> ON PERIODIC SOLUTIONS OF
> $x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+g(x)=0$
> R.R.D. Kemp
> (received December 28,1966)

In [1] J.O.C. Ezeilo asks whether the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+a x^{\prime \prime}+x^{\prime}+a \sin x=0 \tag{1}
\end{equation*}
$$

has periodic solutions for $a \neq 0$. Since (1) has a two-dimensional space of solutions of period 2π if $\sin x$ is approximated by x, it is plausible to conclude, by analogy with $x^{\prime \prime}+\sin x=0$, that (1) does have periodic solutions. However, when one applies the standard theory of perturbation of periodic solutions (treating a as small, see [2]), one finds that the only real periodic solutions obtainable in this manner are the trivial ones $x(t, a)=n \pi$ for some integer n. The fact that these are the only real periodic solutions of (1) for $a \neq 0$ follows from the following elementary theorem on a somewhat generalized equation.

THEOREM. Let g be a real-valued continuously differentiable function defined for all x. Let a and b be real constants and suppose that $a b-g^{\prime}(x) \geq 0$ for all x, with equality holding only on a discrete.set. Then the only real periodic solutions of the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+g(x)=0 \tag{2}
\end{equation*}
$$

are the trivial ones $x(t)=c$ where $g(c)=0$.
Proof. Suppose that $x(t)$ is a real periodic solution of (2) of period T and denote by G any function such that $G^{\prime}=g$. Then since $x^{\prime}, x^{\prime \prime}$, and $G(x(t))$ all have period T, we have

[^0]Canad. Math. Bull. vol. 10, no. 1, 1967

$$
\begin{aligned}
0 & =\int_{0}^{T} x^{\prime}\left\{x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+g(x)\right\} d t \\
& =\left\{x^{\prime} x^{\prime \prime}+a\left(x^{\prime}\right)^{2} / 2+G(x(t))\right\} \begin{array}{l}
t=T^{\prime} \\
t=0
\end{array}-\int_{0}^{T}\left(x^{\prime \prime}\right)^{2} d t+b \int_{0}^{T}\left(x^{\prime}\right)^{2} d t \\
& =-\int_{0}^{T}\left(x^{\prime \prime}\right)^{2} d t+b \int_{0}^{T}\left(x^{\prime}\right)^{2} d t
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{0}^{T}\left(x^{\prime \prime}\right)^{2} d t=b \int_{0}^{T}\left(x^{\prime}\right)^{2} d t \tag{3}
\end{equation*}
$$

 it follows that the integral on the left vanishes. Thus

$$
\begin{aligned}
0 & =\int_{0}^{T} x^{\prime \prime}\left\{x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+g(x)\right\} d t \\
& =\left\{x^{\prime} g(x(t))+b\left(x^{\prime}\right)^{2} / 2\right\}_{t=0}^{t=T}+a \int_{0}^{T}\left(x^{\prime \prime}\right)^{2} d t-\int_{0}^{T}\left(x^{\prime}\right)^{2} g^{\prime}(x(t)) d t \\
& =a \int_{0}^{T}\left(x^{\prime}\right)^{2} d t-\int_{0}^{T}\left(x^{\prime}\right)^{2} g^{\prime}(x(t)) d t
\end{aligned}
$$

and using (3) we obtain

$$
\begin{equation*}
\int_{0}^{T}\left(x^{\prime}\right)^{2}\left\{a b-g^{\prime}(x(t))\right\} d t=0 \tag{4}
\end{equation*}
$$

Since the integrand of (4) is non-negative it follows from (4) that this integrand is identically zero. If s is a number such that $x^{\prime}(s) \neq 0$ then x^{\prime} is non-zero on some neighbourhood N of s. Thus $a b-g^{\prime}(x(t))=0$ on N, and as x is continuous and the set of possible values is discrete, x must be constant on N. Thus x is constant everywhere, and as the only constant solutions of (2) are those in the statement of the theorem, the proof is complete.

In equation (1) we note that replacing t by $-t$ has the
same effect as replacing a by -a. Thus we may assume that $a>0$ if it is non-zero, and the bracketed term in the integrand of (4) is replaced by $a(1-\cos x)$. As this is non-negative and vanishes only on a discrete set we have the immediate corollary:

COROLLARY. For real a $\neq 0$ the only real periodic solutions of (1) are the trivial ones $x(t)=n \pi$ for some integer n.

REFERENCES

1. J.O.C. Ezeilo, Research Problem 12, Bull. Amer. Math. Soc. 72 (1966), page 470.
2. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955).

Queen's University and Imperial College of Science and Technology

[^0]: ${ }^{1}$ This research was carried out while the author was partially supported by a grant from the Canada Council.

