for quartic surfaces), they have a well-known geometric meaning and in other dimensions
they are the arithmetic analogue of the divisors for N = 19. The salient point in the D-tower
is that F (N − 1) is isomorphic to the hyperelliptic Heegner divisor Hh(N) of F (N). Our
boundary divisor ∆(N) is equal to Hh(N)/2 except when N ≡ 3, 4 (mod 8), in which case
∆(N) = (Hh(N) + Hu(N))/2. (Note that the factor 1

2 appears because the quotient map from
the relevant Type IV domain to F (N) is ramified over the hyperelliptic divisor, and also over
the unigonal divisor, if N ≡ 3, 4 (mod 8).) This leads to an inductive behavior.

In the following § 2, we go through results which are (more or less) known, namely that
F (19) is the period space of degree-4 polarized K3 surfaces, that F (18) is the period space
of hyperelliptic quartics, and that F (20) is the period space of double EPW sextics up to the
duality involution (alternatively, it is the period space of EPW cubes).

In § 3, we study the quasi-pull-back of Borcherds’ celebrated automorphic form given by two
embeddings of the lattice ΛN into II2,26. The resulting relations between the automorphic line
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bundle on F (N), and the Heegner divisors Hn(N), Hh(N), and Hu(N) (see Theorems 3.1.1
and 3.1.2), are key results for our work.

Section 4 contains a proof that F (19, 1) = ProjR(F (19), λ(19) + ∆(19)) is isomorphic to
the GIT moduli space M(19). An analogous proof shows that F (18, 1) is isomorphic to the GIT
moduli space M(18) and we expect that a similar result holds for N = 20, i.e. that F (20, 1)
is isomorphic to M(20) modulo the duality involution. In other words, if N ∈ {18, 19}, then
the schemes F (N, β), for β ∈ (0, 1) ∩ Q, interpolate between the Baily–Borel compactification
F (N)∗ and the GIT compactification M(N).

In the last section (§ 5), we identify the critical values of β and the corresponding centers.
To describe our work, let us review the basic picture in Looijenga. The starting point for him
is to note that frequently the GIT quotients M are obtained by contracting a certain Heegner
divisor H in F . Since the divisor λ+H restricts trivially to H, one gets that the GIT quotient
is the Proj of a ring of meromorphic automorphic forms with poles on H. The complication of
recovering the GIT quotient, say M ∼= ProjR(F , λ+H), from F ∗ = ProjR(F , λ) comes from
the fact that the hyperplanes in the arrangement H (defining the Heegner divisor H = H /Γ)
intersect and, according to [Loo03b], the intersection strata have to be flipped starting with the
largest codimension. While this flipping behavior is easy to understand if the strata are not too
deep (e.g. for degree-2 K3 surfaces or cubic fourfolds), it is clear that for the quartic examples,
or other examples where lots of intersections occur, it is wise to consider a continuous variation
of the parameter λ+ βH. Roughly, β = 0 is the known case, β = 1 is the target, and in between
we understand the flipping behavior by wall crossings.

By taking the variational point of view described above, we are able to give a quantitative
refinement of the flipping behavior predicted by Looijenga. Specifically, our computations show
that the critical value of β for which a specified intersection stratum Z should be flipped (in the
variation of models given by λ + βH) is determined by the log canonical threshold of Z ⊂ PN .
The precise formulae (see § 5.1.1) are more complicated as one has to take into account the
ramification behavior. While these arguments and computations are not explicitly contained
in [Loo03b], it is natural to call the computations of the (potential) critical β the Looijenga
predictions. The surprising aspect that we discovered in our study is that these are only first-order
predictions. Namely, as explained below, some arithmetic corrections are needed. Our final results
are discussed in § 5.1.2 (especially Prediction 5.1.1).

By comparing the GIT quotient for quartic surfaces of Shah [Sha81] with the predicted
Looijenga [Loo03b] model, we have observed a puzzling thing: the flips associated to intersections
of components of the hyperelliptic arrangement predicted by Looijenga do occur, but, roughly
speaking, only up to half the dimension. The explanation for this is in the Borcherds–Gritsenko
relations between the automorphic line bundle and the Heegner divisors that were established
in § 3. In short, while, for large N , Hh(N) is birationally contractible in F (N), this is far from
true for N small: in fact, Hh(N) is ample on F (N) (and proportional to λ(N)) for N 6 10.
(This last fact was previously observed by Gritsenko [Gri18] in a different context.) This leads
to a different behavior for the flips associated to high-codimension intersection strata. Very
roughly, all the sufficiently deep strata (in the D-tower example) will be flipped at once. In other
words, the Looijenga predictions come from combinatorics of the hyperplane arrangement: this
is the dominating factor for small codimension, while for high codimension there are arithmetic
corrections that are dominating.

The essential ingredient that is missing for making our predictions/conjectures into theorems
is to show that all the centers of the birational transformations that occur in a variation of
models on F = D/Γ associated to varying λ + β∆ are of Shimura type (i.e. D ′/Γ′). This a
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Fulton-type arithmetic conjecture. As mentioned, we have checked this (in the D-tower case) for
N = 18 [LO18a]; also, the case N = 19 is essentially complete [LO18b].

Notation and conventions
We follow established conventions on integral lattices following Nikulin [Nik80]. In particular,
the lattice ΛN = DN−2 ⊕ U2 plays an essential role in our paper.

Throughout the paper, F = D/Γ is a locally symmetric variety of Type IV, i.e. the
quotient of a bounded symmetric domain of Type IV modulo an arithmetic group (see § 1.2
for a brief review). The notation F might come with various additional decorations, which
help specify it, e.g. FΛ(Γ) indicates the underlying lattice Λ of signature (2, ∗) and arithmetic
group Γ ⊂ O(Λ). Starting with § 2, F (N) is a specific N -dimensional locally symmetric
variety (see Proposition 1.2.3) associated to the lattice ΛN . There are natural inclusion maps
F (N − 1) ↪→ F (N) (cf. (1.7.1)); our main focus is F (19) ∼= F4, the moduli space of quartic
K3 surfaces. The Baily–Borel compactifications are indicated by a superscript ∗, e.g. F (N)∗.
The GIT quotients are typically denoted by M with various identifying decorations. We view the
period map p as a birational map going from an appropriate GIT quotient M to a Baily–Borel
compactification F ∗. The notation β is used to denote a rational number in [0, 1], which should
be understood as an interpolating parameter between a GIT quotient (β = 1) and a Baily–Borel
compactification (β = 0). In the final § 5, F (N, β) denotes a birational modification of F (N)∗.

We use repeatedly the Hodge bundle λ on F and the boundary divisor ∆ (Definition 1.3.6),
which is a Heegner divisor on F . We use various other Heegner divisors H = H /Γ ⊂F = D/Γ
(see § 1.3.1 for a quick review), especially the nodal Hn, the hyperelliptic Hh, and the unigonal Hu

divisors (see Definition 1.3.4). Typically, the divisors have the same decorations as the ambient
locally symmetric variety (e.g. Hh(N) is a divisor in F (N)). In general, Borcherds’ relations (e.g.
(3.1.1)) refer to a linear equivalence between the Hodge bundle λ and some Heegner divisors on
F (viewed in Pic(F )Q).

1. D-lattices and the associated locally symmetric varieties

We introduce D locally symmetric varieties. There is one such variety (of dimension N := n+ 2)
for each Dn-lattice. The period spaces of hyperelliptic quartic K3 surfaces, quartic K3 surfaces,
and desingularized EPW sextics correspond to D16, D17, and D18, respectively; see § 2. We
will introduce the Heegner divisors on D locally symmetric varieties which are relevant for our
work: the nodal, hyperelliptic, and unigonal divisors (Definition 1.3.4). These divisors are the
generalization of the familiar divisors with the same name on the period space for quartic K3
surfaces. We will prove that the hyperelliptic Heegner divisor on a D period space of dimension
N is isomorphic to the D locally symmetric variety of dimension N −1 (Proposition 1.4.5); thus,
we have an infinite tower of nested D locally symmetric varieties (§ 1.7). The introduction of this
D-tower allows us to make inductive arguments later on.

Remark 1.0.1. D locally symmetric varieties of dimension up to 10 have appeared in work of
Gritsenko; see [Gri18, § 3].

1.1 D-lattices
Let Λ be a lattice, i.e. a finitely generated torsion-free abelian group equipped with an integral
non-degenerate bilinear symmetric form ( , ). If v ∈ Λ, we let v2 = (v, v). Given a ring R, we let
ΛR := Λ⊗ZR and we extend by linearity the quadratic form to ΛR. We let AΛ := Hom(Λ,Z)/Λ
be the discriminant group of Λ. The quadratic form defines an embedding Hom(Λ,Z) ⊂ ΛQ.
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Let v ∈ Λ. The divisibility of v is defined to be the positive generator of (v,Λ) and is denoted
div(v). Thus, v/div(v) is an element of ΛQ which belongs to Hom(Λ,Z) and hence it determines
an element v∗ ∈ AΛ. Now suppose that Λ is an even lattice. The embedding Hom(Λ,Z) ⊂ ΛQ
induces a discriminant quadratic form qΛ : AΛ → Q/2Z. We recommend the classical paper by
Nikulin [Nik80] as a reference for definitions and results on lattices.

For us, U is the standard hyperbolic plane and the standard ADE root lattices are negative
definite. Thus, E8 is the unique even unimodular negative-definite lattice of rank 8; in the
literature, sometimes, it is denoted by E8(−1) or −E8. If 0 < p 6 q and p ≡ q (mod 8), then
IIp,q stands for an even unimodular lattice of signature (p, q); such a lattice is unique up to
isomorphism. For m ∈ Z, we let (m) be the rank-1 lattice with quadratic form that takes the
value m on a generator. We let

Dn :=

{
x ∈ Zn

∣∣∣∣ ∑
i

xi ≡ 0 (mod 2)

}
⊂ Zn (1.1.1)

and we equip Dn with the restriction of the negative of the standard Euclidean pairing on
Zn. Thus, D1

∼= (−4), D2
∼= A1 ⊕ A1, D3 = A3, and Dn is the negative-definite root lattice

with Dynkin diagram Dn if n > 4. Let αn, βn ∈ ADn be the classes of (1/2, 1/2, . . . , 1/2) and
(−1/2, 1/2, . . . , 1/2), respectively. If n is odd, then 4αn = 4βn = 0 and αn + βn = 0. If n is even,
then 2αn = 2βn = 0. Moreover,

qDn(αn) = qDn(βn) ≡ −n/4 (mod 2Z), qDn(αn + βn) ≡ n+ 1 (mod 2Z). (1.1.2)

The following result is an easy exercise.

Claim 1.1.1. If n is odd, then ADn is cyclic of order 4, generated by αn. If n is even, then ADn

is the Klein group, generated by αn and βn.

For N > 3, let
ΛN := U2 ⊕DN−2. (1.1.3)

Notice that
(AΛN

, qΛN
) ∼= (ADN−2

, qDN−2
). (1.1.4)

Below is the key definition of the present subsection.

Definition 1.1.2. Let N > 3. A lattice Λ is a dimension-N D-lattice if it is isomorphic to
ΛN , and in that case a decoration of Λ is an element ξ ∈ AΛ of square 1 (modulo 2Z). A
dimension-N decorated D-lattice is a couple (Λ, ξ), where Λ is a dimension-N D-lattice and
ξ ∈ AΛ is a decoration.

Remark 1.1.3. Let Λ be a dimension-N D-lattice. By (1.1.4) and (1.1.2), there exists a decoration
of Λ and it is unique unless N ≡ 6 (mod 8). Of course, when ξ is unique, the decoration is
irrelevant. However, including the decorations allows us to treat the exceptional cases (i.e. N ≡ 6
(mod 8)) uniformly and to make certain hidden structures more transparent. Note also that any
two N -dimensional decorated D-lattices are isomorphic.

Remark 1.1.4. If N > 3, then ΛN ⊕E8
∼= ΛN+8 (both are even unimodular lattices, of signature

(2, N + 8)). More generally, writing N − 2 = 8k + a with 0 6 k and a ∈ {0, . . . , 7}, we get

ΛN ∼= II2,2+8k ⊕Da. (1.1.5)
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1.2 Locally symmetric varieties of Type IV
Suppose that Λ is a lattice of signature (2,m). We let

DΛ := {[σ] ∈ P(ΛC) | σ2 = 0, (σ + σ)2 > 0}.

Then DΛ is a complex manifold of dimension m, with two connected components D±Λ ,
interchanged by complex conjugation (the ‘real part’ projection ΛC → ΛR identifies DΛ with
the set of oriented positive-definite two-dimensional subspaces of ΛR). Each of D±Λ is a bounded
symmetric domain of Type IV. The orthogonal group O(Λ) acts naturally on DΛ (left action).
Let O+(Λ) < O(Λ) be the subgroup of elements fixing each of D±Λ . By definition, O+(Λ) acts on
D+

Λ . For a finite-index subgroup Γ < O+(Λ), we let

FΛ(Γ) := Γ\D+
Λ .

Then FΛ(Γ) is naturally a complex space of dimension n. By a celebrated result of Baily and
Borel, there exists a projective variety FΛ(Γ)∗ (the Baily–Borel compactification of FΛ(Γ))
containing an open dense subset isomorphic to FΛ(Γ) as analytic space. In particular, FΛ(Γ)
has a compatible structure of a quasi-projective variety.

Definition 1.2.1. Let (Λ, ξ) be a dimension-N decorated D-lattice. Then O(Λ) acts naturally
on AΛ and hence we may define

Γξ := {φ ∈ O+(Λ) | φ(ξ) = ξ}.

We let FΛ(Γξ) be the associated locally symmetric variety (of dimension N): this is a D locally
symmetric variety. To simplify notation, we will write F (Λ, ξ) for FΛ(Γξ).

We will compare Γξ to more familiar subgroups of O+(Λ). First, we recall that if Λ is an even

lattice, the stable orthogonal subgroup Õ(Λ) < O(Λ) is the kernel of the natural homomorphism
Õ(Λ) → O(AΛ). We let Õ+(Λ) := O+(Λ) ∩ Õ(Λ). Notice that Õ+(Λ) is of finite index in O(Λ).

Example 1.2.2. Let Λ be an even lattice and r ∈ Λ non-isotropic. Let

ΛQ
ρr−→ ΛQ

x 7→ x− 2(x, r)

r2
r

(1.2.1)

be the reflection in the hyperplane r⊥. If r is primitive, then ρr(Λ) ⊂ Λ if and only if r2|2 div(r);
if this is the case we use the same symbol ρr for the corresponding element of O(Λ). One checks
easily the following results:

(1) ρr ∈ O+(Λ) if and only if r2 < 0;

(2) if r2 = ±2, then ρr ∈ Õ(Λ).

Let (Λ, ξ) be a decorated D-lattice; then

Õ+(Λ) < Γξ < O+(Λ). (1.2.2)

Proposition 1.2.3. Let (Λ, ξ) be a decorated D-lattice of dimension N . Then:

(1) Õ+(Λ) < Γξ is of index 2;
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(2) Γξ = O+(Λ) unless N ≡ 6 (mod 8), in which case Γξ < O+(Λ) is of index 3;

(3) if N is odd, FΛ(O+(Λ)) = FΛ(Γξ) = FΛ(Õ+(Λ));

(4) if N is even, the map FΛ(Õ+(Λ)) → FΛ(Γξ) is a double cover.

Proof. The homomorphism O(Λ) → O(qΛ) is surjective (see e.g. [Nik80, Theorem 1.14.2]). Since
the reflection ρr, for r ∈ Λ of square 2, acts trivially on AΛ and does not belong to the index-2
subgroup O+(Λ), it follows that the homomorphism O+(Λ) → O(qΛ) is surjective as well. Since
O(qΛ) ∼= Z/2 for N 6≡ 6 (mod 8), and O(qΛ) ∼= Σ3 otherwise, Items (1) and (2) follow. Notice
that −1(= −idΛ) ∈ Γξ for all N , while −1 ∈ Õ(Λ) if and only if N is even. It follows that if

N is odd, then −1 generates Γξ/Õ
+(Λ) ∼= Z/2. Since −1 acts trivially on DΛ, Item (3) follows.

Item (4) holds because Õ+(Λ) < Γξ is of index 2 and −1 is the unique non-trivial element of
O+(Λ) acting trivially on D+

Λ . 2

1.3 Heegner divisors on D locally symmetric varieties
1.3.1 Divisor classes on locally symmetric variety of Type IV. Let X := FΛ(Γ) be a locally

symmetric variety of Type IV. The Hodge bundle (or automorphic bundle), denoted by L (Λ,Γ),
is a fundamental fractional (orbifold) line bundle on FΛ(Γ); it is defined as the quotient of
OD+

Λ
(−1) by Γ, where OD+

Λ
(−1) is the restriction to D+

Λ of the tautological line bundle on

P(ΛC). We recall that L (Λ,Γ) extends to an ample fractional line bundle L ∗(Λ,Γ) on the
Baily–Borel compactification FΛ(Γ)∗, and that the sections of mL ∗(Λ,Γ) are precisely the
weight-m Γ-automorphic forms. We let λ(Λ,Γ) := c1(L (Λ,Γ)); thus, λ(Λ,Γ) is a Q-Cartier
divisor class.

As is well known, any Weil divisor D on the quasi-projective variety X is Q-Cartier. Thus,
we may identify CH1(X)Q and Pic(X)Q.

Heegner divisors on FΛ(Γ) are defined as follows. Let π : D+
Λ → FΛ(Γ) be the quotient map.

Given a non-zero v ∈ Λ, we let

Hv,Λ(Γ) :=
⋃
g∈Γ

g(v)⊥ ∩D+
Λ , Hv,Λ(Γ) := π(Hv,Λ(Γ)).

Notice that g(v)⊥ ∩ D+
Λ is empty if v2 > 0; hence, we will always assume that v2 < 0. Then

Hv,Λ(Γ) is a (particular) hyperplane arrangement (see [Loo03a, Loo03b]): we call it the pre-
Heegner divisor associated to v. One checks that Hv,Λ(Γ) is a prime divisor in the quasi-projective
variety FΛ(Γ). We say that Hv,Λ(Γ) is the Heegner divisor associated to v. Notice that Hv,Λ(Γ)
and Hv,Λ(Γ) depend only on the Γ-orbit of v. We say that Hv,Λ(Γ) and Hv,Λ(Γ) are reflective if
the reflection ρv (see Example 1.2.1) belongs to Γ (in particular, ρv(Λ) = Λ). If this is the case,
we say that v is a reflective vector of (Λ,Γ). If (Λ, ξ) is a decorated D-lattice, and Γ = Γξ, then
we say that v is a reflective vector of (Λ, ξ).

1.3.2 Relevant Heegner divisors for D locally symmetric varieties. Let (Λ, ξ) be a decorated
D-lattice. The Heegner divisors which are relevant for the present work are associated to vectors
v ∈ Λ (of negative square) which minimize |v2| among vectors such that v∗ equals a given element
of AΛ. It will be convenient to write

AΛ = {0, ζ, ξ, ζ ′}. (1.3.1)

Thus,
qΛ(ζ) = qΛ(ζ ′) ≡ −(N − 2)/4 (mod 2Z), (1.3.2)
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always, and

2ζ = 2ξ = 2ζ ′ = 0 if N is even, (1.3.3)

2ζ = 2ζ ′ = ξ if N is odd. (1.3.4)

Remark 1.3.1. With notation as above, there exists g ∈ Γξ such that g(ζ) = ζ ′. In fact, it

suffices to let g = (IdU2 , ρ), where ρ ∈ O+(DN−2) is the reflection in the vector (2, 0, . . . , 0),

i.e. ρ(x1, . . . , xN−2) = (−x1, x2, . . . , xN−2).

The result below will be used throughout the paper in order to classify Γξ-orbits of vectors

of Λ.

Proposition 1.3.2 (Eichler’s criterion, [GHS09, Proposition 3.3]). Let Λ be an even lattice

which contains U ⊕ U . Let v, w ∈ Λ be non-zero and primitive. There exists g ∈ Õ+(Λ) such

that g(v) = w if and only if v2 = w2 and v∗ = w∗.

Proposition 1.3.3. Let (Λ, ξ) be a decorated D-lattice of dimension N . The following hold.

(1) There exists v ∈ Λ such that v2 = −2 and div(v) = 1, and it is unique up to Γξ (notice that

v∗ = 0).

(2) There exists v ∈ Λ such that v2 = −4, div(v) = 2, and v∗ = ξ. Such a v is unique up to Γξ.

(3) Let a ∈ {0, . . . , 7} be the residue mod 8 of N − 2. There exists v ∈ Λ such that:

(3a) v2 = −4a, div(v) = 4, and v∗ = ζ (or v∗ = ζ ′) if N is odd;

(3b) v2 = −a, div(v) = 2, and v∗ = ζ (or v∗ = ζ ′) if N is even.

Such a v is unique up to Γξ (recall that Γξ exchanges ζ and ζ ′).

Proof. (1) and (2): Existence is obvious. Such a v is unique up to Õ+(Λ) by Eichler’s criterion,

and hence also up to Γξ, because Õ+(Λ) < Γξ. (3): Let us prove existence. Assume first that

N − 2 6≡ 0 (mod 8) and hence a ∈ {1, . . . , 7}. Let N − 2 = 8k + a; by Remark 1.1.4, we may

identify Λ with II2,2+8k ⊕Da. If N is odd, the vector v := (04+8k, (2, . . . , 2)) ∈ ΛN satisfies (3a)

and, if N is even, the vector v := (04+8k, (1, . . . , 1)) ∈ ΛN satisfies (3b). If N − 2 ≡ 0 (mod 8),

let N = 8k+ 2. Then Λ ∼= II1,1+8k ⊕U(2) by Theorem 1.13.2 of [Nik80]. With this identification

understood, Item (3b) holds for v := (02+8k, e) ∈ Λ, where e ∈ U(2) is a primitive isotropic

vector. Lastly, we prove unicity of v up to Γξ. Let v1, v2 be two vectors such that (3a) holds for

both, or (3b) holds for both. If v∗1 = v∗2, then v1, v2 are Õ+(Λ)-equivalent by Eichler’s criterion

and hence they are Γξ-equivalent because Õ+(Λ) < Γξ. If v∗1 6= v∗2, then {v∗1, v∗2} = {ζ, ζ ′} and

hence by Remark 1.3.1 there exists g ∈ Γξ such that g(v2)∗ = v∗1; thus, v1, v2 are Γξ-equivalent

by Eichler’s criterion. 2

Below is a key definition for all that follows.

Definition 1.3.4. Let (Λ, ξ) be a decorated D-lattice.

(1) A vector v ∈ Λ is nodal if Item (1) of Proposition 1.3.3 holds. The nodal pre-Heegner divisor

and the nodal Heegner divisor are Hv,Λ(Γξ) and Hv,Λ(Γξ), respectively, where v ∈ Λ is a

nodal vector. We will denote them by Hn(Λ, ξ) and Hn(Λ, ξ), respectively.
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(2) A vector v ∈ Λ is hyperelliptic if Item (2) of Proposition 1.3.3 holds. The hyperelliptic

pre-Heegner divisor and the hyperelliptic Heegner divisor are Hv,Λ(Γξ) and Hv,Λ(Γξ),

respectively, where v ∈ Λ is a hyperelliptic vector. We will denote them by Hh(Λ, ξ) and

Hh(Λ, ξ), respectively.

(3) A vector v ∈ Λ is unigonal if Item (3) of Proposition 1.3.3 holds. The unigonal pre-Heegner

divisor and the unigonal Heegner divisor are Hv,Λ(Γξ) and Hv,Λ(Γξ), respectively, where

v ∈ Λ is a unigonal vector. We will denote them by Hu(Λ, ξ) and Hu(Λ, ξ), respectively.

Notice that if N ≡ 2 (mod 8), then Hu(Λ, ξ) = 0 and Hu(Λ, ξ) = 0 because v2 = 0.

(The definition makes sense because by Proposition 1.3.3 there is a single Γξ-orbit of nodal,

hyperelliptic, or unigonal vectors.)

1.3.3 Reflective Heegner divisors and the boundary of D period spaces.

Proposition 1.3.5. Let (Λ, ξ) be a dimension-N decorated D-lattice. Let v ∈ Λ be primitive,

of negative square, i.e. v2 < 0. The reflection ρv (see (1.2.1)) belongs to Γξ (i.e. v is a reflective

vector of (Λ, ξ)) if and only if v is either nodal or hyperelliptic, or N ≡ 3, 4 (mod 8) and v is

unigonal.

Proof. Assume that ρv belongs to Γξ. Since ρv(Λ) = Λ, it follows that v2|2 div(v) (see

Example 1.2.1). On the other hand, AΛ is isomorphic to Z/(4) if N is odd and to the Klein

group if N is even. Thus, one of the following holds:

(a) v2 = −2 and div(v) ∈ {1, 2, 4};
(b) v2 = −4 and div(v) ∈ {2, 4};
(c) v2 = −8 and div(v) = 4.

Suppose that Item (a) holds. If div(v) = 1, then v is nodal. Thus, ρv ∈ Õ+(Λ) by Example 1.2.1

and hence ρv ∈ Γξ. If div(v) = 2, then qΛ(v∗) ≡ −1/2 (mod 2Z). By (1.1.4), Claim 1.1.1,

and (1.1.2), it follows that N ≡ 4 (mod 8), and v is unigonal. In particular, Γξ = O+(Λ) by

Proposition 1.2.3 and hence ρv ∈ Γξ because ρv ∈ O+(Λ). If div(v) = 4, then qΛ(v∗) ≡ −1/8

(mod 2Z). On the other hand, N is odd because div(v) = 4 and hence by (1.1.4), Claim 1.1.1,

and (1.1.2), it follows that −(N − 2)/4 ≡ −1/8 (mod 2Z), which is absurd. Thus, the case

v2 = −2 and div(v) = 4 does not occur.

Now suppose that Item (b) holds. If div(v) = 2, then either v is hyperelliptic or N ≡ 6

(mod 8). If v is hyperelliptic, then ρv ∈ O+(Λ) by Example 1.2.1. Since ρv(v) = −v and ξ = v∗,

the reflection ρv fixes the 2-torsion element ξ and hence belongs to Γξ. If, on the other hand,

N ≡ 6 (mod 8) and v is not hyperelliptic, we may assume that v∗ = ζ. Then ρv(ξ) = ζ ′ (let

N = 8k + 6, so that Λ ∼= II2,2+8k ⊕ D4, and compute) and hence ρv /∈ Γξ. If div(v) = 4, then

qΛ(v∗) ≡ −1/4 (mod 2Z). By (1.1.4), Claim 1.1.1, and (1.1.2), it follows that N ≡ 3 (mod 8),

and v is unigonal. Then Γξ = O+(Λ) by Proposition 1.2.3 and hence ρv ∈ Γξ because ρv ∈ O+(Λ).

Lastly, let us show that Item (c) cannot hold. In fact, qΛ(v∗) ≡ −1/2 (mod 2Z), and N is

odd because div(v) = 4; by (1.1.4), Claim 1.1.1, and (1.1.2), it follows that −(N − 2)/4 ≡ −1/2

(mod 2Z), which is absurd. 2

The following definition of the boundary divisor ∆ is motivated by the discussion of § 4.
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Definition 1.3.6. Let (Λ, ξ) be a decorated D-lattice of dimension N . Let ∆(Λ, ξ) be the Q-
Cartier divisor on F (Λ, ξ) defined as

∆(Λ, ξ) :=

{
Hh(Λ, ξ)/2 if N 6≡ 3, 4 (mod 8),

(Hh(Λ, ξ) +Hu(Λ, ξ))/2 if N ≡ 3, 4 (mod 8).
(1.3.5)

1.3.4 Heegner divisors for the stable orthogonal group. Let (Λ, ξ) be a dimension-N
decorated D-lattice. The main object of study in this paper is the geometry of the locally
symmetric variety FΛ(Γξ). (The reason for this is the inductive behavior described in § 1.7.) It

is more standard to discard the decoration ξ and consider FΛ(Õ+(Λ)), the variety associated to
the stable orthogonal group. If N is odd, FΛ(Õ+(Λ)) ∼= FΛ(Γξ) and there is nothing to be said.

On the other hand, if N is even, then Γξ is an index-2 subgroup of Õ+(Λ) (see Proposition 1.2.3)
and hence we have a double cover map

FΛ(Õ+(Λ))
ρ−→ FΛ(Γξ). (1.3.6)

We will describe the inverse image by ρ of the Heegner divisors Hn, Hh, and Hu.

Definition 1.3.7. Let Λ be a dimension-N D-lattice. A minimal norm vector of Λ is a v ∈ Λ
such that one of the following holds:

(1) v2 = −2 and div(v) = 1; or

(2) v2 = −4 and div(v) = 2; or

(3) (N − 2) 6≡ 0 (mod 8) and, letting a be the residue of (N − 2) modulo 8:

(3a) v2 = −4a and div(v) = 4 if N is odd; or else

(3b) v2 = −a and div(v) = 2 if N is even.

Remark 1.3.8. Given η ∈ AΛ, there exists a minimal norm vector v ∈ Λ such that v∗ = η
and, by Eichler’s criterion (Proposition 1.3.2) the set of such minimal norm vectors is a single
Õ+(Λ)-orbit. If u ∈ Λ is another vector such that u2 < 0 and u∗ = η, then u2 6 v2; this is the
reason for our choice of terminology.

Definition 1.3.9. Let Λ be a dimension-N D-lattice and η ∈ AΛ. We let

Hη(Λ) := Hv,Λ(Õ+(Λ)), Hη(Λ) := Hv,Λ(Õ+(Λ)),

where v ∈ Λ is any minimal norm vector such that v∗ = η. (The definition makes sense by
Remark 1.3.8.)

Remark 1.3.10. Let Λ be a dimension-N D-lattice with N odd. Choose a decoration ξ of Λ
and let AΛ = {ξ, ζ, ζ ′}, as usual. Then, under the identification FΛ(Õ+(Λ)) ∼= FΛ(Γξ), we have
H0(Λ) = Hn(Λ, ξ), Hξ(Λ) = Hh(Λ, ξ), and Hζ(Λ) = Hζ′(Λ) = Hu(Λ, ξ) (notice that ζ ′ = −ζ
because N is odd).

Proposition 1.3.11. Let (Λ, ξ) be a dimension-N decorated D-lattice and assume that N is
even. Let ρ be the double covering in (1.3.6). Then (notation as in Remark 1.3.10)

ρ∗Hn(Λ, ξ) = H0(Λ), ρ∗Hh(Λ, ξ) = 2Hξ(Λ), ρ∗Hu(Λ, ξ) = Hζ(Λ) +Hζ′(Λ). (1.3.7)
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Proof. Let v be a hyperelliptic vector of (Λ, ξ) and let ρv be the associated reflection. Then
ρv ∈ Γξ, but ρv 6∈ Õ+(Λ) (see Remark 1.3.1). Thus, the class of ρv in Γξ/Õ

+(Λ) is the covering
involution of ρ. One may choose a nodal vector w of (Λ, ξ) which is orthogonal to v. Then ρv
acts non-trivially on w⊥ ∩D+

Λ ; it follows that the covering involution of ρ maps H0(Λ) to itself
and is not the identity. The first equality of (1.3.7) follows from this. On the other hand, ρv acts
trivially on v⊥ ∩D+

Λ and the second equality of (1.3.7) follows. Lastly, ρv switches the vectors ζ
and ζ ′ in AΛ (cf. Remark 1.3.1) and this proves the third equality of (1.3.7). 2

Applying ρ∗ to the equalities in (1.3.7), we get the following result.

Corollary 1.3.12. Keep assumptions as in Proposition 1.3.11. Then

ρ∗H0(Λ) = 2Hn(Λ, ξ), ρ∗Hξ(Λ) = Hh(Λ, ξ), ρ∗(Hζ(Λ) +Hζ′(Λ)) = 2Hu(Λ, ξ).

Below is the last result of the present subsection.

Claim 1.3.13. Let Λ be a D-lattice. Choose a decoration ξ of Λ and let AΛ = {ξ, ζ, ζ ′}, as usual.
Then, with respect to the group Õ+(ΛN ), the following hold:

(1) H0(Λ) is a reflective Heegner divisor;

(2) Hξ(Λ) is reflective if and only if N is odd;

(3) Hζ(Λ) is reflective if and only if N ≡ 3, 4 (mod 8), and similarly for Hζ′(Λ).

Proof. If N is odd, the result follows from Proposition 1.3.5 because FΛ(Õ+(Λ)) = FΛ(Γξ).
Suppose that N is even. Item (1) holds because the reflection associated to v ∈ Λ with v2 = −2
and div(v) = 1 belongs to Õ+(Λ). On the other hand, as noted above, if v is a hyperelliptic
vector of (Λ, ξ), then ±ρv 6∈ Õ+(Λ) and Item (2) follows. In order to prove Item (3), let ρ be the
double covering in (1.3.6). If Hζ(Λ) is reflective, then ρ∗ is reflective as well and hence N ≡ 3, 4
(mod 8) by Proposition 1.3.5. On the other hand, one easily checks that if N ≡ 3, 4 (mod 8),
the reflection associated to a unigonal vector is in Õ+(Λ). 2

1.4 Hyperelliptic Heegner divisors
We will prove that the hyperelliptic Heegner divisorHh(ΛN , ξN ) is isomorphic to F (ΛN−1, ξN−1).

Lemma 1.4.1. Let N > 4, let (Λ, ξ) be a dimension-N decorated D-lattice, and let v ∈ Λ be a
hyperelliptic vector. Then v⊥ is a dimension-(N − 1) D-lattice.

Proof. We may assume that Λ = ΛN = U2⊕DN−2. By Eichler’s criterion, i.e. Proposition 1.3.2,
any two vectors of ΛN of square −4 and divisibility 2 are O+(ΛN )-equivalent. Thus, we may
suppose that v = (0, (0, . . . , 0, 2)); it is obvious that v⊥ ∼= ΛN−1. 2

Remark 1.4.2. Let N > 4, let (Λ, ξ) be a dimension-N decorated D-lattice, and let v ∈ Λ be
hyperelliptic. The D-lattice v⊥ comes with a decoration. In fact, since v2 = −4 and div(v) = 2,
the sublattice 〈v〉⊕v⊥ has index 2 in Λ. Thus, there exists w ∈ v⊥, well determined modulo 2v⊥,
such that (v + w)/2 is contained in Λ. It follows that (w/2, v⊥) ⊂ Z and hence w/2 represents
an element η ∈ Av⊥ , independent of the choice of w. Moreover, qv⊥(η) ≡ 1 (mod 2) because

−1 + (w/2)2 = (v/2)2 + (w/2)2 = ((v + w)/2)2 ≡ 0 (mod 2Z).

Thus, (v⊥, η) is a dimension-(N − 1) decorated D-lattice.
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Proposition 1.4.3. Let (Λ, ξ) be a dimension-N decorated D-lattice and v ∈ Λ be a

hyperelliptic vector. Let η be the decoration of the dimension-(N − 1) D-lattice v⊥ defined

above. If g ∈ Γη, then there exists a unique g̃ ∈ Γξ which fixes v and restricts to g on v⊥.

Proof. Unicity of g̃ is obvious; we must prove existence. Let ĝ ∈ O(ΛQ) be the extension of

g which maps v to itself. There exists u ∈ v⊥ such that ĝ(w/2) = w/2 + u because g ∈ Γη
(i.e. g[w/2] = [w/2]). Hence, ĝ((v + w)/2) = (v + w)/2 + u ∈ Λ and this proves that ĝ(Λ) ⊂ Λ.

We set g̃ := ĝ|Λ. Then g̃ ∈ O(Λ), g̃(v) = v, and g̃|v⊥ = g. Since ξ = [v/2], the isometry g̃ fixes ξ

and moreover g̃ ∈ O+(Λ) because g ∈ O+(v⊥); this proves that g̃ ∈ Γξ. 2

By Proposition 1.4.3, we have an injection of groups

Γη ↪→ Γξ
g 7→ g̃.

(1.4.1)

The following is immediate.

Claim 1.4.4. The injective homomorphism of (1.4.1) has image equal to the stabilizer

Stab(v) < Γξ of v.

Let (Λ, ξ) be a decorated D-lattice and v ∈ Λ be a hyperelliptic vector. Let Λ′ := v⊥

(a D-lattice) and ξ′ be the associated decoration of Λ′. We have defined an injection Γξ′ ↪→ Γξ,

see (1.4.1), and hence there is a well-defined regular map of quasi-projective varieties

F (Λ′, ξ′)
f−→ Hh(Λ, ξ)

Γξ′ [σ] 7→ Γξ[σ].
(1.4.2)

Below is the main result of the present subsection.

Proposition 1.4.5. The map f of (1.4.2) is an isomorphism onto the hyperelliptic Heegner

divisor Hh(Λ, ξ). Moreover, the intersection of Hh(Λ, ξ) and the singular locus of F (Λ, ξ) has

codimension at least two in Hh(Λ, ξ).

We will prove Proposition 1.4.5 at the end of the present subsubsection. First, we will go

through a series of preliminary results.

Proposition 1.4.6. Let (Λ, ξ) be a dimension-N decorated D-lattice. Let v ∈ Λ be a

hyperelliptic vector and let η be the decoration of the dimension-(N − 1) D-lattice v⊥ defined

above. Suppose that w is a reflective vector of (v⊥, η). Then w is a reflective vector of (Λ, ξ) as

well. More precisely:

(1) if w is a nodal vector of (v⊥, η), then it is a nodal vector of (Λ, ξ);

(2) if w is a hyperelliptic vector of (v⊥, η), then it is a hyperelliptic vector of (Λ, ξ);

(3) if N ≡ 4 (mod 8) and w is a unigonal (reflective) vector of (v⊥, η), then it is a hyperelliptic

vector of (Λ, ξ);

(4) if N ≡ 5 (mod 8) and w is a unigonal (reflective) vector of (v⊥, η), then it is a nodal vector

of (Λ, ξ).

1668

https://doi.org/10.1112/S0010437X19007516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007516


Moduli of quartic K3 surfaces

Proof. (1): Trivial. (2): We may assume that Λ = U2 ⊕DN−2 and

v = (04, (0, . . . , 0, 2)).

By Propositions 1.4.3 and 1.3.3, we may assume that w = (04, (0, . . . , 0, 2, 0)), and (2) follows.
(3): Let N = 4 + 8k, where k > 0. We may assume that Λ = II2,2+8k⊕D2 and v = (04+8k, (0, 2)).
By Propositions 1.4.3 and 1.3.3, we may assume that w = (04+8k, (2, 0)), and (3) follows. (4):
Let N = 5 + 8k, where k > 0. We may assume that Λ = II2,2+8k ⊕D3 and v = (04+8k, (0, 0, 2)).
By Propositions 1.4.3 and 1.3.3, we may assume that w = (04+8k, (1,−1, 0)), and (4) follows. 2

Let Λ be a lattice (any lattice, not necessarily a D-lattice) and Ω ⊂ Λ a subgroup. We let
Ω ⊂ Λ be the saturation of Ω, i.e. the subgroup of vectors v ∈ Λ such that mv ∈ Ω for some
0 6= m ∈ Z.

Lemma 1.4.7. Let (Λ, ξ) be a decorated D-lattice and v1, . . . , vk ∈ Λ. Suppose that the following
hold:

(1) vi is a hyperelliptic vector for i ∈ {1, . . . , k};
(2) if i 6= j ∈ {1, . . . , k}, then vi 6= ±vj ;
(3) the sublattice Ω ⊂ Λ generated by v1, . . . , vk is negative definite.

Then the following hold.

(I) The formula

F (x1, . . . , xk) =
1

2

k∑
i=1

xivi (1.4.3)

defines an isomorphism of lattices F : Dk
∼−→ Ω. (In particular, v1, . . . , vk are pairwise

orthogonal.)

(II) A vector v ∈ Ω is hyperelliptic if and only if v = ±vi for some i ∈ {1, . . . , k}.

Proof. Let u,w ∈ Ω be hyperelliptic vectors such that u 6= ±w. Using the divisibility assumptions
and that Ω is negative definite, it is easy to see that (u,w) = 0. Thus, (vi, vj) = 0 for i, j ∈
{1, . . . , k} and hence Ω has rank k. The vector (

∑k
i=1 xivi)/2 belongs to Ω whenever

∑k
i=1 xi is

even because (vi + vj)/2 ∈ Ω. It follows that (1.4.3) defines an isomorphism between Dk and the
sublattice F (Dk) ⊂ Ω. Suppose that F (Dk) 6= Ω; since det(Dk) = (−1)k4, it follows that Ω is
unimodular and that contradicts the hypothesis that each vi has divisibility 2. Thus, F (Dk) = Ω
and this proves Item (I). Item (II) is similar. 2

Proposition 1.4.8. Let (Λ, ξ) be a decorated D-lattice. The hyperelliptic Heegner divisor
Hh(Λ, ξ) is normal.

Proof. By definition, Hh(Λ, ξ) = Γξ\Hh(Λ, ξ). Let p ∈ Hh(Λ, ξ) and [σ] ∈ Hh(Λ, ξ) be a
representative of p. Let Stab([σ]) < Γξ be the stabilizer of the line [σ]. By construction, we
have the following isomorphisms of analytic germs:

(F (Λ, ξ), p) ∼= (Stab([σ])\D+
Λ , [σ]), (1.4.4)

(Hh(Λ, ξ), p) ∼= (Stab([σ])\Hh(Λ, ξ), [σ]). (1.4.5)

Since σ⊥ ∩ ΛR is negative definite, the set of hyperelliptic vectors v ∈ σ⊥ ∩ Λ is finite (and
non-empty). Let {v1, . . . , vk} be a maximal collection of such vectors with the property that
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vi 6= ±vj for i 6= j. Let Ωσ ⊂ Λ be the subgroup generated by v1, . . . , vk. As noticed above, the
restriction of the quadratic form to Ωσ is negative definite. Thus, the hypotheses of Lemma 1.4.7
are satisfied and hence the saturation Ωσ is isomorphic (as a lattice) to Dk. (Notice that by
Lemma 1.4.7, Ωσ is independent of the choice of a maximal collection as above.) Let R′σ be the
set of r ∈ Ωσ such that r2 = −2 and let R′′σ be the set of hyperelliptic vectors of Ωσ. Then

R′σ = {((−1)mivi + (−1)mjvj)/2 | 1 6 i < j 6 k}, R′′σ = {(−1)mivi | 1 6 i 6 k}.

(The last equality holds by Lemma 1.4.7.) Let Rσ := R′σ ∪ R′′σ. Notice that ρr ∈ Γξ for all
r ∈ Rσ. Let Wσ,W

′
σ,W

′′
σ < Stab([σ]) be the subgroups generated by the reflections ρr for

r ∈ Rσ, r ∈ R′σ, and r ∈ R′′σ, respectively. Clearly, Wσ is a normal subgroup of Stab([σ]);
let Gσ := Stab([σ])/Wσ. Then Gσ acts on Wσ\D+

Λ and on Wσ\Hh(Λ, ξ). The analytic germ

(Stab([σ])\Hh(Λ, ξ), [σ]) is isomorphic to the germ at [σ] of Wσ\Hh(Λ, ξ) modulo the action of
Gσ. Hence, it suffices to prove that Wσ\Hh(Λ, ξ) is smooth in a neighborhood of [σ].

We identify each r ∈ Rσ with F−1(r) ∈ Ck, where F is the isometry of (1.4.3), and we denote
it by r. Thus, r ∈ R′σ, r ∈ R′′σ are of the form

(0, . . . , 0,±1, 0, . . . , 0,±1, 0, . . . , 0), (0, . . . , 0,±2, 0, . . . , 0),

respectively. The action of Wσ is trivial on Ω⊥σ . It follows that there exist local analytic
coordinates (x, t) = ((x1, . . . , xk), t) on D+

Λ , centered at [σ], such that xi = 0 is a local equation
of v⊥i ∩D+

Λ , and

ρr(x, t) =

(
x− 2(x, r)

r2
r, t

)
,

where (x, r) is the opposite of the standard Euclidean product of x and r.
In order to describe Wσ\D+

Λ and Wσ\Hh(Λ, ξ), we first take the quotient by the normal
subgroup W ′′σ and then we act by W ′σ/W

′′
σ on the quotient. Local analytic coordinates on

W ′′σ \D+
Λ are (y1, . . . , yk, t), where yi = x2

i . The action of W ′σ/W
′′
σ on (y1, . . . , yk) is the standard

representation of the symmetric group Sk. Thus, local analytic coordinates on Wσ\D+
Λ are

(τ1, . . . , τk, t), where τi is the degree-i elementary symmetric function in y1, . . . , yk. In particular,
Wσ\D+

Λ is smooth in a neighborhood of [σ]. Since a local equation of Hh(Λ, ξ) is given by
x1 · · · · · xk = 0, a local equation of Wσ\Hh(Λ, ξ) in Wσ\D+

Λ is τk = 0. We have proved that

Wσ\Hh(Λ, ξ) is smooth in a neighborhood of [σ], as claimed. 2

Proof of Proposition 1.4.5. We adopt the notation introduced in the proof of Proposition 1.4.8.
We start by noting that f is surjective by definition. The composition of f and the inclusion
Hh(Λ, ξ) ↪→ F ∗(Λ, ξ) extends to a regular map

ϕ : F ∗(Λ′, ξ′) −→ F ∗(Λ, ξ),

compatible with the Baily–Borel boundaries. Since the Baily–Borel compactifications are
projective, it follows that f is a projective map. By Claim 1.4.4, the fiber of f at the equivalence
class represented by σ ∈Hh(Λ, ξ) is identified with the set of hyperelliptic vectors v ∈ Ωσ, modulo
the action of Stab([σ]) (notice that −IdΛ ∈ Stab([σ])). Hence, the proof of Proposition 1.4.8
shows that the fiber of f is a singleton; in particular, f is birational. Now Hh(Λ, ξ) is normal by
Proposition 1.4.8; since f is birational and projective, it follows that it is an isomorphism.

It remains to prove that the intersection of Hh(Λ, ξ) and the singular locus of F (Λ, ξ)
has codimension at least 2 in Hh(Λ, ξ). Suppose the contrary: we will reach a contradiction.
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Since F (Λ, ξ) is normal, there is an irreducible component Z of Hh(Λ, ξ) ∩ sing F (Λ, ξ) which
has codimension 1 in Hh(Λ, ξ). Let v ∈ Λ be a hyperelliptic vector and η the decoration of the
D-lattice v⊥ associated to ξ. Let π : D+

v⊥
−→ Hh(Λ, ξ) be the natural map; we have proved that

π is the quotient map for the action of Γη on D+
v⊥

. Now let Z̃ ⊂ D+
v⊥

be an irreducible component

of π−1Z. If [σ] ∈ Z̃, then
Stab([σ]) ) 〈ρv,−1Λ〉

because π([σ]) is a singular point of F (Λ, ξ). We distinguish between the two cases.

(1) For very general [σ] ∈ Z̃, the set of hyperelliptic vectors in σ⊥ is {v,−v}.
(2) For very general [σ] ∈ Z̃, the set of hyperelliptic vectors in σ⊥ has cardinality strictly greater

than 2.

Assume that (1) holds and let [σ] ∈ Z̃ be very general. Let g ∈ (Stab([σ])\〈ρv,−1Λ〉). Then g(v) =
±v and hence, multiplying g by ρv if necessary, we may assume that g(v) = v, i.e. g|v⊥ ∈ Γη.

Now g|v⊥ fixes every point of Z̃, which has codimension 1 in D+
v⊥

. It follows that g|v⊥ = ±ρv⊥w ,

where w is a reflective vector of (v⊥, η) and ρv
⊥
w denotes the associated reflection of v⊥. By

Proposition 1.4.6, the vector w is a reflective vector of (Λ, ξ) as well; it follows that g = ρw.
Thus, Z̃ = v⊥ ∩ w⊥ ∩ D+

Λ and hence Stab([σ]) = 〈ρv, ρw,−1Λ〉 for a very general [σ] ∈ Z̃. It

follows that if [σ] ∈ Z̃ is very general, then F (Λ, ξ) is smooth at π([σ]), and that contradicts our
assumption.

Lastly, assume that (2) holds. Let [σ] ∈ Z̃ be very general. Since Z̃ has codimension
2 in D+

Λ , the set of hyperelliptic vectors in σ⊥ is equal to {±v1,±v2}, where v1, v2 are
orthogonal hyperelliptic vectors, and moreover Stab([σ]) = 〈ρv1 , ρv2 ,−1Λ〉. As shown in the
proof of Proposition 1.4.8, it follows that F (Λ, ξ) is smooth at π([σ]), and that contradicts
our assumption. 2

1.5 Reflective unigonal divisors
1.5.1 N ≡ 3 (mod 8). Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 3 (mod 8). Let

N = 8k + 3, where k > 0. Let v ∈ Λ be a unigonal vector, i.e. v2 = −4 and div(v) = 4. Then
Λ = 〈v〉 ⊕ v⊥. Since det Λ = −4, it follows that v⊥ is unimodular. Thus,

v⊥ ∼= II2,2+8k. (1.5.1)

Given g ∈ O+(II2,2+8k), let g̃ ∈ O(Λ) be the isometry such that

g̃(v) = v, g̃|v⊥ = g. (1.5.2)

Then g̃ ∈ O+(Λ) because g ∈ O+(II2,2+8k), and g̃ ∈ Õ(Λ) because AΛ is generated by v∗. Thus,
we have an injection of groups

O+(II2,2+8k) ↪→ Γξ
g 7→ g̃.

(1.5.3)

It follows that the injection D+
v⊥
↪→ D+

Λ descends to a regular map

FII2,2+8k
(O+(II2,2+8k))

l−→ Hu(Λ, ξ). (1.5.4)

Proposition 1.5.1. Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 3 (mod 8) and let
N = 8k + 3, where k > 0. The map l in (1.5.4) is an isomorphism onto the unigonal Heegner
divisor Hu(Λ, ξ). Moreover, the intersection of Hu(Λ, ξ) and the singular locus of F (Λ, ξ) has
codimension at least 2 in Hu(Λ, ξ).
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Proof. The map l is finite (see the proof of Proposition 1.4.5) and it has degree 1 because

−IdΛ ∈ Γξ. Thus, in order to prove that l is an isomorphism, it suffices to prove that Hu(Λ, ξ)

is normal. We claim that the pre-Heegner divisor Hu(Λ, ξ) is smooth, i.e. that if v1, v2 are

non-proportional unigonal vectors, then v⊥1 ∩ v⊥2 ∩D+
Λ = ∅. In fact, suppose the contrary. Then

v1, v2 span a negative-definite rank-2 sublattice of Λ; since v2
i = −4 and (v1, v2) ∈ 4Z, it follows

that v1⊥v2. On the other hand, v⊥1
∼= II2,2+8k by (1.5.1) and hence v⊥1 does not contain a

primitive vector of divisibility greater than 1. This proves that Hu(Λ, ξ) is smooth and hence

Hu(Λ, ξ) = Γξ\Hu(Λ, ξ) is normal.

The proof that Hu(Λ, ξ) ∩ sing F (Λ, ξ) has codimension at least 2 in Hu(Λ, ξ) is similar

to the analogous statement for Hh(Λ, ξ); see Proposition 1.4.5. We leave details to the reader. 2

In order to simplify notation, from now on we let

F (II2,2+8k) := FII2,2+8k
(O+(II2,2+8k)). (1.5.5)

A vector v ∈ II2,2+8k is nodal if it has square −2. By Eichler’s criterion, i.e. Proposition 1.3.2,

any two nodal vectors of II2,2+8k are O+(II2,2+8k)-equivalent. We let Hn(II2,2+8k) be the Heegner

divisor of F (II2,2+8k) corresponding to a nodal v ∈ II2,2+8k.

1.5.2 N ≡ 4 (mod 8). Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 4 (mod 8). Let

N = 8k + 4, where k > 0. Let v ∈ Λ be a unigonal vector, i.e. v2 = −2 and div(v) = 2. Then

Λ = 〈v〉 ⊕ v⊥. Moreover,

v⊥ ∼= II2,2+8k ⊕A1. (1.5.6)

In fact, AΛ = Z/(2)⊕Av⊥ , where a generator of the first summand has square −1/2 modulo 2Z.

It follows that the discriminant group of v⊥ is Z/(2) and a generator has square −1/2 modulo

2Z. Thus, v⊥ and U2 ⊕ Ek8 ⊕ A1 have the same signature and isomorphic discriminant groups;

thus, (1.5.6) follows from Theorem 1.13.2 of [Nik80]. Given g ∈ O+(v⊥), let g̃ ∈ O(Λ) be the

isometry such that

g̃(v) = v, g̃|v⊥ = g. (1.5.7)

Then g̃ ∈ O+(Λ) because g ∈ O+(v⊥), and g̃ ∈ Õ(Λ) because O(v⊥) = Õ(v⊥), and AΛ =

Av⊥ ⊕ 〈v∗〉. Thus, we have an injection of groups

O+(II2,2+8k ⊕A1) ↪→ Γξ
g 7→ g̃.

(1.5.8)

It follows that the injection D+
v⊥
↪→ D+

Λ descends to a regular map

FII2,2+8k⊕A1(O+(II2,2+8k ⊕A1))
m−→ Hu(Λ, ξ). (1.5.9)

Proposition 1.5.2. Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 4 (mod 8) and let

N = 8k + 4, where k > 0. The map m in (1.5.9) is an isomorphism onto the unigonal Heegner

divisor Hu(Λ, ξ). Moreover, the intersection of Hu(Λ, ξ) and the singular locus of F (Λ, ξ) has

codimension at least 2 in Hu(Λ, ξ).

Proof. The proof is similar to the proof of Proposition 1.5.1 (see also Proposition 1.4.5). We

leave details to the reader. 2
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In order to simplify notation, from now on we let

F (II2,2+8k ⊕A1) := FII2,2+8k⊕A1(O+(II2,2+8k ⊕A1)). (1.5.10)

A vector v ∈ II2,2+8k ⊕ A1 is nodal if it has square −2 and divisibility 1; it is unigonal if it has
square −2 and divisibility 2. By Eichler’s criterion, i.e. Proposition 1.3.2, any two nodal vectors
of II2,2+8k ⊕ A1 are O+(II2,2+8k ⊕ A1)-equivalent, and similarly for any two unigonal vectors.
We let Hn(II2,2+8k ⊕ A1) and Hu(II2,2+8k ⊕ A1) be the Heegner divisors of F (II2,2+8k ⊕ A1)
corresponding to a nodal or a unigonal v ∈ II2,2+8k ⊕A1, respectively.

One describes the Heegner divisor Hu(II2,2+8k ⊕ A1) proceeding as in § 1.5.1. In fact, let
v ∈ (II2,2+8k ⊕ A1) be a unigonal vector. Then (II2,2+8k ⊕ A1) = 〈v〉 ⊕ v⊥, and v⊥ ∼= II2,2+8k is
unimodular. It follows that the injection D+

v⊥
↪→ D+

Λ descends to a regular map

F (II2,2+8k)
p−→ Hu(II2,2+8k ⊕A1), (1.5.11)

which satisfies the following proposition.

Proposition 1.5.3. Let k > 0. The map p of (1.5.11) is an isomorphism onto the unigonal
Heegner divisor Hu(II2,2+8k ⊕ A1). Moreover, the intersection of Hu(II2,2+8k ⊕ A1) and the
singular locus of F (II2,2+8k ⊕A1) has codimension at least 2 in Hu(II2,2+8k ⊕A1).

1.6 The (non-reflective) unigonal divisors for N ≡ 5 (mod 8)
Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 5 (mod 8). Let N = 8k + 5, where k > 0;
thus, Λ ∼= II2,2+8k ⊕D3. Let v ∈ Λ be a unigonal vector, i.e. v2 = −12 and div(v) = 4. Then

v⊥ ∼= II2,2+8k ⊕A2. (1.6.1)

Given g ∈ Õ+(v⊥), let g̃ ∈ O(Λ) be the isometry such that g̃(v) = v and g̃|v⊥ = g. Then
g̃ ∈ O+(Λ). Thus, we have an injection of groups

O+(II2,2+8k ⊕A2) ↪→ Õ+(Λ)
g 7→ g̃.

(1.6.2)

It follows that the injection D+
v⊥
↪→ D+

Λ descends to a regular map

FII2,2+8k⊕A2(Õ+(II2,2+8k ⊕A2))
q−→ Hu(Λ, ξ). (1.6.3)

The following proposition follows by similar arguments to those used above; we omit the proof.

Proposition 1.6.1. Let (Λ, ξ) be a decorated D-lattice of dimension N ≡ 5 (mod 8) and let
N = 8k + 5, where k > 0. The map q in (1.6.3) is an isomorphism onto the unigonal Heegner
divisor Hu(Λ, ξ). Moreover, the intersection of Hu(Λ, ξ) and the singular locus of F (Λ, ξ) has
codimension at least 2 in Hu(Λ, ξ).

In order to simplify notation, from now on we let

F (II2,2+8k ⊕A2) := FII2,2+8k⊕A2(Õ+(II2,2+8k ⊕A2)). (1.6.4)

A vector v ∈ II2,2+8k ⊕ A2 is nodal if it has square −2 and divisibility 1; it is unigonal if it
has square −12 and divisibility 3. Notice that the set of nodal vectors of II2,2+8k ⊕ A2 is a

single Õ+(II2,2+8k ⊕ A2)-orbit, and similarly the set of unigonal vectors up to ±1 is a single
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Õ+(II2,2+8k⊕A2)-orbit. We let Hn(II2,2+8k⊕A2) and Hu(II2,2+8k⊕A2) be the Heegner divisors
of F (II2,2+8k ⊕A2) corresponding to a nodal or a unigonal v ∈ II2,2+8k ⊕A2, respectively (both
are irreducible).

Let v ∈ (II2,2+8k ⊕ A2) be a unigonal vector. Then v⊥ ∼= II2,2+8k ⊕ A1. As in § 1.5.2, we get
a regular map

F (II2,2+8k ⊕A1)
r−→ Hu(II2,2+8k ⊕A2). (1.6.5)

Proposition 1.6.2. Let k > 0. The map r of (1.6.5) is an isomorphism onto the unigonal Heegner
divisor Hu(II2,2+8k ⊕A2). Moreover, the intersection of Hu(II2,2+8k ⊕A2) and the singular locus
of F (II2,2+8k ⊕A2) has codimension at least 2 in Hu(II2,2+8k ⊕A2).

1.7 Nested locally symmetric varieties
1.7.1 The infinite tower of D locally symmetric varieties. For 3 6 M , we let ξM be a

decoration of ΛM . Choose N > 3. By Proposition 1.4.5, we have a sequence of inclusions of
D period spaces:

F (Λ3, ξ3)
f4
↪→ F (Λ4, ξ4)

f5
↪→ · · ·

fN−1
↪→ F (ΛN−1, ξN−1)

fN
↪→ F (ΛN , ξN ). (1.7.1)

Thus, Im fM = Hh(ΛM , ξM ) for 4 6 M 6 N . There is a unique continuation of the above
sequence. In fact, let w ∈ ΛN be a vector of divisibility 2 and such that [v/2] = ξN (e.g. a
hyperelliptic vector). Let L ⊂ (ΛN ⊕ (−4))Q be the sublattice generated by (ΛN ⊕ (−4)) and
(w/2, 1/2). Then L and ΛN+1 are even lattices of signature (2, N + 1) and their discriminant
groups (equipped with the discriminant quadratic forms) are isomorphic. By Theorem 1.13.2
of [Nik80], it follows that L is isomorphic to ΛN+1; we choose an identification of L with ΛN+1. Let
ξN+1 be the decoration of ΛN+1 (i.e. L) defined by (0, 1/2). Then v := (0ΛN

, 1) is a hyperelliptic
vector of ΛN+1, and v⊥ = ΛN . Furthermore, ξN is the decoration of v⊥ associated to ξN+1. In
conclusion, there is an infinite prolongation of (1.7.1), unique up to isomorphism:

F (Λ3, ξ3)
f4
↪→ · · ·

fN
↪→ F (ΛN , ξN )

fN+1
↪→ F (ΛN+1, ξN+1)

fN+2
↪→ · · · . (1.7.2)

For 3 6M < N , we let fM,N := fN ◦ fN−1 ◦ · · · ◦ fM+1. Thus,

fM,N : F (ΛM , ξM ) ↪→ F (ΛN , ξN ). (1.7.3)

1.7.2 Other building blocks of the D tower. Let

F (II2,2+8k)
l8k+3−→ Hu(Λ8k+3, ξ8k+3), (1.7.4)

F (II2,2+8k ⊕A1)
m8k+4−→ Hu(Λ8k+4, ξ8k+4), (1.7.5)

F (II2,2+8k)
p8k+3−→ Hu(II2,2+8k ⊕A1), (1.7.6)

F (II2,2+8k ⊕A2)
q8k+5−→ Hu(Λ8k+5, ξ8k+5), (1.7.7)

F (II2,2+8k ⊕A1)
r8k+4−→ Hu(II2,2+8k ⊕A2), (1.7.8)

be the isomorphisms in (1.5.4), (1.5.9), (1.5.11), (1.6.3), and (1.6.5), respectively: the convention
is that the subscript denotes the dimension of the period space containing the codomain as
Heegner divisor (as for the maps fN ).

Claim 1.7.1. Keeping notation as above, f8k+4 ◦ l8k+3 = m8k+4 ◦ p8k+3 and f8k+5 ◦ m8k+4 =
q8k+5 ◦ r8k+4.
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Proof. Choose an isomorphism Λ8k+4
∼= II2,2+8k ⊕A2

1 and let e1, e2 be generators of the addend
A2

1 such that −2 = e2
1 = e2

2, (e1, e2) = 0. Let α, β, γ, δ be the obvious inclusions in the diagram

II2,2+8k ⊕ 〈e1 + e2〉� w
β

**
II2,2+8k

) 	

α
66

� u

γ

((

II2,2+8k ⊕ 〈e1〉 ⊕ 〈e2〉

II2,2+8k ⊕ 〈e1〉
' �

δ
44

(1.7.9)

The map f8k+4 ◦ l8k+3 is induced by the composition β ◦ α, and the map m8k+4 ◦ p8k+3 is
induced by the composition δ ◦ γ. Thus, f8k+4 ◦ l8k+3 = m8k+4 ◦ p8k+3 because β ◦ α = δ ◦ γ.
A similar proof shows that f8k+5 ◦m8k+4 = q8k+5 ◦ r8k+4. 2

The picture of the D tower is periodic of period 8:

f8k+2

//
f8k+3

//
f8k+4

//
f8k+5

//

m8k+4

''

l8k+3

��

p8k+3

''

f8k+6

//

r8k+4 //
q8k+5

'' (1.7.10)

1.7.3 Stratification of the support of the boundary divisor. Let (Λ, ξ) be a decorated D-lattice

of dimension N . We let ∆(1)(Λ, ξ) ⊂ F (Λ, ξ) be the support of the boundary divisor, i.e.

∆(1)(Λ, ξ) :=

{
Hh(Λ, ξ) if N 6≡ 3, 4 (mod 8),

Hh(Λ, ξ) ∪Hu(Λ, ξ) if N ≡ 3, 4 (mod 8).
(1.7.11)

We let ∆̃(1)(Λ, ξ) ⊂ D+
Λ be the inverse image of ∆(1)(Λ, ξ) for the quotient map

π : D+
Λ → F (Λ, ξ). (1.7.12)

Thus, ∆̃(1)(Λ, ξ) is a linearized arrangement, in the terminology of Looijenga [Loo03a], and it is
naturally stratified. The kth stratum is defined to be

∆̃(k)(Λ, ξ) := {[σ] ∈ D+
Λ | ∃ lin. ind. non-nodal Γξ-reflective v1, . . . , vk ∈ σ⊥ ∩ Λ}, (1.7.13)

i.e. the set of points belonging to k (at least) independent ‘hyperplanes’.1 Let

∆(k)(Λ, ξ) := π(∆̃(k)(Λ, ξ)), (1.7.14)

where π is the quotient map (1.7.12). The strata ∆̃(k)(Λ, ξ) and ∆(k)(Λ, ξ) play a key rôle in
Looijenga’s semitoric compactification of the complement of ∆(1)(Λ, ξ) in F (Λ, ξ). We will show
that the subvarieties of F (Λ, ξ) appearing in (1.7.10) are exactly the irreducible components of
∆(k)(Λ, ξ). In order to state our results, let

H
(k)
h (Λ, ξ) := {[σ] ∈ D+

Λ | ∃ lin. ind. hyperelliptic v1, . . . , vk ∈ σ⊥ ∩ Λ}, (1.7.15)

1 The present k has no relation to the k appearing in § 1.7.2, which is bN/8c for N ≡ 3, 4 (mod 8).
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H (k)
u (Λ, ξ) := {[σ] ∈ D+

Λ | ∃ lin. ind. reflective unigonal v1, . . . , vk ∈ σ⊥ ∩ Λ}. (1.7.16)

We let H
(k)
h (Λ, ξ) ⊂ F (Λ, ξ) and H

(k)
u (Λ, ξ) ⊂ F (Λ, ξ) be the images via π of H

(k)
h (Λ, ξ) and

H
(k)
u (Λ, ξ), respectively. In order to simplify notation, we let

∆(k)(N) = ∆(k)(ΛN , ξN ), H
(k)
h (N) = H

(k)
h (ΛN , ξN ), H(k)

u (N) = H(k)
u (ΛN , ξN ), (1.7.17)

where ξN is a decoration of ΛN . Below is the main result of the present subsubsection.

Proposition 1.7.2. Let N > 3 and keep notation as above. Then

∆(k)(N) :=

{
H

(k)
h (N) if N 6≡ 3, 4 (mod 8) or k > 2,

H
(k)
h (N) ∪H(k)

u (N) if N ≡ 3, 4 (mod 8) and k = 1.
(1.7.18)

If, in addition, N > 4 and 1 6 k 6 N − 3, then

H
(k)
h (N) =

{
Im fN−k,N if k 6≡ N − 2 (mod 8),

Im fN−k,N ∪ Im(fN−k+1,N ◦ lN−k+1) if k ≡ N − 2 (mod 8).
(1.7.19)

We will prove Proposition 1.7.2 at the end of the present subsubsection.

Lemma 1.7.3. Let (Λ, ξ) be a D-lattice of dimension N ≡ 3 (mod 8). Then

∅ = Hh(Λ, ξ) ∩Hu(Λ, ξ) = H(2)
u (Λ, ξ).

Proof. Suppose the contrary. Then there exists [σ] ∈ D+
ΛN

such that σ⊥ contains a unigonal

vector w ∈ ΛN (i.e. w2 = −4 and div(w) = 4), and a vector v which is either hyperelliptic
or unigonal, and moreover v 6= ±w. It follows that 〈v, w〉 is a rank-2 negative-definite lattice
(σ⊥ ∩ ΛR is negative definite) and hence the determinant of 〈v, w〉 is strictly positive. This in
turn implies that v⊥w (recall that (v, w) ∈ 4Z). On the other hand, Λ = Zw ⊕ w⊥ because
w2 = −4 and div(w) = 4. Since Λ has determinant −4, it follows that the lattice w⊥ is
unimodular. Now v belongs to the unimodular lattice w⊥, and divΛ(v) ∈ {2, 4}; that is a
contradiction. 2

By similar arguments, we obtain the following lemmas (we omit the proofs).

Lemma 1.7.4. Let (Λ, ξ) be a D-lattice of dimension N ≡ 4 (mod 8). If w1, w2 are non-
proportional unigonal vectors of (Λ, ξ), spanning a negative-definite sublattice, then 〈w1, w2〉
is isomorphic to D2, and

Λ = 〈w1, w2〉 ⊕ 〈w1, w2〉⊥, 〈w1, w2〉⊥ ∼= II2,N−2. (1.7.20)

In particular {w∗1, w∗2} = {ζ, ζ ′}, where, as usual, AΛ = {0, ξ, ζ, ζ ′}.

Lemma 1.7.5. Let (Λ, ξ) be a D-lattice of dimension N ≡ 4 (mod 8). Let v, w be a hyperelliptic
and a unigonal vector of (Λ, ξ), respectively, spanning a negative-definite sublattice. Then 〈v, w〉
is isomorphic to D2, and

Λ = 〈v, w〉 ⊕ 〈v, w〉⊥, 〈v, w〉⊥ ∼= II2,N−2. (1.7.21)
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Lemma 1.7.6. Let (Λ, ξ) be a decorated D-lattice of dimension N > 4. Let v be a hyperelliptic

vector of (Λ, ξ) and η be the decoration of the D-lattice v⊥ defined in Remark 1.4.2. Suppose

that w is a hyperelliptic vector of (Λ, ξ), orthogonal to v. Then one of the following holds:

(1) w has divisibility 2 in v⊥ and it is a hyperelliptic vector of (v⊥, η);

(2) w has divisibility 4 in v⊥, {v, w}⊥ ∼= II2,N−2, and N ≡ 4 (mod 8).

Proposition 1.7.7. Let N > 4 and 1 6 k 6 N − 3. Let (Λ, ξ) be a dimension-N D-lattice and

v1, . . . , vk be pairwise-orthogonal hyperelliptic vectors of (Λ, ξ). Then, for any 1 6 i 6 k − 1,

{v1, . . . , vi}⊥ ∼= ΛN−i, (1.7.22)

{v1, . . . , vi}⊥ carries a decoration ξ(i) such that ({v1, . . . , vi−1}⊥, ξ(i − 1)) induces ({v1, . . . ,

vi}⊥, ξ(i)) as in Remark 1.4.2 (for i = 1, this means that (Λ, ξ) induces (v⊥1 , ξ(1))) and vi is a

hyperelliptic vector of ({v1, . . . , vi}⊥, ξ(i)). Moreover, one of the following holds:

(1) vk is a hyperelliptic vector of ({v1, . . . , vk−1}⊥, ξ(k − 1));

(2) k > 2, N ≡ k + 2 (mod 8), vk has divisibility 4 in {v1, . . . , vk−1}⊥, and {v1, . . . , vk}⊥ ∼=
II2,N−k.

Proof. By induction on k. If k = 1, the proposition holds by Lemma 1.4.1; if k = 2, it holds by

Lemma 1.7.6. Now let k > 3. By the inductive hypothesis, {v1, . . . , vk−2}⊥, {v1, . . . , vk−1}⊥, and

{v1, . . . , vk−2, vk}⊥ are either D-lattices or unimodular. Since vk−1 and vk have divisibility 2 in Λ,

it follows that {v1, . . . , vk−2}⊥, {v1, . . . , vk−1}⊥, and {v1, . . . , vk−2, vk}⊥ are not unimodular and

hence they are D-lattices. In particular, by Lemma 1.7.6, vk−1 and vk are hyperelliptic vectors

of ({v1, . . . , vk−2}⊥, ξ(k−2)). The proposition follows by applying Lemma 1.7.6 to the decorated

D-lattice ({v1, . . . , vk−2}⊥, ξ(k − 2)) and the vectors v = vk−1, w = vk. 2

Proof of Proposition 1.7.2. Let us prove (1.7.18). It is obvious that ∆(k)(N) contains the set

on the right-hand side. Next, we check that the left-hand side of (1.7.18) is contained in the

right-hand side. If N 6≡ 3, 4 (mod 8), the containment is obvious because there are no reflective

unigonal vectors. If N ≡ 3 (mod 8) (and k > 2), the containment follows from Lemma 1.7.3. It

remains to prove that if N ≡ 4 (mod 8), then ∆(2)(N)⊂H(2)
h (N); this follows from Lemma 1.7.4.

Lastly, we prove (1.7.19). Suppose that π([σ]) ∈H(k)
h (N), i.e. there exist linearly independent

hyperelliptic vectors v1, . . . , vk of (ΛN , ξN ) such that σ ∈ {v1, . . . , vk}⊥. The latter condition

implies that the restriction of ( , )Λ to the span of v1, . . . , vk is negative definite and hence the

vectors v1, . . . , vk are pairwise orthogonal by Lemma 1.4.7. Thus, we may apply Proposition 1.7.7;

if Item (1) holds, then π([σ]) ∈ Im fN−k,N ; if Item (2) holds, then N ≡ k + 2 (mod 8) and

π([σ]) ∈ Im(fN−k+1,N ◦ lN−k+1). This proves that the left-hand side of (1.7.19) is contained in

the right-hand side. The converse is obvious. 2

Remark 1.7.8. Let N = 8s+ 4, where s > 0. We have proved that

H(2)
u (N) = Im(f8s+4 ◦ l8s+3) = Im(m8s+4 ◦ p8s+3). (1.7.23)

In particular, it follows from Lemma 1.7.3 that Im fN−2,N ∩H(2)
u (N) = ∅.
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2. Locally symmetric spaces F (N) as period spaces for N ∈ {18, 19, 20, 21}

We will denote by F (N) the locally symmetric variety F (ΛN , ξN ), where (ΛN , ξN ) is a
decorated dimension-N D-lattice. As is well known, the period space for quartic K3 surfaces is
FΛ19(Õ+(Λ19)), and the latter is equal to F (19) by Proposition 1.2.3. We will prove that F (18)
is the period space of hyperelliptic quartic K3 surfaces, see § 2.2, and that F (20) is the period
space of desingularized EPW sextics (a quotient of the period space of double EPW sextics by
the natural duality involution; see [O’Gr15]). Lastly, in § 2.3, we will establish a relation between
F (21) and the period space of hyperkähler 10-folds of Type OG10.

Notation 2.0.1. We will denote by Hh(N), Hu(N) the hyperelliptic and unigonal divisors in
F (N).

2.1 Quartic K3 surfaces and their periods
For us a K3 surface is a complex projective surface X with DuVal singularities, trivial dualizing
sheaf ωX , and H1(OX) = 0. A polarization of degree d on a K3 surface X is an ample line bundle
L on X such that c1(L) is primitive and c1(L) · c1(L) = d. The degree d of a polarization is
strictly positive and even and hence we may write d = 2g−2, with g > 2; then g is the arithmetic
genus of curves in |L|. A polarized K3 surface is a couple (X,L), where X is a K3 surface and
L is a polarization of X; the degree and genus of (X,L) are defined to be the degree and genus
of L. We recall the following fundamental result.

Theorem 2.1.1 (Mayer [May72]). Let (X,L) be a polarized K3 of genus g. Then one of the
following holds.

(1) The map ϕL : S 99K |L|∨ ∼= Pg defined by L is regular and is an isomorphism onto its image
(a surface whose generic hyperplane section is a canonical curve of genus g).

(2) The map ϕL : S 99K |L|∨ ∼= Pg is regular and is a double cover of its image (a rational
surface of degree g − 1).

(3) The linear system |L| has a fixed component, a smooth rational curve R, and L(−R) ∼=
OX(gE), where E is an elliptic curve.

Actually Mayer considered big and nef divisors on a smooth K3 surface; one gets the result
for a singular K3 surface X upon replacing X by its minimal desingularization X̃, and L by the
pull-back L̃ of L to X̃.

Definition 2.1.2. A polarized K3 surface (X,L) of degree 4 is hyperelliptic if Item (2) of
Theorem 2.1.1 holds, and it is unigonal if Item (3) of Theorem 2.1.1 holds.

Remark 2.1.3. Let Q ⊂ P3 be an irreducible quadric, i.e. either a smooth quadric or a quadric
cone over a smooth conic. Let B ∈ |ω−2

Q | and suppose that B has simple singularities. Let ϕ : X →

Q be the double cover ramified overB and let L := ϕ∗OQ(1). Then (X,L) is a hyperelliptic quartic
K3 surface and the image of ϕL : X → |L|∨ is identified with Q. Conversely, every hyperelliptic
quartic K3 surface is obtained by this procedure.

Remark 2.1.4. Let F4 := P(OP1(4) ⊕ OP1). Let ρ : F4 → P1 be the structure map, let F be a
fiber of ρ, and let A := P(OP1(4)) ⊂ F4 be the negative section of ρ. Let B ∈ |3A + 12F | be
reduced with simple singularities, and disjoint from A (the generic divisor in |3A + 12F | has
these properties because B · A = 0). Let π : X → F4 be the double cover branched over A+ B.
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Then X is a K3 surface because (A + B) ∈ |−2KF4 |. Since π is simply ramified over A, we
have π∗A = 2R, where R is a smooth rational curve. Let E := π∗F ; thus, E is an elliptic curve,
moving in the elliptic fibration ρ ◦ π : X → P1. Then (X,OX(R+ 3E)) is a unigonal quartic K3
surface and conversely every unigonal quartic is obtained by this procedure.

If (X,L) is a quartic K3 surface, the period point Π(X,L) ∈ F (19) is defined as follows.
Let X̃ be the minimal desingularization of X and L̃ be the pull-back of L to X̃. The lattices
c1(L̃)⊥Z := c1(L̃)⊥ ∩H2(X̃;Z) and Λ19 are isomorphic; let

ψ : c1(L̃)⊥Z
∼−→ Λ19 (2.1.1)

be an isomorphism, and ψC : c1(L̃)⊥
∼−→ Λ19,C be the C-linear extension of ψ. The line

ψC(H2,0(X̃)) belongs to DΛ19 and, if necessary, we may precompose ψ with an element of

Õ(c1(L̃)⊥) so that ψC(H2,0(X̃)) belongs to D+
Λ19

. Such a point is well determined up to Õ+(Λ19)
and hence it determines

Π(X,L) ∈ Õ+(Λ19)\D+
Λ19

= F (19). (2.1.2)

This is the period point of (X,L).
Now let

M(19) := |OP3(4)|//PGL(4) (2.1.3)

be the GIT moduli space of quartic surfaces in P3 (see [Sha81] for many results about M(19)).

Definition 2.1.5. Let U (19) ⊂ |OP3(4)| be the open subset parametrizing quartics with ADE
singularities.

Then U (19) is contained in the stable locus of |OP3(4)| for the natural action of PGL(4)
by [Sha81]. By global Torelli for K3 surfaces, and Mayer’s theorem 2.1.1, the period map
restricted to U (19)//PGL(4) defines an isomorphism

U (19)//PGL(4)
∼−→ F (19) \ (Hh(19) ∪Hu(19)). (2.1.4)

Thus, we have a birational map

p19 : M(19) 99K F (19)∗ (2.1.5)

and one of the main goals of the present paper is to propose a conjectural decomposition of p−1
19

as a composition of the Q-factorialization of F (19)∗ and a series of flips of subloci described by
the D tower of § 1.7. The geometric behavior of this decomposition is discussed in [LO18b].

2.2 Periods of hyperelliptic and unigonal quartics
The following is standard.

Proposition 2.2.1. Let (X,L) be a quartic K3 surface. Then:

(1) (X,L) is hyperelliptic if and only if Π(X,L) ∈ Hh(19); and

(2) (X,L) is unigonal if and only if Π(X,L) ∈ Hu(19).

Remark 2.2.2. By Proposition 1.4.5, there is a natural isomorphism between F (18) and the
hyperelliptic divisor Hh(19). By Proposition 2.2.1, it follows that we may identify F (18) with
the period space for hyperelliptic quartic K3 surfaces.
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There is a GIT moduli space which is in a relation to F (18) that is similar to the relation
between M(19) and F (19). In fact, let

M(18) := |OP1(4)� OP1(4)|//Aut(P1 × P1). (2.2.1)

Definition 2.2.3. Let U (18) ⊂ |OP1×P1(4, 4)| be the open subset parametrizing curves with
ADE singularities.

If D ∈ U (18), the double cover π : X → P1 × P1 branched over D is a K3 surface, and
(X,π∗(OP1(1)� OP1(1))) is a hyperelliptic quartic K3 surface. Now U (18) is contained in the
stable locus of |OP×P1(4, 4)| by [Sha81, Theorem 4.8] and, by associating to the orbit ofD ∈U (18)
the period of (X,π∗(OP1(1)� OP1(1))) (notation as above), one gets an isomorphism

U (18)//Aut(P1 × P1)
∼−→ (F (18) \Hh(18)). (2.2.2)

Thus, we have a birational period map

p18 : M(18) 99K F (18)∗, (2.2.3)

whose behavior is very similar to that of p19 (see [LO18a] for a full discussion).

2.3 Periods of certain higher-dimensional hyperkähler varieties
2.3.1 Double EPW sextics. Let (X,L) be a polarized hyperkähler (HK) variety of Type

K3[2], where q(c1(L)) = 2 (q is the Beauville–Bogomolov quadratic form on H2(X)). Then

c1(L)⊥ ∼= II2,18 ⊕A1 ⊕A1
∼= Λ20.

In the above equation, perpendicularity is with respect to the Beauville–Bogomolov quadratic
form, and the first isomorphism is found in [O’Gr15]. The period space for degree-2 polarized HK
varieties of Type K3[2] is FΛ20(Õ+(Λ20)); in fact, the moduli space of such (polarized) varieties
is identified with an open dense subset of FΛ20(Õ+(Λ20)) by Verbitsky’s global Torelli theorem.
(One should introduce an analogue of DuVal singularities, in order to identify FΛ20(Õ+(Λ20))
with the moduli space of polarized varieties with mild singularities.) On the other hand, we have
a natural degree-2 covering map

FΛ20(Õ+(Λ20))
ρ−→ F (20) (2.3.1)

because Γξ20 is an index-2 subgroup of Õ+(Λ20). (See Item (4) of Proposition 1.2.3.)
There is an analogue of the GIT moduli spaces M(19) and M(18) in this case as well.

In fact, let (X,L) be a generic degree-2 polarized HK variety of Type K3[2]. Then the map
ϕL : X 99K |L|∨ ∼= P5 is regular, finite, of degree 2 onto a special sextic hypersurface: an EPW
sextic. Conversely, given an EPW sextic Y ⊂ P5, there is a canonical double cover f : X → Y
and, if Y is generic, then (X, f∗OY (1)) is a degree-2 polarized HK variety of Type K3[2]. (For
the definition and properties of double EPW sextics, we refer to [O’Gr06] and [O’Gr16].) The
parameter space for EPW sextics is (an open dense subset of) LG(

∧3 C6). Let

M(20) = LG
( 3∧

C6
)
//PGL6(C). (2.3.2)

We have a birational period map

p̃20 : M(20) 99K FΛ20(Õ+(Λ20))∗. (2.3.3)
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The dual of an EPW sextic is another EPW sextic, see [O’Gr08], and hence we have a (regular)
duality involution δ : M(20) → M(20). This is the geometric version of the covering involution
of the double cover ρ in (2.3.1). The upshot is that we have a birational period map

p20 : M(20)/〈δ〉 99K F (20)∗. (2.3.4)

Thus, we may view F (20) as the period space for double EPW sextics up to duality. Alternatively,
F (20) is the period space for the Calabi–Yau fourfolds obtained by blowing up a (generic) EPW
sextic Y along its singular locus (a smooth surface).

The inverse images by ρ of the reflective Heegner divisors of F (20) have appeared in [O’Gr15].
In fact,

ρ−1Hn(20) = S?2, ρ−1Hh(20) = S4, ρ−1Hu(20) = S′2 ∪ S′′2.

For a geometric interpretation of periods in S?2, S4, S′2, and S′′2, see [O’Gr15, § 5].

2.3.2 EPW cubes. Let (X,L) be a polarized HK variety of Type K3[3], where q(c1(L)) = 4
and div(c1(L)) = 2. Then

c1(L)⊥ ∼= II2,18 ⊕A1 ⊕A1
∼= Λ20.

Moreover, one shows that the period space for polarized HK varieties of Type K3[3] of this kind
is F (20). (We thank M. Kapustka and G. Mongardi for bringing this to our attention.) Iliev
et al. [IKKR19] have proved that the generic such polarized HK variety is isomorphic to an EPW
cube, a double cover of a codimension-3 degeneracy locus in Gr(3,C6). The parameter space of
EPW cubes is the same as that for double EPW sextics (but the EPW cubes parametrized by
A ∈ LG(

∧3 C6) and the dual Lagrangian A⊥ ∈ LG(
∧3(C6)∨) are isomorphic).

2.3.3 Hyperkähler varieties of Type OG10. Let X be a HK manifold of Type OG10. Then
H2(X;Z) equipped with the Beauville–Bogomolov quadratic form is isomorphic to II3,19 ⊕ A2;
see [Rap08]. Let a, b ∈ A2 be standard generators (a2 = b2 = (a + b)2 = −2) and v ∈ II3,19 of
square 2. Let h := (3v+a−b); notice that h2 = 12 and (h,H2(X;Z)) = 3Z. The discriminant group
and quadratic form of h⊥ are isomorphic to the discriminant group and quadratic form of Λ21,
respectively, and hence h⊥ ∼= Λ21 by Theorem 1.13.2 of [Nik80]. Thus, DΛ21 is the classifying space
for the corresponding 10-dimensional polarized O’Grady HK manifolds. By Verbitsky’s global
Torelli theorem [Ver13], the moduli space for such varieties is isomorphic to FΛ21(Γ), where
Γ < O+(Λ21) is the relevant monodromy group (a subgroup of finite index; see [Ver13]).
See [Mon16] for a result regarding the monodromy group of O’Grady’s 10-dimensional HK
manifolds.

3. Borcherds’ relations for D locally symmetric varieties

3.1 Set-up and statement of the main results
Let N > 3. We will derive relations among divisor classes on F (N) in the range N 6 25 by
considering suitable quasi-pull-backs of Borcherds’ celebrated reflective modular form for the
orthogonal group O(II2,26).

In order to state our results, we let µ(N), for 3 6 N 6 25, be defined by Table 1.

Theorem 3.1.1 (First Borcherds’ relation). Let 3 6 N 6 25. Then

2(12 + (26−N)(25−N))λ(N) = Hn(N) + 2(26−N)Hh(N) + τ(N)µ(N)Hu(N), (3.1.1)

where τ(N) is equal to 1 if N ≡ 3, 4 (mod 8) and is equal to 2 otherwise.
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Table 1. Definition of µ(N).

N 3 4 5–10 11 12 13–18 19 20 21 22 23 24 25

µ(N) 46 1 0 30 1 0 78 33 16 8 4 2 1

Theorem 3.1.2 (Second Borcherds’ relation). Let 3 6 N 6 17. Then

2(132 + (18−N)(17−N))λ(N) = Hn(N) + 2(18−N)Hh(N) + τ(N)µ(N + 8)Hu(N), (3.1.2)

where τ(N) is as in Theorem 3.1.1.

Theorems 3.1.1 and 3.1.2 will be proved in § 3.2. Below we prove a corollary which is extremely
important for our work.

Corollary 3.1.3 (Gritsenko’s relation, [Gri18, Theorem 3.2]). Let 3 6 N 6 17. Then

32(14−N)λ(N) = 16Hh(N) + τ(N)(µ(N)− µ(N + 8))Hu(N). (3.1.3)

Proof. Taking the difference between the identities (3.1.1) and (3.1.2), we see that the terms
Hn(N) cancel, giving the relationship above between λ(N), Hh(N), and Hu(N). 2

Corollary 3.1.4. The following hold:

(1) Hh(14) is linearly equivalent to Hu(14);

(2) if 4 6 N < 14, then Hh(N) is a big divisor;

(3) if 4 6 N 6 10, then Hh(N) is an ample divisor.

Proof. This is a direct consequence of (3.1.3). Insert N = 14 into (3.1.3) to get Item (1). Next,
for N < 14, we get

Hh(N) = 2(14−N)λ(N) +
τ(N)

16
(µ(N + 8)− µ(N))Hu(N). (3.1.4)

Since (14−N) > 0, λ(N) is ample, and µ(N) 6 µ(N + 8) (for 4 6 N < 14), we get that Hh(N)
is big. For 4 6 N 6 10, the coefficient of Hu(N) is zero and hence Hh(N) is ample. 2

3.2 Proof of Borcherds’ relations
3.2.1 Borcherds’ automorphic form. We recall that Borcherds [Bor95] constructed an

automorphic form Φ12 on D+
II2,26

for the orthogonal group O+(II2,26), of weight 12, whose

zero-locus is the union of the nodal hyperplanes (the intersections δ⊥ ∩ D+
II2,26

, for δ a root

of II2,26). Actually Φ12 vanishes with order one on each nodal hyperplane, i.e.

div(Φ12) =
∑

±δ∈R(II2,26)

δ⊥ ∩D+
II2,26

= Hδ0,II2,26(O+(II2,26)), (3.2.1)

where (as usual) R(II2,26) is the set of roots of II2,26 and δ0 is a chosen root of II2,26. In other
words, the divisor of Φ12 is the pre-Heegner divisor associated to a root of II2,26.
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Remark 3.2.1. Let Λ be a lattice of signature (2,m), let Γ < O+(Λ) be a subgroup of finite
index, and let Φ be a Γ-automorphic form on D+

Λ of weight w. Then Φ descends to a regular
section of L (Λ,Γ)⊗w; see § 1.3.1. Thus, (3.2.1) gives that, on the locally symmetric variety
O+(II2,26)\D+

II2,26
, one has the relation 12λ(II2,26) = Hn(II2,26), where λ(II2,26) is the first Chern

class of the automorphic (or Hodge) line bundle and Hn(II2,26) is the nodal Heegner divisor.

Now suppose that Λ is a lattice of signature (2, n) and we are given a saturated embedding
Λ ⊂ II2,26. The quasi-pull-back of Φ12 is defined as

ΦΛ :=
Φ12∏

±δ∈R(Λ⊥) `δ

∣∣∣∣∣
D+

Λ

,

where `δ is the restriction to D+
Λ of the linear form σ 7→ (δ, σ). Then ΦΛ is an automorphic form

on D+
Λ for the stable orthogonal group Õ+(Λ); see [BKPSB98] and [GHS07, § 8]. Notice that our

notation is somewhat imprecise: the automorphic form ΦΛ depends on the embedding of Λ into
II2,26 and we will see instances of this later on. The weight and divisor of ΦΛ are computed as
follows.

Recipe 3.2.2. The weight of ΦΛ is equal to 12 + w, where w = |R(Λ⊥)|/2 is half the number of
roots of II2,26 perpendicular to Λ. The divisor of ΦΛ is supported on the union of the intersections
δ⊥ ∩D+

Λ for δ ∈ R(II2,26) \R(Λ⊥). More precisely,

div(ΦΛ) =
∑

±δ∈R(II2,26)\R(Λ⊥)

(δ⊥ ∩D+
Λ ). (3.2.2)

Remark 3.2.3. Let δ ∈ R(II2,26) \ R(Λ⊥); then δ⊥ ∩ D+
Λ is non-empty if and only if 〈δ,Λ⊥〉

is negative definite. Given such a δ, let ν(δ) be a generator of (Qδ ⊕ QΛ⊥) ∩ Λ (thus ν(δ) is
determined up to multiplication by ±1). Then

δ⊥ ∩D+
Λ = ν(δ)⊥ ∩D+

Λ .

Let Sat〈δ,Λ⊥〉 be the saturation of 〈δ,Λ⊥〉 in II2,26. If δ′ ∈ Sat〈δ,Λ⊥〉 is another root which does
not belong to Λ⊥, then ν(δ′) = ±ν(δ). The upshot is that we may rewrite the right-hand side
of (3.2.2) as a finite sum of pre-Heegner divisors Hν(δi), where the coefficient of Hν(δi) is equal to

half the number of the roots of Sat〈δi,Λ⊥〉 which do not belong to Λ⊥ (call this number m(δi)):

div(ΦΛ) = m(δ1)Hν(δi),Λ(Õ+(Λ)) + · · ·+m(δs)Hν(δs),Λ(Õ+(Λ)). (3.2.3)

Lastly, (3.2.3) descends to a relation between the Hodge bundle on Õ+(Λ)\D+
Λ and the Heegner

divisors corresponding to the vectors ν(δs); see Remark 3.2.1.

The plan is the following. We will choose embeddings of ΛN (for 3 6 N 6 25) into II2,26

such that the pre-Heegner divisors appearing on the right-hand side of (3.2.3) are associated
to minimal norm vectors (see Definition 1.3.7). For a given embedding, (3.2.3) descends to a
relation between the Hodge bundle and the Heegner divisors of FΛN

(Õ+(ΛN )) associated to

minimal norm vectors. For N odd, F (N) = FΛN
(Õ+(ΛN )) and the relations that we will get

are those of Theorems 3.1.1 and 3.1.2. If N is even, we will get the relations in Theorems 3.1.1
and 3.1.2 by pushing forward via the double covering FΛN

(Õ+(ΛN )) → F (N).
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3.2.2 Embeddings of ΛN into II2,26.

Lemma 3.2.4. If 3 6 N 6 25, the lattice ΛN has a saturated embedding into the unimodular
lattice II2,26 with orthogonal complement isomorphic to D26−N and, if 3 6 N 6 17, it also has
a saturated embedding with orthogonal complement isomorphic to E8 ⊕ D18−N . Conversely,
any saturated embedding of D26−N , or of E8 ⊕ D18−N , into II2,26 has orthogonal complement
isomorphic to ΛN .

Proof. If 3 6 N 6 25, then by (1.1.2) and Claim 1.1.1 there exists an isomorphism of groups
ϕ : AΛN

∼−→ D26−N which multiplies the discriminant quadratic form by −1, i.e.

qD26−N
(ϕ(η)) = −qΛN

(η). (3.2.4)

Let L ⊂ (ΛN ⊕D26−N )Q be the overlattice of ΛN ⊕D26−N generated by vectors (v, w) such that
[v] ∈ AΛN

, [w] ∈ AD26−N
, and [w] = ϕ([v]). Then, because of (3.2.4), L is even, unimodular, of

signature (2, 26), and hence is isomorphic to II2,26. By construction, ΛN is a saturated sublattice
of L and its orthogonal complement is isomorphic to D26−N . If 3 6 N 6 17, there exists an
isomorphism of groups ψ : AΛN

∼−→ (E8 ⊕D18−N ) which multiplies the discriminant quadratic
forms by −1, i.e.

qE8⊕D18−N
(ψ(η)) = −qΛN

(η).

Proceeding as in the previous case, one constructs an overlattice of ΛN ⊕ (E8 ⊕D18−N ) which
is isomorphic to II2,26, in which ΛN is saturated, with orthogonal complement isomorphic to
E8 ⊕D18−N .

Let us prove the last statement of the lemma. Suppose that D26−N ⊂ II2,26, or
(E8 ⊕ D18−N ) ⊂ II2,26, is saturated. Let M := D⊥26−N (respectively M = (E8 ⊕ D18−N )⊥).
The overlattice II2,26 ⊃ (D26−N ⊕ M) (respectively II2,26 ⊃ (E8 ⊕ D18−N ) ⊕ M) induces an
isomorphism of groups

g : AD26−N

∼−→ AM (respectively g : AE8⊕D18−N

∼−→ AM ) (3.2.5)

such that qM (g(η)) = −qD26−N
(η) for all η ∈ AD26−N

(respectively, qM (g(η)) = −qE8⊕D18−N
(η)

for all η ∈ AE8⊕D18−N
). Thus, M has the same signature, parity, and discriminant quadratic

form as ΛN and hence is isomorphic to ΛN by Theorem 1.13.2 of [Nik80]. 2

Remark 3.2.5. Let 3 6 N 6 25. Suppose that ΛN ⊂ II2,26 is a saturated embedding and that Λ⊥N
is isomorphic either to D26−N or to E8⊕D18−N (in this case N 6 17). Let (N−2) = 8k+a, where
k > 0 and a ∈ {1, . . . , 8}. Then ΛN ∼= II2,2+8k ⊕Da and we identify the two lattices throughout.

(1) If N 6 25 and Λ⊥N
∼= D26−N , then II2,26 is identified with the sublattice of

(II2,2+8k ⊕Da ⊕D26−N )Q

generated by II2,2+8k ⊕Da ⊕D26−N together with the following three vectors:

u1 := (04+8k, (
1
2 , . . . ,

1
2︸ ︷︷ ︸

a

), (1
2 , . . . ,

1
2︸ ︷︷ ︸

26−N

)), u2 := (04+8k, (−1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

a

), (−1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

26−N

)),

u3 := (04+8k, (1, 0, . . . , 0︸ ︷︷ ︸
a

), (1, 0, . . . , 0︸ ︷︷ ︸
26−N

)).
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(2) If N 6 17 and Λ⊥N
∼= E8 ⊕D18−N , then II2,26 is identified with the sublattice of

(II2,2+8k ⊕Da ⊕D18−N ⊕ E8)Q

generated by II2,2+8k ⊕Da ⊕D18−N ⊕ E8 together with the following three vectors:

u′1 := (04+8k, (
1
2 , . . . ,

1
2︸ ︷︷ ︸

a

), (1
2 , . . . ,

1
2︸ ︷︷ ︸

18−N

), 08), u′2 := (04+8k, (−1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

a

), (−1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

18−N

), 08),

u′3 := (04+8k, (1, 0, . . . , 0︸ ︷︷ ︸
a

), (1, 0, . . . , 0︸ ︷︷ ︸
18−N

), 08).

Remark 3.2.6. Suppose that ΛN ⊂ II2,26 is a saturated embedding. Then the orthogonal

complement of ΛN in II2,26 is a lattice in the genus of D26−N . We note the following:

• if 1 6 k 6 8, there is only one isometry class of lattices in the genus of Dk, namely Dk;

• if 9 6 k 6 16, there are at least two distinct classes, namely Dk and Dk−8 ⊕ E8.

In other words, there is one Borcherds relation for N > 18 and at least two such relations for

10 6 N 6 17. For N 6 17, the relations relevant for us are those associated to Dk and Dk−8⊕E8

as those involve only Heegner divisors associated to minimal norm vectors.

Remark 3.2.7. Let m > 1. The non-zero elements of ADm are ξ, ζ, ζ ′, where

ξ := [(1, 0, . . . , 0)︸ ︷︷ ︸
m

], ζ := [(1/2, . . . , 1/2)︸ ︷︷ ︸
m

], ζ ′ := [(−1/2, 1/2, . . . , 1/2)︸ ︷︷ ︸
m

].

Let vm := (2, 0, . . . , 0) ∈ Dm. Then the divisibility of vm is even (equal to 2 unless m = 1)

and [vm/2] = ξ. Moreover, if u ∈ Dm has even divisibility and [u/2] = ξ, then u2 6 −4 = v2
m.

Similarly, let

wm :=

{
(1, . . . , 1) ∈ Dm if m is even,

(2, . . . , 2) ∈ Dm if m is odd.

Then w∗m = ζ and, if u ∈ Dm is such that u∗ = ζ, then

u2 6 w2
m =

{
−m = w2

m if m is even,

−4m = w2
m if m is odd.

Since the map (x1, . . . , xm) 7→ (−x1, x2, . . . , xm) defines an automorphism of Dm interchanging

ζ with ζ ′, an analogous result holds for the minimal absolute value of u2 for vectors u ∈ Dm such

that u∗ = ζ ′. This fact has the following interesting consequence. Suppose that Λ ⊂ II2,26 is a

saturated sublattice and that one of the following holds:

(1) Λ⊥ ∼= D26−N and N ∈ {6, 14}; or

(2) Λ⊥ ∼= (E8 ⊕D18−N ) and N = 6.

Although there is no preferred decoration of the abstract dimension-N D-lattice Λ (because

qΛ(η) ≡ 1 (mod 2Z) for all non-zero ζ ∈ AΛ), there is a preferred decoration determined by the

embedding Λ ⊂ II2,26, namely η := g(ξ), where g is the isomorphism in (3.2.5), and ξ ∈ AΛ⊥

is the unique class for which there exists v ∈ Λ⊥ of square −4 and even divisibility such that

[v/2] = ξ.
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Definition 3.2.8. Let Λ ⊂ II2,26 be a saturated sublattice such that Λ⊥ is isomorphic to D26−N
or to (E8 ⊕D18−N ) (hence Λ is a dimension-N D-lattice by Lemma 3.2.4). A decoration η of Λ

is admissible if η = g(ξ), where g is the isomorphism in (3.2.5) and ξ ∈ AΛ⊥ is a class for which

there exists v ∈ Λ⊥ of square −4 and even divisibility such that [v/2] = ξ.

Remark 3.2.9. If N 6≡ 6 (mod 8), the unique decoration of Λ is admissible, if N = 22, all three

decorations of Λ are admissible (any non-zero element of D4 is equal to [v/2] for a suitable v ∈ Λ

of square −4 and even divisibility), and if N ∈ {6, 14}, then only one of the three decorations is

admissible; see Remark 3.2.7.

3.2.3 The pre-Heegner divisors associated to the quasi-pull-backs of Φ12. The following result

will allow us to determine the vectors ν(δ) which appear in Remark 3.2.3 for the two embeddings

of ΛN into II2,26 given by Lemma 3.2.4.

Proposition 3.2.10. Let 3 6 N 6 25. Assume that Λ ⊂ II2,26 is a saturated sublattice and that

Λ⊥ is isomorphic to D26−N or to E8 ⊕ D18−N (in the latter case, N 6 17) and hence Λ is a

dimension-N D-lattice by Lemma 3.2.4. Suppose that δ ∈ R(II2,26 \ Λ⊥) is such that 〈Λ⊥, δ〉 is

negative definite. Then ν(δ) (notation as in Remark 3.2.3) is a minimal norm vector of Λ (see

Definition 1.3.7). Moreover, one of the following holds:

(a) ν(δ)2 = −2;

(b) ν(δ)2 = −4, divΛ(ν(δ)) = 2, and ν(δ)∗ is an admissible decoration of Λ;

(c) ν(δ)2 = −4 and divΛ(ν(δ)) = 4;

(d) Λ⊥ ∼= D26−N and 19 6 N ;

(e) Λ⊥ ∼= (E8 ⊕D18−N ) and 11 6 N .

Proof. Let m be the minimum strictly positive integer such that mδ ∈ (Λ⊕ Λ⊥). Thus,

mδ = v + w, 0 6= v ∈ Λ, w ∈ Λ⊥

and m ∈ {1, 2, 4}; see Remark 3.2.5. Notice that v ∈ 〈ν(δ)〉 and ν(δ) = ±v if and only if v is

primitive. Let us prove that one of the following items holds:

(1) m = 1, v2 = −2, and ν(δ) = ±v;

(2) m = 2, v2 ∈ {−2,−6}, divΛ(v) = 2, and ν(δ) = ±v;

(3) m = 2, v2 = −4, divΛ(v) = 2, ν(δ) = ±v, and ν(δ)∗ is an admissible decoration of Λ;

(4) m = 2, v2 = −4, divΛ(v) = 4, and ν(δ) = ±v;

(5) m = 4, N is odd, v2 = −4a, where a is the residue modulo 8 of (N − 2), divΛ(v) = 4, and

ν(δ) = ±v.

We have ν(δ)2 < 0 because 〈Λ⊥N , δ〉 is negative definite and hence v2 < 0. Since −2m2 = (mδ)2 =

v2 + w2, one of the following holds:

(i) m = 1, v2 = −2 and ν(δ) = ±v;

(ii) m = 2, v2 ∈ {−2,−4,−6}, ν(δ) = ±v, and divΛ(v) is either 2 or 4;

(iii) m = 4, v2 ∈ {−2,−4,−6,−8, . . . ,−30}, ν(δ) = ±v, and divΛ(v) = 4;

(iv) m = 4, v2 ∈ {−8,−16,−18,−24}, and v is not primitive.
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If (i) holds, then Item (1) holds.
Suppose that (ii) holds. If v2 = −2, then Item (2) holds. If v2 = −6, then by a discriminant

quadratic form computation (see (1.1.2) and Claim 1.1.1) we get that divΛN
(v) = 2 and hence

Item (2) holds. If v2 = −4 and divΛN
(v) = 4, then Item (4) holds. Thus, we are left with the

case v2 = −4 and divΛN
(v) = 2. Since m = 2, the divisibility of w in Λ⊥ is even and hence

[w/2] ∈ AΛ⊥ . Since g([w/2]) = [v/2], where g is the isomorphism in (3.2.5) and w2 = −4, it
follows that [v/2] = ν(δ)∗ is an admissible decoration. Thus, Item (3) holds. This finishes the
proof that if (ii) holds, then one of Items (2), (3), and (4) holds.

If (iii) holds, then, by looking at the discriminant quadratic form of ΛN , we get that v2 =−4a,
where a ∈ {1, 3, 5, 7} and a ≡ (N − 2) (mod 8). Thus, Item (5) holds.

Lastly, suppose that (iv) holds. We will arrive at a contradiction. First, let us show that w
is primitive. If v2 = −18, this is clear because w2 = −14. If v2 ∈ {−8,−16,−24}, then v = 2u,
where u ∈ Λ⊥ (because by assumption v is not primitive) and, if w = rz with r > 2 and z ∈ Λ⊥,
then r = 2 because w2 ∈ {−24,−16,−8}. Then 2δ = u + z, contradicting our hypothesis. This
proves that w is primitive. Since the divisibility of w in Λ⊥ is a multiple of 4, it follows that
divΛ⊥(w) = 4 and hence N is odd. Thus, w2/16 = qΛ⊥(w∗) ≡ −(N − 2)/4 (mod 2Z) and hence
w2 = −4a, where a is odd. This is a contradiction because w2 ∈ {−24,−16,−14,−8}.

Now we finish the proof of the proposition. First, if any one of Items (1)–(5) holds, ν(δ) is a
minimal norm vector.

It remains to prove that if Item (2) holds with v2 = −6, or if Item (5) holds, then Item (d)
or Item (e) of the proposition holds. We will assume that Λ⊥ ∼= D26−N if Λ⊥ ∼= (E8 ⊕D18−N ) is
analogous.

Suppose that Item (2) holds with v2 = −6. Since qΛN
(v∗) ≡ −3/2 (mod 2Z), we have N ≡ 0

(mod 8); it follows that Λ⊥ ∼= D26−N = D2+8h for h ∈ {0, 1, 2}. The divisibility of w as an
element of Λ⊥ is even because m = 2 and hence it is equal to 2 (e.g. because w2 = −2). Now
qΛ⊥N

(w∗) ≡ −1/2 (mod 2Z) and hence w∗ ∈ {ζ, ζ ′}, where notation is as in Remark 3.2.7. Since

w2 = −2, it follows from Remark 3.2.7 that Λ⊥ ∼= D2, i.e. N = 24.
Lastly, suppose that Item (5) holds. Then w2 =−4(8−a) and divΛ⊥(w) = 4. Thus, qΛ⊥(w∗)≡

−(8 − a)/4 (mod 2Z) and hence w∗ ∈ {ζ, ζ ′}, with notation as in Remark 3.2.7. On the other
hand, Λ⊥ ∼= D8−a+h, where h > 0. Since w2 = −(8−a), it follows from Remark 3.2.7 that h = 0,
i.e. N > 19. 2

3.2.4 Borcherds’ automorphic forms for Õ+(ΛN ).

Theorem 3.2.11. Let 3 6 N 6 25. Let ΛN ⊂ II2,26 be a saturated embedding with orthogonal
complement isomorphic to D26−N . Let ξ ∈ AΛN

be an admissible decoration of ΛN (see
Definition 3.2.8) and let ζ, ζ ′ be the remaining non-zero elements of AΛN

. Let ΨN be
the quasi-pull-back of Borcherds’ automorphic form Φ12. Then ΨN has weight (12 + (26 − N)
(25−N)) and

div(ΨN ) = H0(ΛN ) + 2(26−N)Hξ(ΛN ) + µ(N)(Hζ(ΛN ) + Hζ′(ΛN )), (3.2.6)

where µ(N) is as in Table 1.

Theorem 3.2.12. Let 3 6 N 6 17. Let ΛN ⊂ II2,26 be a saturated embedding with orthogonal
complement isomorphic to E8 ⊕ D18−N . Let ξ ∈ AΛN

be an admissible decoration of ΛN (see
Definition 3.2.8) and let ζ, ζ ′ be the remaining non-zero elements of AΛN

. Let ΞN be the quasi-
pull-back of Borcherds’ automorphic form Φ12. Then ΞN has weight (132 + (18 −N)(17 −N))
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and

div(ΞN ) = H0(ΛN ) + 2(18−N)Hξ(ΛN ) + µ(N + 8)(Hζ(ΛN ) + Hζ′(ΛN )). (3.2.7)

Before proving the above results, we introduce some notation.

Notation 3.2.13 (Extended exceptional series Er). It is standard (e.g. in the context of del Pezzo
surfaces; cf. [FM02]) to extend the Er series for r < 6 as follows. Let (1)⊕(−1)r be Zr+1 with the
quadratic form q(x, y1, . . . , yr) := x2 −

∑r
i=1 y

2
i . Then Er is the sublattice of (1)⊕ (−1)r defined

by

Er := (3, 1, . . . , 1︸ ︷︷ ︸
r

)⊥ ⊂ (1)⊕ (−1)r. (3.2.8)

Of course, this is the usual Er for r ∈ {6, 7, 8}, and E5 = D5, E4 = A4, and E3 = A2 ⊕A1. The
lattice E2 has Gram matrix

(−4 1
1 −2

)
and is no longer a root lattice. We record for later use the

cardinalities of the sets of roots of the Er lattices:

|R(E2)| = 2, |R(E3)| = 8, |R(E4)| = 20, |R(E5)| = 40,

|R(E6)| = 72, |R(E7)| = 126, |R(E8)| = 240. (3.2.9)

Proof of Theorem 3.2.11. The weight is equal to 12 + |R(Λ⊥N )|/2 = 12 + (26 − N)(25 − N) by
Recipe 3.2.2 (recall that |R(Dm)| = 2m(m − 1)). Next, choose minimal norm vectors v0, vξ, vζ ,
vζ′ ∈ ΛN representing 0, ξ, ζ, ζ ′ ∈ AΛN

, respectively (i.e. v∗0 = 0, v∗ξ = ξ, etc.). For η ∈ AΛN
,

let

aη(N) := 1
2(|R(Sat〈vη,Λ⊥N 〉)| − |R(Λ⊥N )|) = 1

2 |R(Sat〈vη,Λ⊥N 〉)| − 1
2(26−N)(25−N).

By Recipe 3.2.2, (3.2.3), and Proposition 3.2.10,

div(ΨN ) = a0(N)H0(ΛN ) + aξ(N)Hξ(ΛN ) + aζ(N)Hζ(ΛN ) + aζ′(N)Hζ′(ΛN ).

(Of course, by Proposition 3.2.10, 0 = aζ(N) = aζ′(N) if N 6 18 and N 6∈ {3, 4, 11, 12}.) It is
clear that Sat〈v0,Λ

⊥
N 〉 = 〈v0,Λ

⊥
N 〉 and hence a0(N) = 1. In order to compute aξ(N), aζ(N), and

aζ′(N), we will refer to the embedding ΛN ⊂ II2,26 of Remark 3.2.5. Thus, we let (N−2) = 8k+a,
where k > 0, a ∈ {1, . . . , 8}, and we identify ΛN with II2,2+8k ⊕Da. Notice that

ξ := [(04+8k, (1, 0, . . . , 0︸ ︷︷ ︸
a

), 026−N )] ∈ AΛN
(3.2.10)

is an admissible decoration of ΛN with respect to the embedding of Remark 3.2.5. We choose the
minimal norm vector vξ := (04+8k, (2, 0, . . . , 0), 026−N ) (if N = 3, we let vξ := (2e, (2, 0, . . . , 0),
026−N ), where e ∈ II2,2+8k is primitive and isotropic). Then the saturation of 〈vξ,Λ⊥N 〉 is generated
by 〈vξ,Λ⊥N 〉 and the vector u3 of Remark 3.2.5 (if N = 3, we add (e, (1, 0, . . . , 0), (1, 0, . . . , 0))).
It follows that Sat〈vξ,Λ⊥N 〉 is isomorphic to D27−N and hence aξ(N) = 2(26−N). We choose the
minimal norm vector

vζ :=


(04+8k, (1, . . . , 1︸ ︷︷ ︸

a

), 026−N ) if N is even,

(04+8k, (2, . . . , 2︸ ︷︷ ︸
a

), 026−N ) if N is odd.
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By Proposition 3.2.10, aζ(N) = 0, unless 19 6 N 6 25, or a ∈ {1, 2} and N ∈ {3, 4, 11, 12}.
Assume first that 19 6 N 6 25. Then a ∈ {1, . . . , 7} and Λ⊥N = D26−N = D8−a. The saturation
of 〈vζ , D8−a〉 is generated by 〈vζ , D8−a〉 together with the vector u1 of Remark 3.2.5; it follows
easily that Sat〈vζ , D8−a〉 ∼= E9−a. Noting that a = N − 18, we get that Sat〈vζ ,Λ⊥N 〉 ∼= E27−N .
Looking at (3.2.9), we get that aζ(N) = µ(N).

Next, suppose that a = 1 and hence N ∈ {3, 11}. The saturation of 〈vζ , D23−8k〉 is the
overlattice D+

(3−k)8 of D(3−k)8 obtained by adjoining the vector (1/2, . . . , 1/2). Then aζ(N) =

µ(N) follows from the equality |R(D(3−k)8)+| = |R(D(3−k)8)| = 2 · (24− 8k) · (23− 8k), valid for
k ∈ {0, 1}.

Next, suppose that a = 2 and hence N ∈ {4, 12}. The saturation of 〈vζ , D22−8k〉 is generated
by 〈vζ , D22−8k〉 together with the vector u1 of Remark 3.2.5; one verifies easily that the roots of
Sat〈vζ , D22−8k〉 are exactly ±(04+8k, (1, 1), 026−N ) and hence aζ(N) = 1 = µ(N).

Lastly, aζ′(N) = aζ(N) because there is an automorphism of II2,26 mapping ΛN to itself and
exchanging ζ and ζ ′. 2

Proof of Theorem 3.2.12. The proof is analogous to that of Theorem 3.2.11; we leave details to
the reader. 2

3.2.5 Borcherds’ relations for divisors on FΛN
(Õ+(ΛN )) and on F (N). We let λ(Õ+(ΛN ))

be the Hodge orbifold line bundle on FΛN
(Õ+(ΛN )).

Lemma 3.2.14. Let 3 6N 6 25. Let ξ be a decoration of ΛN and let ζ, ζ ′ ∈ AΛN
be the remaining

non-zero elements. Then in Pic(FΛN
(Õ+(ΛN )))Q we have the relation

2(12 + (26−N)(25−N))λ(Õ+(ΛN ))

= H0(ΛN ) + ε(N)2(26−N)Hξ(ΛN ) + τ(N)µ(N)(Hζ(ΛN ) +Hζ′(ΛN )), (3.2.11)

where ε(N) is equal to 1 if N is odd and is equal to 2 if N is even, while τ(N) is equal to 1 if
N ≡ 3, 4 (mod 8) and is equal to 2 otherwise.

Proof. Let ΛN ⊂ II2,26 be a saturated embedding such that the decoration ξ is admissible (see
Definition 3.2.8). Let ΨN be the automorphic form in Theorem 3.2.11. If k ∈ N+ is sufficiently
divisible, then Ψk

N descends to a regular section σN (k) of λ(Õ+(ΛN ))k(12+(26−N)(25−N)), whose
zero divisor pulls back to k times the right-hand side of (3.2.6). Taking into account Claim 1.3.13,
one gets that div(σN (k)) is equal to k times the right-hand side of (3.2.11). Dividing by k, we
get (3.2.11). 2

Proposition 3.2.15 (= Theorem 3.1.1). Let 3 6 N 6 25. Then in Pic(F (N))Q we have the
relation

2(12 + (26−N)(25−N))λ(N) = Hn(N) + 2(26−N)Hh(N) + τ(N)µ(N)Hu(N), (3.2.12)

where τ(N) is as in Lemma 3.2.14. If N ∈ {6, 14}, we also have the relation

2(12 + (26−N)(25−N))λ(N) = Hn(N) + 2(26−N)Hu(N). (3.2.13)

Proof. If N is odd, FΛN
(Õ+(ΛN )) = F (N), and (3.2.12) is simply a rewriting of (3.2.11).

Let N be even and let ρ : FΛN
(Õ+(ΛN )) → F (N) be the natural double covering map

corresponding to the choice of decoration of ΛN given by ξ (the only one if N 6≡ 6 (mod 8)).
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Then (3.2.12) is given by the push-forward by ρ of (3.2.11). More precisely, ρ∗λ(Õ+(ΛN )) =
2λ(N) because ρ∗λ(N) = λ(Õ+(ΛN )) and Corollary 1.3.12 gives formulae for ρ∗ of the Heegner
divisors in the right-hand side of (3.2.11).

Now assume that N ∈ {6, 14} and choose the decoration of ΛN to be ζ; then (3.2.13) is given
by the push-forward by ρ of (3.2.11). 2

Corollary 3.2.16. If N ∈ {6, 14}, then in Pic(F (N))Q we have the relation Hh(N) = Hu(N).

Proof. Subtract (3.2.13) from (3.2.12). 2

Starting from Theorem 3.2.12, and arguing as in the proof of Lemma 3.2.14 and
Proposition 3.2.15, one gets the following results.

Lemma 3.2.17. Let 3 6N 6 17. Let ξ be a decoration of ΛN and let ζ, ζ ′ ∈ AΛN
be the remaining

non-zero elements. Then in Pic(FΛN
(Õ+(ΛN )))Q we have the relation

2(132 + (18−N)(17−N))λ(Õ+(ΛN ))

= H0(ΛN ) + ε(N)2(18−N)Hξ(ΛN ) + τ(N)µ(N + 8)(Hζ(ΛN ) +Hζ′(ΛN )), (3.2.14)

where ε(N) and τ(N) are as in Lemma 3.2.14.

Proposition 3.2.18 (= Theorem 3.1.2). Let 3 6 N 6 17. Then in Pic(F (N))Q we have the
relation

2(132 + (18−N)(17−N))λ(N) = Hn(N) + 2(18−N)Hh(N) + τ(N)µ(N + 8)Hu(N), (3.2.15)

where τ(N) is as in Lemma 3.2.14.

4. The boundary divisor ∆(ΛN , ξN)

4.1 Statement of results
In § 2, we have identified F (19) with the period space of quartic K3 surfaces. Let M(19) be the
GIT moduli space of quartic surfaces in P3; then the natural period map

p19 : M(19) 99K F (19)∗ (4.1.1)

is birational by the global Torelli theorem for K3 surfaces (by Piatetsky-Shapiro and
Shafarevich). The projective variety M(19) = |OP3(4)|//PGL(4) has Picard group (tensored
with Q) of rank 1; let L(19) be the generator of Pic(M(19))Q induced by the hyperplane line
bundle on |OP3(4)|. In the present section, we will prove that

(p−1
19 )∗L(19)|F (19) = λ(19) + ∆(19). (4.1.2)

Similar arguments also give that

(p−1
18 )∗L(18)|F (18) = 2(λ(18) + ∆(18)). (4.1.3)

These are the computations that motivate our choice of boundary divisor for F (N) (for any N).

Remark 4.1.1. Let M(20) be the GIT moduli space of double EPW sextics, let δ be the duality
involution of M(20), and let p20 : M(20)/〈δ〉 99K F (20)∗ be the period map; see (2.3.4). Let
L(20) be an ample generator of the Picard group of M(20)/〈δ〉. We expect that a result similar
to (4.1.2) holds for (p−1

20 )∗L(20)|F (20), namely that it is a positive multiple of λ(20) + ∆(20).
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An important result follows from (4.1.2). In order to state it, we introduce some notation.
For β ∈ [0, 1] ∩Q, let

R(N, β) :=

∞⊕
m=0

H0(F (N),m(λ(N) + β∆(N))), F (N, β) := Proj R(N, β). (4.1.4)

(As usual, H0(F (N),m(λ(N) + β∆(N))) = 0 unless m(λ(N) + β∆(N)) is an integral Cartier
divisor.) Thus, R(N, 0) is the finitely generated algebra of automorphic forms and hence F (N, 0)
is the Baily–Borel compactification F (N)∗. If 3 6 N 6 10, then, by (3.1.3), ∆(N) is a positive
multiple of λ(N) and hence in this range F (N, β) = F (N)∗ for all β ∈ [0, 1] ∩Q. On the other
hand, we will see that if N > 11, then F (N, β) undergoes birational modifications as β moves
in [0, 1] ∩Q.

Now let N ∈ {18, 19} and let ρ(N) be equal to 1 if N = 19, and equal to 2 if N = 18. Let
m > 0 and let

(p−1
N |F (N))

∗ : H0(M(N),mL(N)) −→ H0(F (N),mρ(N)(λ(N) + ∆(N))) (4.1.5)

be the map induced by (4.1.2) if N = 19 and by (4.1.3) if N = 18. The following result should
be compared to Theorem 8.6 of [Loo03b].

Proposition 4.1.2. Let N ∈ {18, 19}. Then the map in (4.1.5) is an isomorphism for all m ∈ Z.

Proof. The map is clearly injective. In order to prove surjectivity, it suffices to show that pN
contracts no divisor. In order to prove this, let U (19) ⊂ |OP3(4)| and U (18) ⊂ |OP×P1(4, 4)|
be the open subsets of Definition 2.1.5 and of Definition 2.2.3, respectively. The period maps
pN , for N ∈ {18, 19}, define isomorphisms between U (N)//G(N) (where G(19) = PGL(4) and
G(18) = Aut(P1 × P1)) and the complement of the support of ∆(N); see (2.1.4) and (2.2.2).
On the other hand, the complement of U (N)//G(N) in M(N) has codimension greater than 1.
Thus, pN contracts no divisor, as claimed. 2

By Proposition 4.1.2, there is an isomorphism

F (N, 1) ∼= M(N) if N ∈ {18, 19}. (4.1.6)

Thus, for N ∈ {18, 19}, the schemes F (N, β) interpolate between the Baily–Borel
compactification F (N)∗ and the GIT moduli space M(N).

4.2 Families of K3 surfaces
4.2.1 Hodge bundle on families of K3 surfaces. Let f : X → B be a family of K3 surfaces.

We let LB := f∗ωX /B; this is the Hodge bundle on B (the notation is imprecise because the

Hodge bundle is determined by f : X → B, not by B alone). We let λB := c1(LB) ∈ CH1(B).
Suppose that X is a family of polarized quartic K3 surfaces and let µ : B → F (19) be the
period map: then

µ∗λ(19) = λB. (4.2.1)

Suppose that X and B are smooth. The exact sequence

0 −→ f∗ΩB
df−→ ΩX −→ ΩX /B −→ 0

and the isomorphism f∗LB
∼=
∧2 ΩX /B give the formula

f∗λB = c1(KX )− f∗c1(KB). (4.2.2)
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Table 2. Intersection numbers of families of quartic K3 surfaces.

λ(19) Hn(19) Hh(19) Hu(19)

µ1,∗(Γ1) 1 108 0 0

µ2,∗(Γ2) 1 136 −2 0

µ3,∗(Γ3) 1 264 0 −2

4.2.2 Families of quartic surfaces. Let F,G ∈ C[x0, . . . , x3]4 be linearly independent and

such that Γ1 := 〈Div(F ),Div(G)〉 is a Lefschetz pencil of quartic surfaces. Let

X1 := {([α, β], [x]) ∈ Γ1 × P3 | αF (x) + βG(x) = 0}. (4.2.3)

The projection onto the second factor is a family f1 : X1 → Γ1 of polarized quartic surfaces.

Now let us we define a one-parameter family of hyperelliptic K3 surfaces. Let Γ2 := P1.

Let D ∈ |OΓ2(2) � OP1×P1(4, 4)| be generic and let ρ : X2 → Γ2 × (P1)2 be the double cover

branched over D. Let f2 : X2 → Γ2 be the composition of the double cover map ρ and the

projection Γ2 × (P1)2
→ Γ2. Let t ∈ Γ2; then X2,t := f−1

2 (t) is the double cover of P1 × P1

branched over the (4, 4)-curve Dt := D|{t}×(P1)2 . Thus, X2,t is a K3 surface, ρ∗(OP1(1)�OP1(1))

restricts to a polarization of X2,t, and with this polarization X2,t is a quartic hyperelliptic K3

surface. From here on we assume that the pencil of branch curves Dt, for t ∈ Γ2, is a Lefschetz

pencil.

Next, we define a one-parameter family of unigonal K3 surfaces. Let Y := P(OP2(4)⊕OP2).

Let ϕ : Y → P2 be the structure map and F := ϕ−1(line). Let A := P(OP2(4)) ⊂ Y . Adjunction

on F ∼= F4 gives that

KY ≡ −2A− 7F. (4.2.4)

Let B ∈ |3A + 12F | be generic; in particular, it is smooth and it does not intersect A. Let

π : Z → Y be the double cover branched over A + B. If F is as above and generic, then

π−1F is a smooth unigonal K3 surface. We get a family of such K3 surfaces by choosing a

generic X3 ∈ |OZ(π∗F )�OΓ3(1)|, where Γ3 = P1. In fact, let f3 : X3 → Γ3 be the restriction of

projection and let t ∈ Γ3. The surface X3,t := f−1
3 (t) is equal to π−1(ϕ−1(Lt)), where Lt ⊂ P2

is a line (as t moves in Γ3, the line Lt moves in a pencil) and ϕ−1(Lt) is isomorphic to F4. The

restriction πt : X3,t → ϕ−1(Lt) is a double cover and one checks easily that X3,t := f−1
3 (t) is

a K3 surface. Let At be the negative section of ϕ−1(Lt) ∼= F4; then π∗tAt = 2Rt, where Rt is a

(smooth) rational curve. Let Et := π∗tFt, where Ft is a fiber of the fibration ϕ−1(Lt) ∼= F4 → Lt.

Then Rt + 3Et is a polarization of degree 4 of X3,t and (X3,t, Rt + 3Et) is unigonal.

For i ∈ {1, 2, 3}, we have period maps

Γi
µi−→ F (19). (4.2.5)

Proposition 4.2.1. The intersection formulae of Table 2 hold.

Proof. First of all, notice that

µi,∗Γi · λ(19) = Γi · µi,∗λ(19) = deg λΓi .
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Next, one computes deg λΓi by applying (4.2.2). The intersection number µi,∗Γi ·Hn(19) is equal
to the number, call it δ(Γi), of singular fibers of fi because fi is a Lefschetz fibration. The formula
that gives δ(Γi) is the following:

δ(Γi) = 2χtop(K3)− χtop(Xi) = 48− χtop(Xi). (4.2.6)

Thus, it suffices to compute the Euler characteristic of Xi; we leave details to the reader.
The intersection numbers of the third and fourth columns are obtained as follows. First,
∅ = µ1(Γ1) ∩ Hh(19) = µ1(Γ1) ∩ Hu(19) by Proposition 2.2.1. Next, µ2(Γ2) ∩ Hu(19) = ∅

and µ3(Γ3) ∩ Hh(19) = ∅ by Lemma 1.7.3. The remaining numbers are obtained by applying
Borcherds’ relation for N = 19, which reads

108λ(19) = Hn(19) + 14Hh(19) + 78Hu(19), (4.2.7)

together with the computations that have already been proved. 2

Proposition 4.2.2. A basis of Pic(F (19))Q is provided by the choice of any three of the
classes λ(19), Hn(19), Hh(19), Hu(19). The space of linear relations among λ(19), Hn(19), Hh(19),
Hu(19) is generated by Borcherds’ relation (4.2.7).

Proof. Let U (19) ⊂ |OP3(4)| be the open subset of Definition 2.1.5. Then we have the
isomorphism in (2.1.4). Now CH1(U (19)//PGL(4))Q = Pic(U (19)//PGL(4))Q (e.g. because
F (19) is Q-factorial) and Pic(U (19)//PGL(4))Q is isomorphic to the group of PGL(4)-linearized
line bundles on U (19) (tensored with Q), which is a subgroup of Pic(U (19))Q because PGL(4)
has no non-trivial characters. On the other hand, Pic(U (19))Q ∼= Q because |OP3(4)| \ U (19)
has codimension greater than 1 in |OP3(4)|. Thus, CH1(U (19)//PGL(4))Q ∼= Q and a generator
is the class of the divisor parametrizing singular quartics. By (2.1.4), it follows that

CH1(F (19) \ (Hh(19) ∪Hu(19)))Q ∼= Q

and that the restriction of Hn(19) is a generator. By the localization sequence associated to the
inclusion of F (19) \ (Hh(19) ∪ Hu(19)) into F (19), it follows that CH1(F (19))Q is generated
by Hn(19), Hh(19), Hu(19). Table 2 shows that Hn(19), Hh(19), Hu(19) are linearly independent
and also the remaining statements of the proposition. 2

Lastly, we define a family of quartic surfaces in P3 ‘degenerating’ to a hyperellipticK3 surface.
Let Q ∈ C[x0, . . . , x3]2 be a non-degenerate quadratic form and G ∈ C[x0, . . . , x3]4 be such that
Div(G) is transverse to Div(Q) and such that the pencil of quartics B := 〈Div(G),Div(Q2)〉 is a
Lefschetz pencil away from Div(Q2). Let

Y := {([λ, µ], [x]) ∈ B × P3 | λQ2(x) + µG(x) = 0}. (4.2.8)

The family Y → B is a family of quartics away from the inverse image of [1, 0]. Let Γ4 → B be
the double cover branched over [1, 0] and [0, 1], and let Y4 → Γ4 be the pull-back of Y . Let X4

be the normalization of Y4; the natural map f4 : X4 → Γ4 is a family of polarized quartic K3
surfaces. Let p ∈ Γ4 be the (unique) point mapping to [1, 0]. The surface f−1

4 (p) is the double
cover of the smooth quadric Div(Q) branched over V (Q,G), i.e. a hyperelliptic quartic K3. If
t ∈ (Γ4 \ {p}), then f−1

4 (t) is a non-hyperelliptic (and non-unigonal) quartic K3. We have the
period map

Γ4
µ4−→ F (19). (4.2.9)
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Corollary 4.2.3. Keep notation as above. Then

µ4,∗(Γ3) · λ(19) = 1, µ4,∗(Γ3) ·Hn(19) = 80, µ4,∗(Γ3) ·Hh(19) = 2, µ4,∗(Γ3) ·Hu(19) = 0.

Proof. Except for the second-to-last formula, these are obtained by arguments similar to those
employed to obtain the formulae of Table 2. One gets the missing formula by applying Borcherds’
formula (4.2.7). 2

Notice that the set-theoretic intersection µ4(Γ3) ∩ Hh(19) consists of a single point,
namely µ4(p), and it counts with multiplicity 2a, for some a > 1. In order to conclude that
µ4,∗(Γ3) ·Hh(19) = 2, one needs a non-trivial computation; we avoid this thanks to Borcherds’
relation (4.2.7).

Remark 4.2.4. In the present subsection, we have invoked Borcherds’ first relation in order to
compute the degree of normal bundles. By employing the (elementary) results of § 5.3, one can
avoid the use of Borcherds’ relations and in fact one can use the computations in this subsection
in order to check the validity of Borcherds’ first relation for N = 19.

4.3 Proof of (4.1.2)
By Proposition 4.2.2, there exist x, y, z ∈ Q such that

(p−1
19 )∗L(19)|F (19) = xλ(19) + yHh(19) + zHu(19). (4.3.1)

We will compute x, y by equating the intersection numbers of the two sides with complete curves
in F (19). For this to make sense, the complete curves must avoid the indeterminacy locus of
p−1

19 . Let I(19)∗ ⊂ F (19)∗ be the indeterminacy locus of p−1
19 and I(19) := I(19)∗ ∩F (19) be

the indeterminacy locus of p−1
19 |F (19). By (2.1.4), I(19) is contained in Hh(19) ∪ Hu(19). Since

F (19)∗ is normal, I(19) has codimension at least 2 in F (19) and hence I(19) = Ih(19)t Iu(19),
where Ih(19) ⊂ Hh(19) and Iu(19) ⊂ Hu(19) are proper closed subsets (recall that Hh(19) ∩
Hu(19) = ∅). Now let X1 → Γ1 and X4 → Γ4 be the complete families defined in § 4.2.2.
Every surface f−1

1 (t) is a stable quartic and similarly for f−1
4 (t) if t 6= p, while the semistable

quartic surface in P3 corresponding to p is to be understood as the double quadric 2V (Q). Let
θi : Γi → M(19) be the corresponding modular map for i ∈ {1, 4}. The map µi : Γi → F (19)
considered in § 4.2.2 is equal to p19 ◦ θi. The curve µ1(Γ1) avoids the indeterminacy locus I(19)
because it is disjoint from Hh(19) ∪ Hu(19). On the other hand, the curve µ4(Γ4) intersects
Hh(19) ∪ Hu(19) in a single point, namely µ4(p), which belongs to Hh(19). Since the double
cover f−1

4 (p) → V (Q) has an arbitrary branch curve (among those with ADE singularities), we
may assume that µ4(p) /∈ Ih(19). Thus,

µi,∗(Γi) · (p−1
19 )∗L(19) = θi,∗(Γi) · L(19) =

{
1 if i = 1,

2 if i = 4.

Equation (4.3.1), together with Table 2 and Corollary 4.2.3, gives

µi,∗(Γi) · (p−1
19 )∗L(19) =

{
x if i = 1,

x+ 2y if i = 4.

It follows that x = 1 and y = 1/2. In order to prove that z = 1/2, we will show that

p−1
19 is regular along Hu(19) (i.e. Iu(19) = ∅). (4.3.2)
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First, p−1
19 is regular along the open dense (Hu(19) \ Iu(19)) ⊂ Hu(19) and

p−1
19 (Hu(19) \ Iu(19)) = {q}, (4.3.3)

where q ∈ M(19) is the point parametrizing the PGL(4)-orbit of the surface swept out by the
tangents to a twisted cubic in P3 (a closed orbit in |OP3(4)|ss); see [Sha81, Theorem 3.17].
Let Z∗ ⊂ F (19)∗ ×M(19) be the closure of the graph of the restriction of p−1

19 to its regular
locus and Z := Z∗ ∩ (F (19) ×M(19)). Let π : Z → F (19) be the projection; note that π is a
projective map. We must prove that π is an isomorphism over Hu(19). Assume the contrary,
i.e. that Iu(19) 6= ∅. Let H̃u(19) ⊂ Z be the closure of π−1(Hu(19) \ Iu(19)); thus, H̃u(19) =
Hu(19) × q by (4.3.3). Let exc(π) be the exceptional set of π; thus, π(exc(π)) = I(19). Since
F (19) is Q-factorial, exc(π) has pure codimension 1 in Z. By Zariski’s main theorem, every fiber
of π is connected; in particular, those over points of Iu(19). It follows that there exists one (at
least) irreducible component of exc(π) mapping to Iu(19) and having non-empty intersection
with H̃u(19); let D be such a component. Letting φ : Z → M(19) be the projection, the image
φ(D) contains q and by hypothesis φ(D) 6= {q}. By Theorem 2.4 of [Sha81], q is an isolated point
of the indeterminacy locus of p19; it follows that there exists a subset φ(D)0 ⊂ φ(D) which is
a codimension-1 constructible subset of M(19), contained in the regular locus of p19, which is
contracted by p19 (i.e. dim p19(φ(D)0) < 18). This is absurd, e.g. by (2.1.4). This proves (4.3.2).
By (4.3.3), it follows that the line bundle (p−1

19 )∗L(19) is trivial on Hu(19) and hence

µ3,∗(Γ3) · (λ(19) + 1
2Hh(19) + zHu(19)) = 0.

By Table 2, we get that z = 1/2.

Remark 4.3.1. Let Π: Z∗ → F (19)∗ be the projection and let Hu(19)∗ ⊂F (19)∗ be the closure
of Hu(19). The proof given above that π is an isomorphism over Hu(19) cannot be adapted to
prove that Π is an isomorphism over Hu(19)∗ because F (19)∗ is not Q-factorial at the boundary.
In fact, Π is not an isomorphism over (Hu(19)∗ \Hu(19)).

5. Predictions for the variation of log canonical models

The goal of the present section is to predict the behavior of

F (N, β) := ProjR(F (N), λ(N) + β∆(N))

for N > 3 and β ∈ [0, 1] ∩ Q. Specifically, we will give a conjectural decomposition of p−1
N as a

product of flips and, as a last step, the contraction of the strict transform of the support of ∆(N)
(denoted ∆(1)(N); see § 1.7.3): here pN is the period map considered in § 4.3 if N ∈ {18, 19}
and is to be understood as the inverse of the map F (N) 99K ProjR(F (N), λ(N) + ∆(N))
otherwise. Each flip will correspond to a critical value β = β(k)(N) ∈ (0, 1) ∩ Q. The center of
the flip corresponding to β(k)(N) will be (the strict transform of) a building block of the D
tower (see § 1.7) and it has codimension k. (Of course, the value β(1)(N) = 1 corresponds to the
contraction of ∆(1)(N).) In the case of quartic surfaces (N = 19), it is possible to match our
predicted flip centers with geometric loci in the GIT moduli space M(19); this is discussed in
the companion note [LO18b]. In the case of hyperelliptic quartics (N = 18), using VGIT, we can
go further and not only match the arithmetic predictions with the geometric ones (essentially
the same matching as for quartics), but actually verify that both the arithmetic predictions and
the geometric matching are correct. This is discussed in [LO18a].
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5.1 Main conjectures and results
Let β ∈ (0, 1] ∩Q. Then the following hold.
• λ(N) + β∆(N) is a big line bundle with base locus contained in ∆(1)(N) because λ(N) is

ample and ∆(N) is effective.
• If β < 1, the restriction of λ(N) + β∆(N) to ∆(1)(N) is big with base locus contained in

∆(2)(N); see Propositions 5.3.6, 5.3.7, and 5.3.8. In particular, assuming lifting of sections
from ∆(1)(N) to F (N), the base locus of λ(N) + β∆(N) is contained in ∆(2)(N).

• For N ∈ {18, 19}, F (N)∗ 99K F (N, 1) ∼= M(N) is a birational contraction of ∆(1)(N) by
Proposition 4.1.2. This is expected to hold for any N by the arguments of Looijenga.

In order to understand what should be going on, it is convenient to let β ∈ (0, 1] ∩ Q
decrease, starting from β = 1. For anyone familiar with linearized arrangements, and in fact
implicitly contained in Looijenga [Loo03b], ∆(1)(N) should be contractible regularly away from
∆(2)(N) (with corresponding β(1)(N) = 1), but, in order to contract it regularly, one must first
flip ∆(2)(N), at least away from ∆(3)(N), with corresponding 0 < β(2)(N) < 1. The first-order
predictions (§ 5.1.1) are obtained by iterating this procedure, i.e. following Looijenga [Loo03b].
These predictions are based on the combinatorics of the linearized arrangement ∆̃(1)(N) (see
§ 1.7.3); one essentially computes the log canonical threshold (at the generic point of ∆(k)(N))
as in [Mus06], keeping track of the ramification.

5.1.1 First-order predictions. As we explained, the starting point of Looijenga is the

observation that, in the embedding D+
N ⊂ Ď+

N ⊂ PN+1 (we let D+
N = D+

ΛN
), the automorphic

bundle is the restriction of OPN+1(−1), while a Heegner divisor is a section of OD+
N

(1). This

fact suggests that λ(N) + ∆(N) should contract ∆(1)(N). As always, a linearized arrangement
is stratified by linear strata of the intersections, and the first-order predictions (leading to
candidates for the critical values β(k)(N)) are a simple function of combinatorics, namely
the number of hyperplanes intersecting in a stratum, versus the codimension of that stratum
(compare [Mus06]). Of course, in this situation, there is a slight complication due to the fact
that these hyperplanes are reflection hyperplanes (note that our ∆ involves a 1

2 factor for this
reason).

Concretely, for most values of N and k, we will prove (see Proposition 5.3.6 for a precise
statement) that the following formula holds:

(λ(N) + β∆(N))|∆(k)(N) = (1− kβ)λ(N) + 1
2βc1(O∆(k)(N)(∆

(k+1)(N))). (5.1.1)

We recall (see Proposition 1.7.2) that for most choices of N and k, ∆(k)(N) = Im fN−k,N ,
and (5.1.1) should be read as f∗N−k,N (λ(N) + β∆(N)) = (1− kβ)λ(N − k) + β∆(N − k).

If, following Looijenga, we assume that the stratum ∆(k+1)(N) is flipped before the stratum
∆(k)(N), we get the prediction

β(k)(N) =
1

k
, k ∈ {1, . . . , N}. (5.1.2)

In any case, note that (λ(N) + β∆(N))|∆(k)(N) is big for β < 1/k by (5.1.1). Thus, assuming a
certain lifting of sections (a reasonable assumption, which we can prove in some cases), we get
that the generic point of ∆(k)(N) is not affected by the birational transformations occurring for
β ∈ (0, 1/k).

The two key ingredients that give (5.1.1) are the computation of intersections of distinct
Heegner divisors (see § 5.2) and a normal bundle computation based on adjunction (see § 5.3).
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Of course, the actual computations depend on our particular lattices and Heegner divisors, but

the method adopted here can be applied in many other instances. (Similar computations are

implicitly or explicitly contained in [GHS07] or [Loo03b].)

5.1.2 Refined predictions. The first-order predictions for quartic K3 surfaces are definitely

wrong for k > 9; in fact, the indeterminacy locus of the period map p19 has dimension 8, while the

first-order predictions would give that it has higher dimension. This apparent contradiction has

the following explanation. The key assumption in the first-order predictions is the contractibility

of ∆(k+1)(N) inside ∆(k)(N), but in the D-tower we have the following trichotomy:

(1) Hh(N) is birationally contractible in F (N) for N > 14;

(2) Hh(N) moves in a linear system of dimension at least 1 if N 6 14;

(3) Hh(N) is ample on F (N) for N 6 10.

Note: (2) and (3) are theorems, while (1) is conjectural in general, but known for N = 18, 19;

cf. § 4.3 (probably one can prove it also for N = 20 via double EPW sextics). The explanation

for this comes from Borcherds’ relations discussed in § 3.

Taking into account the behavior of the hyperelliptic divisor described above, we correct our

first-order predictions and arrive at the following result.

Prediction 5.1.1. Let N > 15. The ring of sections R(F (N), λ(N) + β∆(N)) is finitely

generated for β ∈ [0, 1] ∩Q and the walls of the Mori chamber decomposition of the cone

{λ(N) + β∆(N) | β ∈ Q, β > 0}

are generated by λ(N) + (1/k)∆(N), where k ∈ {1, . . . , N − 10} and k 6= N − 11. The behavior

of λ(N) + (1/k)∆(N), for k as above, is described as follows. For k = 1, F (N, 1) is obtained

from F (N, 1 − ε) by contracting the strict transform of ∆(1)(N). If 2 6 k, then the birational

map between F (N, 1/k − ε) and F (N, 1/k + ε) is a flip whose center is:

(1) the strict transform of Im fN−k,N if 2 6 k 6 N − 14, k 6≡ N − 2 (mod 8), and either k 6= 4

or N 6≡ 4 (mod 8);

(2) the union of the strict transforms of Im fN−4,N and Im(fN−1,N ◦ lN−1) if k = 4 and N ≡ 4

(mod 8);

(3) the union of the strict transforms of Im fN−k,N and Im(fN−(k−1),N ◦ lN−(k−1)) if 3 6 k 6
N − 10 and k ≡ N − 2 (mod 8) (notice that this includes the case k = N − 10);

(4) the strict transform of Im(f13,N ◦ q13) if k = (N − 13);

(5) the strict transform of Im(f12,N ◦m12) if k = (N − 12).

Remark 5.1.2 (Early termination). The predictions in Prediction 5.1.1 differ from the first-order

predictions for k > N − 14. In fact, the generic point of ∆(k)(N) is unaffected by the birational

transformations for β < 1/(N − 14). More precisely, f13,N (F (13)\Hu(13)) (which is contained in

∆(N−13)(N)) will be flipped when β = 1/(N − 14) (at once with ∆(N−14)). Moreover, ∆(N−10)(N)

consists of two disjoint components f10,N (F (10)) and f11,N (Hu(11)) (see Proposition 1.7.2). The

first component will be flipped at β = 1/(N − 14), while the second is the center of the flip for

β = 1/(N − 10) (the smallest critical value).
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5.2 Intersection of two distinct Heegner divisors
We proved (see Propositions 1.4.5, 1.5.1, and 1.5.2) that for 4 6 N there are isomorphisms

fN : F (N − 1)
∼−→ Hh(N). (5.2.1)

We also proved that, for k > 0, there are isomorphisms

l8k+3 : F (II2,2+8k)
∼−→ Hu(8k + 3) (5.2.2)

and
m8k+4 : F (II2,2+8k ⊕A1)

∼−→ Hu(8k + 4). (5.2.3)

The key ingredient in the heuristics for our predictions is the computation of the restrictions of
the line bundle λ(N) +β∆(N) to the various strata ∆(k)(N). Via pull-back by fN (and lN , mN ,
or qN if applicable), this restriction is computed in an inductive manner. The result below is our
starting point.

Proposition 5.2.1. With notation as above, the following formulae hold:

f∗NHn(N) =

{
Hn(N − 1) + 2Hh(N − 1) if N 6≡ 5 (mod 8),

Hn(N − 1) + 2Hh(N − 1) +Hu(N − 1) if N ≡ 5 (mod 8),

(5.2.4)

f∗NHu(N) =

{
0 if N ≡ 2 (mod 8),

2Hu(N − 1) if N 6≡ 2 (mod 8),
(5.2.5)

l∗8k+3Hn(8k + 3) = Hn(II2,2+8k), (5.2.6)

l∗8k+3Hh(8k + 3) = 0, (5.2.7)

m∗8k+4Hn(8k + 4) = Hn(II2,2+8k ⊕A1), (5.2.8)

m∗8k+4Hh(8k + 4) = 2Hu(II2,2+8k ⊕A1), (5.2.9)

q∗8k+5Hn(8k + 5) = Hn(II2,2+8k ⊕A2) + 2Hu(II2,2+8k ⊕A2), (5.2.10)

q∗8k+5Hh(8k + 5) = 2Hu(II2,2+8k ⊕A2). (5.2.11)

Remark 5.2.2. Let N ≡ 3 (mod 8). Then (5.2.5) reads f∗NHu(N) = 0 because Hu(N − 1) = 0;
see Item (3) of Definition 1.3.4.

5.2.1 Set-up. Let (ΛN , ξN ) be our standard decorated dimension-N D-lattice. Let v ∈ ΛN
and suppose that one of the following holds.

(1) v is a hyperelliptic vector; thus, v⊥ ∼= ΛN−1 and it comes with a decoration ξN−1; see § 1.4.

(2) N = 8k + 3 and v is unigonal; thus, v⊥ ∼= II2,2+8k; see § 1.5.1.

(3) N = 8k + 4 and v is unigonal; thus, v⊥ ∼= II2,2+8k ⊕A1; see § 1.5.2.

Let Γv < ΓξN be the stabilizer of v. Thus,

Γv =


ΓξN−1

if (1) holds,

O+(II2,2+8k) if (2) holds,

O+(II2,2+8k ⊕A1) if (3) holds.

Then we have a natural isomorphism

ϕv : Γv\D+
v⊥

∼−→ Hv(N),

where Hv(N) := Hv,ΛN
(ΓξN ). In fact, if Item (1) holds then ϕv = fN , if Item (2) holds then

ϕv = lN , and if Item (3) holds then ϕv = mN .
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Definition 5.2.3. Let v ∈ ΛN be as above, i.e. we assume that one of Items (1), (2), or (3)
holds. Given w ∈ ΛN such that 〈v, w〉 is a rank-2 subgroup of ΛN , we let πv⊥(w) be a generator
of the intersection (Qv ⊕Qw) ∩ v⊥Z (thus, πv⊥(w) is non-zero and determined up to ±1).

Proposition 5.2.4. Let v ∈ ΛN be as above, i.e. we assume that one of Items (1), (2), or (3)
holds. Assume that w0 ∈ ΛN is a primitive vector of negative square such that the associated
Heegner divisor Hw0(N) = Hw0,ΛN

(ΓξN ) is different from Hv(N). The following set-theoretic
equality holds:

ϕ−1
v Hw0(N) =

⋃
〈v,w〉<0

Hπ
v⊥ (w),v⊥(Γv),

where 〈v, w〉 < 0 means that 〈v, w〉 is a negative-definite sublattice of ΛN . (And hence πv⊥(w)
is a vector of negative square.)

Proof. There is a single observation to be made, namely that if [σ] ∈ v⊥∩w⊥∩D+
ΛN

, then 〈v, w〉
is a negative-definite sublattice of ΛN . 2

5.2.2 Intersection with the hyperelliptic Heegner divisor.

Proposition 5.2.5.

f−1
N Hn(N) =

{
Hn(N − 1) ∪Hh(N − 1) if N 6≡ 5 (mod 8),

Hn(N − 1) ∪Hh(N − 1) ∪Hu(N − 1) if N ≡ 5 (mod 8)
(5.2.12)

and

f−1
N Hu(N) =

{
∅ if N ≡ 2 (mod 8),

Hu(N − 1) if N 6≡ 2 (mod 8).
(5.2.13)

Proof. We adopt the notation introduced in § 5.2.1; in particular, v ∈ Λ is a fixed hyperelliptic
vector. Let us prove that the right-hand side of (5.2.12) is contained in the left-hand side.

Let w ∈ v⊥ be of square −2 and divisibility 1 (as vector of v⊥). Then w is a nodal vector of
(ΛN , ξN ) and πv⊥(w) = w; thus, Hn(N − 1) ⊂ f−1

N Hn(N) by Proposition 5.2.4.
Let us prove that Hh(N − 1) ⊂ f−1

N Hn(N). Let u be a hyperelliptic vector of (v⊥, ξN−1).
Let w := (v + u)/2; then w ∈ ΛN : see the definition of the decoration of v⊥ in § 1.4. We claim
that w is a nodal vector. In fact, w2 = −2 and div(w) = 1 because there exists z ∈ v⊥ such
that (u, z) = 2 (because divv⊥(u) = 2) and hence (w, z) = 1. Since πv⊥(w) = u, it follows that
Hh(N − 1) ⊂ f−1

N Hn(N) by Proposition 5.2.4.
Now assume that N = 8k+5. Then Hu(N−1) ⊂ f−1

N Hn(N) by Item (4) of Proposition 1.4.6.
Next, let us prove that the left-hand side of (5.2.12) is contained in the right-hand side. By

Proposition 5.2.4, it suffices to prove that, if w is a nodal vector of (Λ, ξN ) such that 〈v, w〉 is
negative definite, then πv⊥(w) is either a nodal or a hyperelliptic vector, or N ≡ 5 (mod 8) and
πv⊥(w) is a unigonal vector. Computing the determinant of the restriction of the quadratic form
to 〈v, w〉 (which is strictly positive), we conclude that (v, w) ∈ {0,±2}; multiplying w by (−1) if
necessary, we may assume that (v, w) ∈ {0, 2}.

If (v, w) = 0, then divv⊥(w) ∈ {1, 2}. If divv⊥(w) = 1, then w is a nodal class of v⊥. If
divv⊥(w) = 2, then w is a unigonal class of v⊥ and then necessarily N ≡ 5 (mod 8) because the
discriminant group Av⊥ = AΛN−1

contains the class [w/2] of square −1/2 modulo 2Z.
If (v, w) = 2, let u := v + 2w. Then πv⊥(w) = u. We claim that u is a hyperelliptic vector of

(v⊥, ξN−1). First, u2 =−4. It remains to check that divv⊥(u) = 2 and u∗ is equal to the decoration
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that v⊥ inherits from the decoration ξN of ΛN . Clearly, divv⊥(u) is a multiple of 2 and hence we
must show that divv⊥(u) 6= 4. If divv⊥(u) = 4, then N = 8k + 4 and hence ΛN ∼= II2,2+8k ⊕ A2

1;
let a, b be generators of the two A1-summands. We may assume that v = a+ b because any two
decorated dimension-N D-lattices are isomorphic. Then there exist r,m ∈ Z, and a primitive
c ∈ II2,2+8k, such that

w = ra− (1 + r)b+ (2m+ 1)c.

In fact, write w = ra+ sb+ tc, where r, s, t ∈ Z and c ∈ II2,2+8k is primitive. Then s = −(1 + r),
because (v, w) = 2, and t is odd because the divisibility of w in ΛN is 1. Thus, u = (1 + 2x)
(a− b) + 2(2m+ 1)c and, since II2,2+8k is unimodular, it follows that divv⊥(u) 6= 4. In order to
prove that u∗ is the decoration of v⊥, we recall that the latter is equal to [z/2], where z ∈ v⊥ is
such that (v + z)/2 ∈ Λ; see § 1.4 (we have denoted by z the vector denoted w in § 1.4). Since
u = v + 2w, it follows that [u/2] = −[z/2] = [z/2] in the discriminant group Av⊥ . This proves
that πv⊥(w) is hyperelliptic and finishes the proof of (5.2.12).

Now let us prove (5.2.13). Let N − 2 = 8k + a. If a = 0, then Hu(N) = 0 and hence (5.2.13)
holds trivially. Thus, we may assume that a ∈ {1, . . . , 7}. First, we will prove that the right-hand
side is contained in the left-hand side. We may assume that a ∈ {2, . . . , 7} because if a = 1,
then Hh(N − 1) = 0. By Remark 1.1.4, we may identify ΛN with II2,2+8k ⊕Da. Let v = (04+8k,
(0, . . . , 0, 2)); then v2 = −4 and div(v) = 2. We let ξN = [v/2] and hence v is hyperelliptic. Now
suppose that N is odd. Let w = (04+8k, (2, . . . , 2)); then w is a unigonal vector of (ΛN , ξN );
see the proof of Proposition 1.3.3. Then πv⊥(w) = (04+8k, (1, . . . , 1)) ∈ II2,2+8k ⊕ Da−1. Since
πv⊥(w) is a unigonal vector of (ΛN−1, ξN−1) (see the proof of Proposition 1.3.3), it follows that
f−1
N Hu(N) ⊃ Hu(N − 1) if N is odd. The proof for N even is analogous.

Lastly, we prove that the left-hand side of (5.2.13) is contained in the right-hand side. By
Proposition 5.2.4, it suffices to prove that, if w is a unigonal vector of (Λ, ξN ) such that 〈v, w〉
is negative definite, then πv⊥(w) is a unigonal vector. Let a ∈ {1, . . . , 7} be the residue of N − 2
modulo 8. Let us assume that N is odd. Then w2 = −4a and div(w) = 4. We claim that

(v, w) = ±4, (v + w)/2 ∈ Λ. (5.2.14)

In fact, we may assume that w∗ = ζ and ξ = 2ζ. Thus,

(v/2, w/4) ≡ (ξ, ζ) ≡ 2qΛ(ζ) ≡ −a/2 (mod Z)

and hence there exists s ∈ Z such that (v, w) = −4a + 8s. Since 〈v, w〉 is negative definite,
it follows that a ∈ {3, 7} (recall that Hh(N − 1) = 0 if a = 1) and that (v, w) = ±4. Moreover,
(v + w)/2 ∈ Λ because 2[w/4] = [v/2] in the discriminant group. We have proved (5.2.14).
Multiplying w by (−1) if necessary, we may assume that (v, w) = 4; it follows that πv⊥(w) =
(v + w)/2. Now (v + w)/2 is a unigonal vector of v⊥, as required. Now assume that N is even.
Arguing as above, one shows that (v, w) = ±2 and hence we may assume that (v, w) = 2. Then
πv⊥(w) = v+ 2w. Since v+ 2w is primitive, divv⊥(v+ 2w) = 4, and (v+ 2w)2 = −4(a− 1), this
proves that πv⊥(w) is a unigonal vector of v⊥. 2

Let us prove (5.2.4) and (5.2.5). First, notice that Hn(N − 1), Hh(N − 1), and Hu(N − 1)
are irreducible. By Proposition 5.2.5, it remains to show that

multfN (Hn(N−1))Hn(N) ·Hh(N) = 1, (5.2.15)

multfN (Hh(N−1))Hn(N) ·Hh(N) = 2, (5.2.16)

multfN (Hu(N−1))Hn(N) ·Hh(N) = 1 if N ≡ 5 (mod 8), (5.2.17)

multfN (Hu(N−1))Hu(N) ·Hh(N) = 2 if N ≡ b (mod 8) and 4 6 b 6 9. (5.2.18)
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In order to prove the above equalities, we fix a hyperelliptic vector v of (ΛN , ξN ) and we let
w ∈ v⊥ ∼= ΛN−1 be a vector such that one of the following holds:

(1) w is a nodal vector of (ΛN−1, ξN−1);

(2) w is a hyperelliptic vector of (ΛN−1, ξN−1);

(3) w is a unigonal vector of (ΛN−1, ξN−1).

Let [σ] ∈ {v, w}⊥∩D+
ΛN

. Then [σ] ∈ fN (Hn(N−1)) if (1) holds, [σ] ∈ fN (Hh(N−1)) if (2) holds,
and [σ] ∈ fN (Hu(N − 1)) if (3) holds. Since each of Hn(N − 1), Hh(N − 1), and Hu(N − 1) is
irreducible, we may prove formulae (5.2.15)–(5.2.18) by analyzing the local structure of F (N),
Hh(N) etc. at the ΓξN -orbit of [σ]. We claim that the following hold.

(1′) If w is a nodal vector of (ΛN−1, ξN−1), then

ΛN ∩ 〈v, w〉Q = 〈v, w〉Z := Zv + Zw

and every non-trivial isometry of 〈v, w〉Z is either the reflection in a reflective vector of
〈v, w〉Z or multiplication by −1.

(2′) If w is a hyperelliptic vector of (ΛN−1, ξN−1), then

ΛN ∩ 〈v, w〉Q = 〈(v + w)/2, (v − w)/2〉Z ∼= D2

and every non-trivial isometry of 〈(v+w)/2, (v−w)/2〉Z is either the reflection in a reflective
vector of 〈(v + w)/2, (v − w)/2〉Z or multiplication by −1.

(3a′) If w is a unigonal vector of (ΛN−1, ξN−1) and N ≡ 4 (mod 8), then ΛN ∩ 〈v, w〉Q =
〈(v + w)/2, (v − w)/2〉Z ∼= D2 and every non-trivial isometry of 〈v, w〉Z is either the
reflection in a reflective vector of 〈(v + w)/2, (v − w)/2〉Z or multiplication by −1.

(3b′) If w is a unigonal vector of (ΛN−1, ξN−1) and N 6≡ 4 (mod 8), then ΛN ∩〈v, w〉Q = 〈v, w〉Z
and every non-trivial isometry of 〈v, w〉Z is either the reflection in a reflective vector of
〈v, w〉Z or multiplication by −1.

In fact, in order to determine ΛN ∩ 〈v, w〉Q, it suffices to recall that ΛN is generated (over
Z) by Zv ⊕ v⊥, together with (v + u)/2, where u ∈ v⊥ = ΛN−1 is a hyperelliptic vector of
(ΛN−1, ξN−1). Once ΛN ∩ 〈v, w〉Q has been determined, the statements about non-trivial
isometries are trivial. Now let [σ] be a very general point of {v, w}⊥ ∩D+

ΛN
. Then

σ⊥ ∩ ΛN,Q = 〈v, w〉Q

and −1{v,w}⊥ is the only non-trivial element of O(ΛN ∩ {v, w}⊥Q) stabilizing [σ]. It follows that
there is a natural embedding

Tσ : Stab([σ]) ↪→ O(ΛN ∩ 〈v, w〉Q)× 〈−1{v,w}⊥〉. (5.2.19)

(Here Stab([σ]) < ΓξN is the stabilizer of [σ].)

Claim 5.2.6. Let [σ] be a very general point of {v, w}⊥ ∩ D+
ΛN

; hence, there is the natural
embedding (5.2.19).

(I) If w is a reflective vector of (ΛN−1, ξN−1), i.e. Item (1) or Item (2) above holds, or N ≡ 4, 5
(mod 8) and Item (3) holds, then Tσ is surjective.
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(II) If w is not a reflective vector of (ΛN−1, ξN−1), i.e. N 6≡ 4, 5 (mod 8) and Item (3) holds,
then Stab([σ]) = {±ρv}.

Let w ∈ v⊥ be a vector such that (1), (2), or (3) above holds. Then Claim 5.2.6 allows
us to describe explicitly a neighborhood in F (N) of the Γξ-orbit of a very general point
[σ] ∈ {v, w}⊥ ∩ D+

ΛN
. First of all, since −1ΛN

acts trivially, we must deal only with the action

of Stab0([σ]) := Stab([σ])/〈−1ΛN
〉 and, secondly, by Claim 5.2.6, the germ of Γξ[σ] in F (N) is

naturally isomorphic to the product of the smooth germ ({v, w}⊥ ∩ D+
ΛN
, [σ]) and the germ

of Stab0([σ])\〈v, w〉C at the origin. Let (x1, x2) be coordinates on the vector space 〈v, w〉C
corresponding to the basis {v, w}. Thus,

ρ∗v(x1, x2) = (−x1, x2).

We claim that the following hold.

(1′′) If w is a nodal vector of (ΛN−1, ξN−1), then Stab0([σ])\〈v, w〉C ∼= C2 with coordinates
(y1, y2) given by y1 = x2

1, y2 = x2
2.

(2′′) If w is a hyperelliptic vector of (ΛN−1, ξN−1), then Stab0([σ])\〈v, w〉C ∼= C2 with
coordinates (y1, y2) given by y1 = x2

1 + x2
2, y2 = x2

1x
2
2.

(3′′a) If w is a unigonal vector of (ΛN−1, ξN−1), and N ≡ 4 (mod 8), then
Stab0([σ])\〈v, w〉C ∼= C2 with coordinates (y1, y2) given by y1 = x2

1 + x2
2, y2 = x2

1x
2
2.

(3′′ba) If w is a unigonal vector of (ΛN−1, ξN−1), and N ≡ 5 (mod 8), then
Stab0([σ])\〈v, w〉C ∼= C2 with coordinates (y1, y2) given by y1 = x2

1, y2 = x2
2.

(3′′bb) If w is a unigonal vector of (ΛN−1, ξN−1), and N 6≡ 4, 5 (mod 8), then
Stab0([σ])\〈v, w〉C ∼= C2 with coordinates (y1, y2) given by y1 = x2

1, y2 = x2.

In fact, the above statements follow from (1′), (2′), (3′), Claim 5.2.6, and Items (3) and (4) of
Proposition 1.4.6. Now we are ready to prove the multiplicity formulae (5.2.15), (5.2.16), (5.2.17),
and (5.2.18). Suppose that Item (1) holds. Since the relevant nodal vector of (ΛN , ξN ) is w itself,
Item (1′′) shows that the left-hand side of (5.2.15) is equal to the intersection number at (0, 0) of
the coordinate axes of the plane C2 (with coordinates (y1, y2)) and hence 1. Now suppose that
Item (2) holds. Since the relevant nodal vector of (ΛN , ξN ) is (v±w)/2, Item (2′′) shows that the
left-hand side of (5.2.16) is equal to the intersection number at (0, 0) of V (y2

1 − 4y2), V (y2) ⊂ C2

and hence 2. Next, suppose that Item (3) holds and that N ≡ 5 (mod 8). Since the relevant
nodal vector of (ΛN , ξN ) is w itself, Item (3′′ba) shows that the left-hand side of (5.2.17) is equal
to 1. Lastly, suppose that Item (3) holds and that N 6≡ 5 (mod 8). The relevant unigonal vector
of (ΛN , ξN ) is (v±w)/2 if N is odd, and (v±2w) if N is even (see the proof of Proposition 5.2.5);
it follows by Items (3′′a) and (3′′bb) that the left-hand side of (5.2.18) is equal to 1.

5.2.3 Intersections with the unigonal Heegner divisor. We will prove (5.2.6) and (5.2.7).
Thus, we assume that N ≡ 3 (mod 8) and write N = 8k+ 3. First, let us prove the set-theoretic
equalities

l−1
N Hn(N) = Hn(II2,2+8k), l−1

N Hh(N) = ∅. (5.2.20)

Let v be a unigonal vector of (ΛN , ξN ). Thus, v2 = −4, div(v) = 4, and v⊥ ∼= II2,2+8k.
Let w ∈ v⊥ be a nodal vector, i.e. v2 = −2. Then w is a nodal vector of (ΛN , ξN ) and hence

l−1
N Hn(N) ⊃ Hn(II2,2+8k) by Proposition 5.2.4. On the other hand, suppose that w ∈ ΛN is

a nodal vector such that 〈v, w〉 is negative definite; then w⊥v because the determinant of the
restriction of ( , ) to 〈v, w〉 is positive and hence w is a nodal vector of v⊥. By Proposition 5.2.4,
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this proves the reverse inclusion, i.e. l−1
N Hn(N) ⊂Hn(II2,2+8k). This finishes the proof of the first

equality of (5.2.20).

The second equality of (5.2.20) follows from (5.2.13) because Hu(2) = 0. It remains to prove

that multlN (Hn(II2,2+8k))Hu(N) ·Hn(N) = 1. The proof is analogous to the proof of (5.2.15); we

leave details to the reader.

The cases of unigonal divisors for N ≡ 4, 5 (mod 8) (i.e. formulae (5.2.8), (5.2.9), (5.2.10),

and (5.2.11)) are similar; we omit the details. (We refer the reader to §§ 1.5.2 and 1.6 for some

arithmetic details specific to these cases.)

5.3 Normal bundle formulae

In the present subsection, we will prove the following result.

Proposition 5.3.1. Let 4 6 N and let fN : F (N − 1)
∼−→ Hu(N) be the isomorphism of

Proposition 1.4.5. Then the following equalities hold:

f∗NHh(N) = −2λ(N − 1) +Hh(N − 1) +

{
0 if N 6≡ 4 (mod 8),

Hu(N − 1) if N ≡ 4 (mod 8).
(5.3.1)

Similarly, let l8k+3 : F (II2,2+8k)
∼−→ Hu(8k + 3), m8k+4 : F (II2,2+8k ⊕A1)

∼−→ Hh(8k + 4), and

q8k+5 : F (II2,2+8k ⊕ A2)
∼−→ Hh(8k + 5) be the isomorphisms in (1.7.4), (1.7.5), and (1.7.7).

Then

l∗8k+3Hu(8k + 3) = −2λ(II2,2+8k), (5.3.2)

m∗8k+4Hu(8k + 4) = −2λ(II2,2+8k ⊕A1) +Hu(II2,2+8k ⊕A1), (5.3.3)

q∗8k+5Hu(8k + 5) = −λ(II2,2+8k ⊕A2) + 3
2Hu(II2,2+8k ⊕A2). (5.3.4)

5.3.1 Adjunction. Let F = FΛ(Γ) be a locally symmetric variety of Type IV, with notation

as in § 1.2. We let N := dim F . Since F has quotient singularities, the canonical bundle of F is a

well-defined element KF ∈ Pic(FΛ(Γ))Q. Let λF be the automorphic Q-line bundle on F . Thus,

sections of λ⊗dF are identified with weight-d automorphic forms on D+
Λ and, letting π : D+

Λ → F
be the quotient map, π∗λF

∼= OD+
Λ

(−1).

If Γ acts freely on D+
Λ (and hence F is smooth), then

KF = NλF . (5.3.5)

In fact, the above formula follows by descent from the analogous formula KD+
Λ

= NOD+
Λ

(−1)

(adjunction formula for a smooth quadric in PN+1). In general, there will be a correction term

coming from the ramification of the map π : D+
Λ → F .

Definition 5.3.2. Let B(F ) be the divisor on F which is the sum of all Heegner divisors

Hv,Λ(Γ), where v ∈ Λ is primitive, v2 < 0, ±ρv ∈ Γ, where only one hyperplane appears for each

couple {v,−v}.

Proposition 5.3.3. Keep notation as above. Then, in Pic(F )Q,

KF = NλF − 1
2B(F ). (5.3.6)

1703

https://doi.org/10.1112/S0010437X19007516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007516


R. Laza and K. O’Grady

Proof. The ramification divisor of the quotient map π : D+
Λ → F is the sum of the pre-Heegner

divisors Hv,Λ(Γ), where v ∈ Λ is primitive, v2 < 0, ±ρv ∈ Γ, where only one hyperplane appears
for each couple {v,−v}. In fact, this is [GHS07, Corollary 2.13]. Now let Γ0 /Γ be a finite-index
normal subgroup acting freely on D+

Λ , let F0 := Γ0\D+
Λ , and let π0 : D+

Λ → F0 be the quotient
map. The ramification divisor of the finite Galois cover F0 → F is identified with the image by
π0 : D+

Λ → F0 of the ramification divisor of π : D+
Λ → F . Equation (5.3.5) and Riemann–Hurwitz

applied to F0 → F give the proposition. 2

As before, let B(N) be the Weil divisor on F (N) defined by

B(N) = Hn(N) + 2∆(N) =

{
Hn(N) +Hh(N) if N 6≡ 3, 4 (mod 8),

Hn(N) +Hh(N) +Hu(N) if N ≡ 3, 4 (mod 8).
(5.3.7)

By Proposition 1.3.5, we see that B(N) is the branch divisor for F (N) (i.e. B(N) = B(F (Λ, ξ))
for (Λ, ξ) a dimension-N decorated D-lattice). Thus, we have the following result.

Corollary 5.3.4. Keeping notation as above,

KF (N) = Nλ(N)− 1
2B(N). (5.3.8)

Let λ(II2,2+8k) := λF (II2,2+8k), λ(II2,2+8k ⊕ A1) := λF (II2,2+8k⊕A1), and λ(II2,2+8k ⊕ A2) :=
λF (II2,2+8k⊕A2). The proof of the result below is omitted because it is analogous to the proof of
Corollary 5.3.4.

Corollary 5.3.5. Keep notation as above. The following equalities hold in Pic(F (II2,2+8k))Q,
Pic(F (II2,2+8k ⊕A1))Q, and Pic(F (II2,2+8k ⊕A2))Q, respectively:

KF (II2,2+8k) = (8k + 2)λ(II2,2+8k)− 1
2Hn(II2,2+8k),

KF (II2,2+8k⊕A1) = (8k + 3)λ(II2,2+8k ⊕A1)− 1
2Hn(II2,2+8k ⊕A1)− 1

2Hu(II2,2+8k ⊕A1),

KF (II2,2+8k⊕A2) = (8k + 4)λ(II2,2+8k ⊕A2)− 1
2Hn(II2,2+8k ⊕A2)− 1

2Hu(II2,2+8k ⊕A2).

5.3.2 Normal bundle formula for the hyperelliptic divisor.

Proof of (5.3.1). By Proposition 1.4.5, the intersection Hh(N) ∩ sing F (N) has codimension at
least 2 in Hh(N) and hence we may apply adjunction to compute the canonical class of Hh(N).
Since fN : F (N − 1) → Hh(N) is an isomorphism, Corollary 5.3.4 gives

KF (N−1) = f∗N (KF (N) +Hh(N))

= f∗N (Nλ(N)− 1
2(B(N)−Hh(N)) + 1

2Hh(N))

= Nλ(N − 1)− 1
2f
∗
N (B(N)−Hh(N)) + 1

2f
∗
NHh(N).

On the other hand, the canonical class of F (N − 1) is given by (5.3.8); equating the two
expressions for KF (N−1), one gets

f∗NHh(N) = −2λ(N − 1) + f∗N (B(N)−Hh(N))−B(N − 1). (5.3.9)

By (5.2.4) and (5.2.5),

f∗N (B(N)−Hh(N))−B(N − 1) = Hh(N − 1) +

{
0 if N 6≡ 4 (mod 8),

Hu(N − 1) if N ≡ 4 (mod 8).

2
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5.3.3 Normal bundle formula for the unigonal divisor.

Proof of (5.3.2). We let N = 8k + 3. By Proposition 1.5.1, the intersection Hu(N) ∩ sing F (N)
has codimension at least 2 in Hu(N) and hence we may apply adjunction to compute the
canonical class of Hu(N). Since lN : F (II2,2+8k) → Hu(N) is an isomorphism, Corollary 5.3.4
gives

KF (II2,2+8k) = l∗N (KF (N) +Hu(N))

= l∗N (Nλ(N)− 1
2(B(N)−Hu(N)) + 1

2Hu(N))

= Nλ(II2,2+8k)− 1
2 l
∗
N (B(N)−Hu(N)) + 1

2 l
∗
NHu(N).

On the other hand, KF (II2,2+8k) = (2 + 8k)λ(II2,2+8k) − 1
2Hn(II2,2+8k) by Corollary 5.3.5.

Comparing the two expressions for KF (II2,2+8k), and invoking (5.2.6) and (5.2.7), one gets (5.3.2).
2

The computations of the normal bundle formulae for the unigonal divisor when N ≡ 4, 5
(mod 8) are similar; we omit the details.

5.3.4 Pull-back of (λ(N)+β∆(N)). Equations (5.3.1) and (5.2.5) give the following formula:

f∗N∆(N) =


−λ(N − 1) + ∆(N − 1) if N 6≡ 4, 5 (mod 8),

−λ(N − 1) + 1
2Hh(N − 1) if N ≡ 5 (mod 8),

−λ(N − 1) + ∆(N − 1) +Hu(N − 1) if N ≡ 4 (mod 8).

(5.3.10)

(Recall that Hu(M) = 0 if M ≡ 2 (mod 8).) Repeated application of (5.3.10) gives the following
result.

Proposition 5.3.6. Let N > 4 and 1 6 k 6 (N − 3). Then

f∗N−k,N (λ(N) + β∆(N))

=


(1− kβ)λ(N − k) + β∆(N − k) if N − k 6≡ 4 (mod 8) and k > 2,

or k = 1 and N − 1 6≡ 3, 4 (mod 8),

(1− kβ)λ(N − k) + 1
2βHh(N − k) if N − k ≡ 4 (mod 8),

(1− kβ)λ(N − k) + β∆(N − k) + βHu(N − k) if k = 1 and N − 1 ≡ 3 (mod 8).

It will be convenient to let fN,N := IdF (N). The result below follows from Proposition 5.3.6,
together with (5.2.7) and (5.3.2).

Proposition 5.3.7. Suppose that N > 3, 0 6 k 6 (N −3), and N −k ≡ 3 (mod 8) (hence lN−k
makes sense; see (1.7.4)). Then

(fN−k,N ◦ lN−k)∗(λ(N) + β∆(N)) =

{
(1− (k + 1)β)λ(II2,N−k−1) if k 6= 1,

(1− 4β)λ(II2,N−k−1) if k = 1.

Proposition 5.3.8. Suppose that N > 4, 0 6 k 6 (N − 4), and N − k ≡ 4 (mod 8) (hence
mN−k and pN−k−1 make sense; see (1.7.5) and (1.7.6))). Then

(fN−k,N ◦mN−k)
∗(λ(N) + β∆(N))

=

{
(1− β)λ(II2,N−k−2 ⊕A1) + 3

2βHu(II2,N−k−2 ⊕A1) if k = 0,

(1− kβ)λ(II2,N−k−2 ⊕A1) + βHu(II2,N−k−2 ⊕A1) if k > 1,

(fN−k,N ◦mN−k ◦ pN−k−1)∗(λ(N) + β∆(N)) =

{
(1− 4β)λ(II2,N−k−2) if k = 0,

(1− (k + 2)β)λ(II2,N−k−2) if k > 1.

1705

https://doi.org/10.1112/S0010437X19007516 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007516


R. Laza and K. O’Grady

Proof. The first equation follows from Proposition 5.3.6, together with (5.2.9) and (5.3.3).

Next, note that fN−k,N ◦ mN−k ◦ pN−k−1 = fN−k,N ◦ fN−k ◦ lN−k−1 = fN−k−1,N ◦ lN−k−1 by

Claim 1.7.1 and hence the second equation follows from Proposition 5.3.7. 2

The proof of the result below is omitted because it is similar to the proof of Proposition 5.3.8.

Proposition 5.3.9. Suppose that N > 5, 0 6 k 6 (N−5), and N−k ≡ 5 (mod 8) (hence qN−k,
rN−k−1 and pN−k−2 make sense; see (1.7.7), (1.7.8) and (1.7.6)). Then

(fN−k,N ◦ qN−k)∗(λ(N) + β∆(N))

= (1− kβ)λ(II2,N−k−3 ⊕A2) + βHu(II2,N−k−3 ⊕A2),

(fN−k,N ◦ qN−k ◦ rN−k−1)∗(λ(N) + β∆(N))

= (1− (k + 1)β)λ(II2,N−k−3 ⊕A1) + βHu(II2,N−k−3 ⊕A1),

(fN−k,N ◦ qN−k ◦ rN−k−1 ◦ pN−k−2)∗(λ(N) + β∆(N))

= (1− (k + 3)β)λ(II2,N−k−3).

5.4 Heuristics for the predictions

Let 15 6 N . We define a collection Tower(N) of closed subsets of F (N) as follows: X ⊂ F (N)

belongs to Tower(N) if and only if one of the following holds:

(1) X = Im fM,N for 11 6M 6 N ;

(2) X = Im(fM,N ◦ lM ) for 11 6M 6 N (recall that fN,N = idF (N)) and M ≡ 3 (mod 8);

(3) X = Im(fM,N ◦mM ) for 12 6M 6 N and M ≡ 4 (mod 8);

(4) X = Im(fM,N ◦ qM ) for 13 6M 6 N and M ≡ 5 (mod 8).

Every X ∈ Tower(N) is irreducible (and closed) because it is the image of a regular map,

whose domain is a projective irreducible set.

Definition 5.4.1. Let N > 15. Given X ∈ Tower(N), we let:

(1) tN (X) = N −M if

(1a) X = Im fM,N and 14 6M 6 N ; or

(1b) X = Im(fM,N ◦mM ), where 12 6M 6 N − 1 and M ≡ 4 (mod 8); or

(1c) X = Im(fM,N ◦ qM ), where 13 6M 6 N and M ≡ 5 (mod 8);

(2) tN (X) = N −M + 1 if X = Im(fM,N ◦ lM ), where 11 6 M 6 N , with M 6= N − 1 and

M ≡ 3 (mod 8);

(3) tN (X) = N − 14 if X = Im fM,N and 11 6M 6 13;

(4) tN (X) = 1 if X = ImmN , where N ≡ 4 (mod 8);

(5) tN (X) = 4 if X = Im(fN−1,N ◦ lN−1), where N ≡ 4 (mod 8).

Proposition 5.4.2. Let 15 6 N . Let X ∈ Tower(N) (and hence X is Q-factorial). If

β ∈ [0, 1] ∩Q, then we have an equality of Q-Cartier divisor classes:

(λ(N) + β∆(N))|X = (1− tN (X) · β)λ(N)|X +DX , (5.4.1)

where DX is an effective divisor whose support is a union of elements of Tower(N).
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Proof. First, we consider the case X = Im(fM,N ) and 11 6M 6 13. There exists c > 0 such that

f∗M,N (λ(N) + β∆(N)) = (1− (N −M)β)λ(M) + 1
2βHh(M) + cβHu(M)

by Proposition 5.3.6. On the other hand, by (3.1.4) (with N replaced by M), we have

f∗M,N (λ(N) + β∆(N)) = (1− (N − 14)β)λ(M) +

(
c+

τ(M)

32
(µ(M + 8)− µ(M))

)
βHu(M).

Thus, (5.4.1) holds because µ(M) 6 µ(M + 8) for 4 6M 6 14 and

Hu(M) =


Im l11 if M = 11,

Imm12 if M = 12,

Im q13 if M = 13.

This proves that (5.4.1) holds if X = Im(fM,N ) and 11 6M 6 13. In all other cases, (5.4.1) is an
immediate consequence of the results in § 5.3.4 and the isomorphisms in (1.7.4), (1.7.5), (1.7.6),
(1.7.7), and (1.7.8). 2

Because of (5.4.1), we expect that if tN (X) 6= 0, then (tN (X)λ(N) + ∆(N)) generates a
wall of the Mori chamber decomposition of the convex cone spanned by λ(N) and ∆(N), and
that the center of the corresponding flip contains the strict transform of X. Now notice that if
X,Y ∈ Tower(N), and X ⊂ Y , then tN (X) > tN (Y ). Thus, in order to list candidates for the
centers of the flips, we give the definition below.

Definition 5.4.3. Let 15 6 N . We let Center(N) ⊂ Tower(N) be the subset of X such that:

(1) aN (X) > 0; and

(2) if Y ∈ Tower(N) properly contains X, then aN (X) > aN (Y ).

Let X ∈ Tower(N), i.e. one of Items (1)–(5) of Definition 5.4.1 holds: then X does not belong
to Center(N) if and only if Item (3) holds.

We can summarize Prediction 5.1.1 as follows: the walls of the Mori chamber decomposition
of the convex cone spanned by λ(N) and ∆(N) are generated by the vectors tN (X)λ(N)+∆(N),
where X runs through the elements of Center(N). If t = tN (X) for some X ∈ Center(N), and
t > 1, then the center of the flip corresponding to tN (X)λ(N) + ∆(N) is the union of the strict
transforms of the elements Y ∈ Center(N) such that tN (Y ) = t. Lastly, λ(N) + ∆(N) contracts
the strict transforms of the elements Y ∈ Center(N) such that tN (Y ) = 1.

A more detailed description goes as follows. Consider the wall closest to the ray spanned by
λ(N), i.e. that spanned by (λ(N) + (N − 10)−1∆(N)), with center X = Im(f11,N ◦ l11). Then
DX = 0 by Proposition 5.3.7 and hence (λ(N) + (N −10)−1∆(N))|X is the opposite of an ample
class. What should we expect F (N, (N−10)−1 +ε) to look like? In order to answer this, we recall
Looijenga’s key observation: if X is an irreducible component of ∆(k)(N), then the exceptional
divisor of BlXF (N) (a weighted blow-up of F (N) with center X) is a trivial weighted projective
bundle over X, away from ∆(k+1)(N) (this is because ∆(k)(N) is the quotient by Γ(N) of the
points of intersection of k hyperplane sections of D+

ΛN
). For our initial X, i.e. Im(f11,N ◦ l11), this

translates into the prediction that F (N, (N − 10)−1 + ε) is obtained from F (N, (N − 10)−1− ε)
by replacing (the closure of) Im(f11,N ◦ l11) with a wPN−11. What about the remaining flips,
corresponding to λ(N) + k−1∆(N) for k ∈ {N − 12, N − 11, . . . , 2}? First, we note that if
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X ∈ Center(N), then (5.4.1) holds with DX an effective divisor whose support is a union of
elements of Tower(N), except if X = Im f14,N . Suppose for the moment that X 6= Im f14,N ; then
since tN (Y ) > tN (X) for all prime divisors in the support of DX (by definition of Tower(N))
and because F (N, k−1 + ε) is obtained from F (N, k−1− ε) by replacing (the closure of) centers
W such that tN (W ) = k with projective spaces of dimension N − 1 − cod(W,F (N)), we see
that the picture replicates itself. Lastly, let us look at the picture for X = Im f14,N . In this case
Gritsenko’s relation, i.e. Corollary 3.1.3, reads Hh(14) = Hu(14). A geometric description of the
rational equivalence Hh(14) = Hu(14) gives that Hh(14) and Hu(14) are actually trivial outside
Hh(14)∩Hu(14) and hence (5.4.1) for X = Im f14,N holds with DX = 0. This then suggests that
the usual description holds also for the flip corresponding to Im f14,N .

Remark 5.4.4. The set of values tN (X) for X ∈ Center(N) is obtained by adding 1 to each
value tN−1(Y ) for Y ∈ Center(N −1) and adjoining the value 1 = tN (Hh(N)). This is explained
by the formulae in Proposition 5.3.6. In fact, for simplicity suppose that N − 1 6≡ 3, 4 (mod 8).
Then, for β 6= 1, we have

f∗N (λ(N) + β∆(N)) = (1− β)λ(N − 1) + β∆(N − 1) = (1− β)

(
λ(N − 1) +

β

1− β
∆(N − 1)

)
.

This explains the behavior described above because, if β/(1− β) = 1/k, then β = 1/(k + 1).

An induction on N (see Remark 5.4.4) proves the following result.

Proposition 5.4.5. Let N > 11 and let

0 6 β <

{
(N − 10)−1 if N 6= 12,

1/4 if N = 12

be rational. If C ⊂ F (N) is a complete curve, then

C · (λ(N) + β∆(N)) > 0.

Remark 5.4.6. The locally symmetric varieties F (N) are not projective, but they are swept
out by complete curves. In fact, the complement of F (N) in the Baily–Borel compactification
F (N)∗ is of dimension 1, and the assertion follows because dim F (N) = N > 3.
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