
JFP 31, e28, 67 pages, 2021. © The Author(s), 2021. Published by Cambridge University Press. 1
doi:10.1017/S0956796821000186

Taming the Merge Operator

X U E J I N G H U A N G
Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

(e-mail: xjhuang@cs.hku.hk)

J I N X U Z H A O
Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

(e-mail: jxzhao@cs.hku.hk)

B R U N O C . D . S . O L I V E I R A
Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

(e-mail: bruno@cs.hku.hk)

Abstract

Calculi with disjoint intersection types support a symmetric merge operator with subtyping. The
merge operator generalizes record concatenation to any type, enabling expressive forms of object
composition, and simple solutions to hard modularity problems. Unfortunately, recent calculi with
disjoint intersection types and the merge operator lack a (direct) operational semantics with expected
properties such as determinism and subject reduction, and only account for terminating programs.
This paper proposes a type-directed operational semantics (TDOS) for calculi with intersection types
and a merge operator. We study two variants of calculi in the literature. The first calculus, called λi,
is a variant of a calculus presented by Oliveira et al. (2016) and closely related to another calcu-
lus by Dunfield (2014). Although Dunfield proposes a direct small-step semantics for her calculus,
her semantics lacks both determinism and subject reduction. Using our TDOS, we obtain a direct
semantics for λi that has both properties. The second calculus, called λ+i , employs the well-known
subtyping relation of Barendregt, Coppo and Dezani-Ciancaglini (BCD). Therefore, λ+i extends the
more basic subtyping relation of λi, and also adds support for record types and nested composition
(which enables recursive composition of merged components). To fully obtain determinism, both λi

and λ+i employ a disjointness restriction proposed in the original λi calculus. As an added benefit the
TDOS approach deals with recursion in a straightforward way, unlike previous calculi with disjoint
intersection types where recursion is problematic. We relate the static and dynamic semantics of λi

to the original version of the calculus and the calculus by Dunfield. Furthermore, for λ+i , we show
a novel formulation of BCD subtyping, which is algorithmic, has a very simple proof of transitiv-
ity and allows for the modular addition of distributivity rules (i.e. without affecting other rules of
subtyping). All results have been fully formalized in the Coq theorem prover.

1 Introduction

The merge operator for intersection types was first introduced in the Forsythe language
over 30 years ago (Reynolds, 1988). It has since been studied, refined and used in some
language designs by multiple researchers (Pierce, 1991; Castagna et al., 1995; Dunfield,
2014; Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018). At its essence, the merge
operator allows the creation of values that can have multiple types, which are encoded
as intersection types (Pottinger, 1980; Coppo et al., 1981). For example, with the merge

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186
https://orcid.org/0000-0002-8496-491X
mailto:xjhuang@cs.hku.hk
mailto:jxzhao@cs.hku.hk
mailto:bruno@cs.hku.hk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000186&domain=pdf
https://doi.org/10.1017/S0956796821000186

2 X. Huang et al.

operator, the following program is valid:

let x : Int & Bool = 1 ,, True in (x + 1, not x)

Here the variable x has two types, expressed by the intersection type Int & Bool. The
corresponding value for x is built using the merge operator (,,). Later uses of x, such as the
expression (x + 1, not x) can use x both as an integer or as a boolean. For this particular
example, the result of executing the expression is the pair (2, False).

The merge operator adds expressive power to calculi with intersection types. Much work
on intersection types has focused on refinement intersections (Freeman & Pfenning, 1991;
Davies & Pfenning, 2000; Dunfield & Pfenning, 2003), which only increase the expres-
sive power of types. In systems with refinement intersections, types can simply be erased
during the compilation. However, in those systems, the intersection type Int & Bool is
invalid since Int and Bool are not refinements of each other. In other systems, includ-
ing many OO languages with intersection types – such as Scala (Odersky et al., 2004),
TypeScript (Microsoft, 2012), Flow (Facebook, 2014), or Ceylon (RedHat, 2011) – the
type Int & Bool has no inhabitants and the simple program above is inexpressible. The
merge operator adds expressiveness to terms and allows constructing values that inhabit
the disjoint intersection type Int & Bool, enabling writing programs like the above.

There are various practical applications for the merge operator. As Dunfield (2014)
argues, the merge operator provides “general mechanisms that subsume many different
features”. This is important because a new type system feature often involves extending
the metatheory and implementation, which can be nontrivial. If instead we provide general
mechanisms that can encode such features, adding new features will become a lot easier.
Dunfield has illustrated this point by showing that multi-field records, overloading and
forms of dynamic typing can all be easily encoded in the presence of the merge opera-
tor. Furthermore, when we restrict our attention to the concatenation of records, which the
merge operator generalizes, the combination of record concatenation and subtyping paves
the ground for encoding expressive forms of multiple inheritance (Wand, 1989; Rémy,
1995; Palsberg & Zhao, 2004; Zwanenburg, 1997).

More recently, the merge operator has been used in calculi with disjoint intersection
types (Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018). The disjointness restric-
tion means that the two values being merged cannot have conflicts. In such settings, the
merge operator is symmetric, associative, and commutative (Bi et al., 2018). Such a variant
of the merge operator has been used to encode several nontrivial object-oriented features,
which enable highly dynamic forms of object composition not available in current main-
stream languages such as Scala or Java. These include first-class traits (Bi & Oliveira,
2018), dynamic mixins (Alpuim et al., 2017), and forms of family polymorphism (Bi et al.,
2018). These features enable widely used and expressive techniques for object composition
used by JavaScript programmers (and programmers in other dynamically typed languages),
but in a completely statically type-safe manner (Bi & Oliveira, 2018; Alpuim et al., 2017).
For example, in the SEDEL language (Bi & Oliveira, 2018), which is based on disjoint
intersection types, we can define and use first-class traits such as:

// addId takes a trait as an argument, and returns another trait
addId(base : Trait[Person], idNumber : Int) : Trait[Student] =
trait inherits base ⇒ { // dynamically inheriting from an unknown person

def id : Int = idNumber
}

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 3

Similarly to classes in JavaScript, first-class traits can be passed as arguments, returned
as results, and can be constructed dynamically (at runtime). In the program above,
inheritance is encoded as a merge in the core language used by SEDEL.

Despite over 30 years of research, the semantics of the merge operator has proved to
be quite elusive. In retrospect, this is perhaps not too surprising. It is well known that,
in the closely related area of record calculi, the combination of record concatenation and
subtyping is highly nontrivial (Cardelli & Mitchell, 1991). Since the merge operator for
intersection types generalizes record concatenation and calculi with intersection types nat-
urally give rise to subtyping, the semantics of the merge operator will clearly not be any
simpler than the semantics of record concatenation with subtyping!

Because of its foundational importance, we would expect a simple and clear direct
semantics for calculi with a merge operator. After all, this is what we get for other founda-
tional calculi such as the simply-typed lambda calculus, System F, System Fω, the calculus
of constructions, System F<:, Featherweight Java and others. All these calculi have a sim-
ple and elegant direct operational semantics, often presented in a small-step style (Wright
& Felleisen, 1994). While for the merge operator there have been efforts in the past to
define direct operational semantics, these efforts have placed severe limitations that dis-
allow many of the previously discussed applications or they lacked important properties.
Reynolds (1991) was the first to look at this problem, but in his calculus the merge opera-
tor is severely limited. Castagna et al. (1995) studied another calculus, where only merges
of functions are possible. Pierce (1991) was the first to briefly consider a calculus with an
unrestricted merge operator (called glue in his work). He discussed an extension to F∧ with
a merge operator but he did not study the dynamic semantics with the extension. Finally,
Dunfield (2014) goes further and presents a direct operational semantics for a calculus
with an unrestricted merge operator. However, the problem is that subject reduction and
determinism are lost.

Dunfield also presents an alternative way to give the semantics for a calculus with the
merge operator indirectly by elaboration to another calculus. This elaboration semantics
is type-safe and offers, for instance, a reasonable implementation strategy, and it is also
employed in more recent work on the merge operator with disjoint intersection types.
However, the elaboration semantics has two major drawbacks. First, reasoning about the
elaboration semantics is more involved: to understand the semantics of programs with the
merge operator we have to understand the translation and semantics of the target calculus.
This complicates informal and formal reasoning. Secondly, in calculi defined by elabo-
ration, we want to have coherence (Reynolds, 1991), which is a property that ensures
that the meaning of a program is not ambiguous. Dunfield’s elaboration semantics is not
coherent. To fix this, calculi with disjoint intersection types have to impose some restric-
tions. However, even with such restrictions, coherence comes at a high price: the calculi
and proof techniques employed to prove coherence are complex and can only deal with
terminating programs. The latter is a severe limitation in practice!

This paper proposes a type-directed operational semantics (TDOS) for calculi with
intersection types and a merge operator. We study two calculi, which are variants of exist-
ing calculi with disjoint intersection types in the literature. The first calculus, called λi, is
a variant of a calculus introduced by Oliveira et al. (2016), and it is also closely related
to a calculus by Dunfield (2014). The second calculus, called λ+

i , employs the well-known

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

4 X. Huang et al.

subtyping relation of Barendregt, Coppo and Dezani-Ciancaglini (BCD). BCD subtyping
introduces distributivity of intersections over arrows in the subtyping relation:

OS-DISTARR

(A → B) & (A → C)� A → B & C

From the point of view of coercive subtyping, this rule denotes that a merge of two func-
tions can be converted to one function, if their input type is the same. Therefore, λ+

i extends
the more basic subtyping relation of λi, and also adds support for record types and nested
composition, subsuming the original λ+

i calculus by Bi et al. (2018).
Both calculi address two key difficulties in the dynamic semantics of calculi with a

merge operator. The first difficulty is the type-dependent nature of the merge operator.
Using type annotations in the TDOS to guide reduction (and influence operational behav-
ior) addresses this difficulty, and paves the way to prove subject reduction. The second
difficulty is that a fully unrestricted merge operator is inherently ambiguous. For instance
the merge 1, , 2 can evaluate to both 1 and 2. Therefore, some restriction is still neces-
sary for a deterministic semantics. To fully obtain determinism, both calculi employ a
disjointness restriction that is used in calculi using disjoint intersection types, and two
important new notions: typed reduction and consistency. Typed reduction is a reduction
relation that can further reduce values under a certain type. Consistency is an equivalence
relation on values, that is key for the determinism result. Determinism in TDOS offers the
same guarantee that coherence offers in an elaboration semantics (both properties ensure
that the semantics is unambiguous), but it is much simpler to prove. Additionally, the
TDOS approach deals with recursion in a straightforward way, unlike λi and subsequent
calculi (Bi et al., 2018, 2019) where recursion is very problematic for proving coherence.

To further relate λi to the calculi by Dunfield and the original λi by Oliveira et al., we
show two results. First, we show that the type system of λi is complete with respect to
the original calculus. Second, the semantics of λi is sound with respect to an extension of
Dunfield’s semantics. The extension is needed because λi uses a slightly more powerful
subtyping relation, which enables λi to account for merges of functions in a natural way
compared to the original λi. Furthermore, for λ+

i , we show a novel formulation of BCD
subtyping, which is algorithmic, has a very simple proof of transitivity and allows for the
modular addition of distributivity rules (i.e. without affecting other rules of subtyping). We
also deal with several additional complications in the operational semantics that arise from
the nested composition. The two calculi and their metatheory have been fully formalized
in the Coq theorem prover.

In summary, the contributions of this paper are as follows:

• The λi and λ+
i calculi and their TDOS: We present a TDOS for two calculi

with intersection types and a merge operator. The semantics of both calculi is
deterministic and it has subject reduction.

• Support for nonterminating programs: Our new proof methods can deal with
recursion, unlike the proof methods used in previous calculi with disjoint intersec-
tion types, due to limitations of the current proof approaches for coherence.

• Typed reduction and consistency: We propose the novel notions of typed reduction
and consistency, which are useful to prove determinism and subject reduction.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 5

• Relation with other calculus with intersection types: We relate λi with the calculi
proposed by Dunfield and Oliveira et al. In short, all programs that are accepted by
the original λi calculus can type-check with our type system, and the semantics of
λi is sound with respect to Dunfield’s semantics.

• Novel algorithmic formulation of BCD subtyping: In our new formulation, the
challenging distributivity rules are added in a modular way, and the transitivity proof
is straightforward.

• Coq formalization: All the results presented in this paper have been formalized in
the Coq theorem prover and they are available from https://github.com/XSnow/

TamingMerge.

This paper is an extended version from a conference paper (Huang & Oliveira, 2020).
The λ+

i calculus and the algorithmic formulation of BCD subtyping are new. Furthermore,
λi differs from the calculus in the conference paper (where it is called λ:

i) in that it
allows the top value to act like a function and employs bidirectional typechecking (Pierce
& Turner, 1998). This change enables typing formulations (for both λi and λ+

i) to be
algorithmic. Moreover, we added an extra section giving more background and motivation.

Roadmap. Section 2 presents the background, motivation, and applications for the cal-
culi. Section 3 gives an overview of the challenges and the design of the TDOS and
introduces the specification of disjointness and consistency. Sections 4 and 5 present
the type system and operational semantics, respectively. The relation with the original
λi’s type system, and with Dunfield’s semantics, is discussed at the end of each section.
Section 6 introduces a novel algorithmic formulation of BCD subtyping using splittable
types. Section 7 presents the λ+

i calculus and its TDOS, which extends λi with BCD sub-
typing and records. The design of rules is significantly affected by the new distributive
subtyping rules. Finally, Section 9 discusses the related work and Section 10 concludes.

2 Motivation and applications of the merge operator

A key advantage of the merge operator is its generality and the ability to model various
programming language features. However, there are challenging problems that arise from
the merge operator. In particular, the combination of the merge operator and subtyping is
problematic. In this section, we revisit those challenges, as well as two applications of the
merge operator: typed first-class traits (Bi & Oliveira, 2018) and nested composition (Bi
et al., 2018). For the simple examples illustrating the merge operator in Section 2.1, we
assume that some convenience features not in our calculi (but supported, for instance, in
SEDEL), including a let construct and some inference of type annotations.

2.1 The merge operator, ambiguity, and subtyping

Ambiguity. As we have discussed in Section 1, a key problem with the merge operator is
ambiguity. The problem stems from the implicit (type-directed) extraction of values from
merges. For instance, for the expression:

(1 ,, 2) + 3

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://github.com/XSnow/TamingMerge
https://github.com/XSnow/TamingMerge
https://doi.org/10.1017/S0956796821000186

6 X. Huang et al.

the result is ambiguous (it could be 4 or 5) since we could extract either 1 or 2 from the
merge to add to 3. One way to avoid ambiguity is to restrict the types of merged values
to have disjoint types (Oliveira et al., 2016). For instance, Int is disjoint to Bool, so the
merge 1 ,, True is accepted. In contrast, 1 ,, 2 is rejected. Disjointness leads to a symmetric,
associative and commutative merge operator (Bi et al., 2018). Other alternatives include
having a biased merge operator, which allows conflicting values. In such a case, when
extracting a value of a certain type from a merge, the merge is searched in a particular order
(for instance left-to-right) and the first value of the searched type is returned (Dunfield,
2014).

The complications of subtyping. Intersection types naturally induce a subtyping rela-
tionship between types. However, subtyping and the subsumption rule enable a program
to “forget” about some static information about the types of values. Since the extraction
of values from merges is type-directed, such loss of type information can affect the search
for the value. Consider the following program:

let x : Bool = True ,, 1 in (2 ,, x) + 3

Note that here we view True ,, 1 as a value. The merge has type Bool & Int, but because
of subtyping it also has type Bool, the type for x. In a naive operational semantics, for the
program above, we would eventually reach a point where we would need to extract a value
from the merge 2 ,, True ,, 1. This merge has two conflicting integers values.

In a language employing a disjointness restriction the merge 2 ,, True ,, 1 ought to be
rejected, but such a merge only appears at runtime. In the program itself, all merges are
disjoint: True ,, 1 is disjoint; and 2 ,, x is also disjoint since x has type Bool. Thus, the
program should type-check! One possibility would be to abort the program at runtime
with a disjointness error. However, this would defeat the main purpose of the disjointness
restriction, which is to provide a way to statically prevent ambiguity.

A language offering an asymmetric merge operator would have other issues. Assuming
that the merge operator would be right-biased (giving preference to the values on the
right side), then a programmer may expect that because x has type Bool, (2 ,, x) + 3
should evaluate to 5. However such static reasoning is not synchronized with the runtime
behavior, since x contains the integer 1 and therefore the result of the evaluation would
be 4.

From another perspective, we could expect that a valid optimization of the program
above is to replace the expression (2 ,, x) + 3 by 2 + 3, since the static type of x has no inte-
ger type. This optimization would be valid (for both symmetric and asymmetric merges) if
the origin of runtime values can be determined statically by looking at the types. However,
this is not the case if we simply employ a naive semantics: we statically know that the
merge contains an integer 2, but at runtime 1 is extracted instead. The issue is some-
what similar to the (naive) dynamic scoping semantics for the lambda calculus, where the
origin of the values for free variables cannot be determined statically when a function
is created. Static (or lexical) scoping solves the problem by using a more sophisticated
semantics. Thus, a possible solution for the problem of determining the origin of values in
merges statically in the presence of subtyping is to have a more sophisticated semantics
as well.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 7

Record concatenation and subtyping. The problems with the merge operator and sub-
typing are closely related to the problem of typing record concatenation in the presence of
subtyping. The latter is well-acknowledged to be a difficult problem in the design of record
calculi (Cardelli & Mitchell, 1991). Foundational work on programming languages in the
end of the 80s and early 90s looked at this problem because the combination record con-
catenation with subtyping was perceived as a way to extend lambda calculi with support
for OOP. In essence, since objects in OOP can be viewed as records, it is natural to look for
a language that supports records. Furthermore, record concatenation would provide sup-
port for encoding multiple inheritance, which entails composing several objects/records
together. Finally, subtyping is perceived as a key feature of OOP and should be supported
as well. Unfortunately, the problem was found to be quite challenging, for very similar rea-
sons to those that make the interaction of the merge operator with subtyping difficult. This
should not come as a surprise, since the merge operator can generalize record concatena-
tion. To see the relationship between the two problems, consider the following variant of
the previous program with records:

let x : {n : Bool} = {m = 1} ,, {n = True} in ({m = 2} ,, x).m + 3

In this variant, x is a record with the static type {n : Bool}, but having an extra field m that
is hidden by subtyping. The record x is then merged with the record {m = 2}. Statically
this merge seems safe, since the static types of both records do not share record labels
in common. However, when doing the field lookup for m at runtime there would be two
fields m with different values (once again assuming a naive semantics). In essence, we
would have the same problems as with the earlier variant of the program without records.

As we have been hinting, a way to solve this problem is to change the operational seman-
tics to account for types at runtime. We will discuss in depth the technical challenges and
aspects of such an approach from Section 3 onwards. But before doing this, we first show
why this is a problem worth solving in the first place, by illustrating interesting applica-
tions that can be defined in languages that support a merge operator in the presence of
subtyping.

2.2 Typed first-class traits

To illustrate the interesting applications that a merge operator enables we briefly introduce
typed first-class traits (Bi & Oliveira, 2018) in the SEDEL language. This application is
not new to this paper, but it is useful to revisit it to illustrate the kinds of applications that
are enabled by the merge operator. Typed first-class traits are very much in line with the
applications that OOP researchers had in mind while seeking for calculi integrating record
concatenation and subtyping. In particular, the merge operator naturally enables a form of
multiple inheritance, as well as a powerful form of dynamic inheritance (where inherited
implementations can be parameterized).

Traits (Schärli et al., 2003) in Object-Oriented Programming provide a model of
multiple inheritance. Both traits and mixins (Bracha & Cook, 1990; Flatt et al., 1998)
encapsulate a collection of related methods to be added to a class. The main difference
between traits and mixins has to do with how conflicts are dealt with. Mixins use the order
of composition to determine which implementation to pick in the case of conflicts. Traits

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

8 X. Huang et al.

require programmers to explicitly resolve the conflicts instead and reject compositions
with conflicts. In essence, this difference is closely related to the choice of a symmetric
or asymmetric model for the merge operator. Symmetric merges with disjoint intersection
types are closely related to traits because merges with conflicts are rejected, and the com-
position is associative and commutative (just like the composition for traits). Asymmetric
merges are closer to mixins, giving preference to one of the implementations in the case
of conflicts. We point the reader to Schärli’s et al. paper for an extensive discussion of the
qualities of the trait model and a comparison with the mixin model.

The SEDEL language (Bi & Oliveira, 2018) has a variant of traits. It essentially adopts
the original trait model, but traits in SEDEL are statically typed and support dynamic
inheritance (unlike Schärli et al. traits). The semantics of SEDEL’s traits is defined via an
elaboration to a calculus with disjoint intersection types, where the merge operator is key
to model trait composition. Our examples next are adapted from Bi and Oliveira.

A simple example of a trait in SEDEL is:

type Editor = {on_key : String → String, do_cut : String, show_help :
String};

type Version = {version : String};

trait editor [self : Editor & Version] ⇒ {
on_key(key : String) = "Pressing " ++ key;
do_cut = self.on_key "C-x" ++ " for cutting text";
show_help = "Version: " ++ self.version ++ " Basic usage..."

};

A trait can be viewed as a function taking a self argument and producing a record. In this
example, the record, which contains three fields, is encoded as a merge of three single
field records. Because all the fields have distinct field names, the merge is disjoint and the
definition is accepted. Methods in SEDEL can be dynamically dispatched, as usual in OOP
languages. For instance, in the trait editor, the do_cut method calls the on_key method via
the self reference and it is dynamically dispatched. Moreover, traits in SEDEL have a self-
type annotation similar to Scala (Odersky et al., 2004). In this example, the type of the self
reference is the intersection of two record types Editor and Version. Note that show_help
is defined in terms of an undefined version method. Usually, in a statically typed language
like Java, an abstract method is required, making editor an abstract class. Instead, SEDEL
encodes abstract methods via self-types. The requirements stated by the type annotation of
self must be satisfied when later composing editor with other traits, i.e. an implementation
of the method version should be provided.

First-class traits and dynamic inheritance. The interesting features in SEDEL are that
traits are first-class and inheritance can be dynamic. The next example shows such features:

type Spelling = {check : String};

spell (base : Trait[Editor & Version, Editor]) =
trait [self : Editor & Version] inherits base ⇒ {
override on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = super.on_key "C-c" ++ " for spelling check"

};

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 9

The spell function takes a trait as an argument and returns a trait as a result. Thus,
since traits can be passed as arguments and returned as results they are first-class (just
like lambda functions in functional programming). The new trait adds a check method
and overrides the on_key method of the base trait. The argument base is a trait of type
Trait[Editor & Version, Editor], where the two types denote trait requirements and
functionality respectively. As we can see from its definition, trait editor matches that type.
Note that unlike mainstream OOP languages like Java, the inherited trait (which would cor-
respond to a superclass in Java) is parameterized, thus enabling dynamic inheritance. In
SEDEL the choice of the inherited trait (i.e. the superclass) can happen at runtime, unlike
in languages with static inheritance (such as Java or Scala).

Multiple inheritance. Besides first-class traits and dynamic inheritance, multiple inheri-
tance is also supported. The following trait illustrates multiple inheritance in SEDEL:

trait version ⇒ {
version = "0.2"

};

trait spell_editor [self : Editor & Version & Spelling]
inherits spell editor & version ⇒ {};

editor1 = new[Editor & Version & Spelling] spell_editor;

The trait spell_editor inherits from both spell editor and version. The latter defines an
implementation for the field version. Finally, an object editor1 can be created from the
trait spell_editor.

2.3 Nested composition

The NeColus calculus (Bi et al., 2018) and the SEDEL language support nested composi-
tion. With nested composition, it is not only possible to compose top-level traits but also
to compose any elements inside the top-level trait recursively. Nested composition enables
simple solutions to hard modularity problems like the Expression Problem (Wadler, 1998),
and it is enabled by a powerful form of subtyping where intersections can distribute over
other constructs.

The expression problem. Here we present the SEDEL-style solution of the Expression
Problem, originally described by Bi et al. (2018). The expression problem is a classic chal-
lenge about the extensibility of a programming language. In the expression problem, a data
type of expressions is defined, with several cases (literals and additions in the following
code) associated with some operations (e.g. evaluation). There are two directions to extend
the data type: adding a new case and adding a new operation. In a solution both extensions
should be independently defined, and it should be possible to combine them to close the
diamond. In a typical OOP language, class inheritance makes it easy to add a new case
to the data type, while extending in the other direction in a modular and type-safe way
remains hard. To illustrate the SEDEL solution, we start from a simple language with two
cases and one operation.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

10 X. Huang et al.

type IEval = { eval : Double };
type Lang = { lit : Double → IEval, add : IEval → IEval → IEval };

trait implLang ⇒ {
lit (x : Double) = { eval = x };
add (x : IEval) (y : IEval) = { eval = x.eval + y.eval }

} : Lang;

In the above example, two fields lit and add in Lang model the constructors for expres-
sions. Trait implLang defines a concrete evaluation operation over expressions by providing
implementations for lit and add. As observed by Bi et al., traits such as implLang, can be
viewed as a family of related implementations in the sense of family polymorphism (Ernst,
2001). In family polymorphism the central idea is that classes can be nested inside other
classes, to form a family of related classes. In implLang, we can view the trait itself as a
family, and the implementations of the constructors as the implementations of the nested
“classes”. The type Lang can be understood as the type of the family.

Adding a new operation print is straightforward via a new trait implPrint, which is
defined in a similar way to implLang.

type IPrint = { print : String };
type LangPrint = { lit : Double → IPrint, add : IPrint → IPrint → IPrint };

trait implPrint ⇒ {
lit (x : Double) = { print = x.toString };
add (x : IPrint) (y : IPrint) = {

print = "(" ++ x.print ++ " + " ++ y.print ++ ")"
}

} : LangPrint;

Similarly, a new case for negation can be added independently. The type of the new
trait is the intersection of Lang and a record type for negation. Correspondingly, its
implementation also reuses implLang via trait inheritance.

type LangNeg = Lang & { neg : IEval → IEval };

trait implNeg inherits implLang ⇒ {
neg (x : IEval) = { eval = 0 - x.eval }

} : LangNeg;

It is necessary to extend implPrint for the newly defined case neg before composing them.

trait implExt inherits implNeg & implPrint ⇒ {
neg (x : IPrint) = { print= "-" ++ x.print }

};

The trait combines the missing method with the extension of two dimensions: implNeg and
implPrint. The following code shows how we can use the extended arithmetic language.

type ExtLang = { lit : Double → IEval&IPrint, add : IEval&IPrint →
IEval&IPrint → IEval&IPrint, neg : IEval&IPrint → IEval&IPrint };

fac = new[ExtLang] implExt;
e = fac.add (fac.neg (fac.lit 2)) (fac.lit 3);
main = e.print ++ " = " ++ e.eval.toString -- "(-2.0 + 3.0) = 1.0";

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 11

BCD subtyping and nested composition. Notably the expression e has type IEval &

IPrint allowing both the print and eval methods to be called. This is possible because
nested composition is triggered by the annotation ExtLang for new when creating the
object fac. While the expression implExt has type Trait[LangNeg & LangPrint & { neg

: IPrint → IPrint }], the annotation in new forces the resulting object to have type
ExtLang. This is allowed because with BCD-style subtyping (Barendregt et al., 1983) the
following subtyping statement holds:

LangNeg & LangPrint & { neg : IPrint → IPrint } <: ExtLang

In short, in BCD-style subtyping, intersections distribute over other type constructors, like
functions or records, thus allowing the previous subtyping statement to hold. For instance,
for records the distributivity rule for subtyping is

OS-DISTRCD

{l : A} & {l : B}� {l : A & B}
Nested composition gives an operational meaning to such an upcast at runtime by suit-

ably adapting the values of the subtype to the right form to fit the supertype. For a simple
example, consider the merge of two records, each containing a field x of (disjoint) types
Int and String, respectively. Because of the distributivity of intersections over records,
such a merge can be typed as a single record, with a field x of type Int&String:

{x = 3},, {x = "Hello"} : {x : Int & String}

At runtime, the value {x = 3},, {x = "Hello"} will be converted into {x = 3 ,,

"Hello"}, in order for the shape of the value to match up with the shape of the type. Since
traits in SEDEL are in essence records of functions, distributivity can trigger a series of
such transformations that reshape the values to match up with the shape of types. Such
transformations are what we call nested composition, which is essentially reflecting the
changes triggered by distributivity (and other subtyping) rules at runtime. Thus, the compo-
nents that are nested inside the traits being composed are themselves recursively composed,
enabling the creation of objects like e containing implementations for both print and eval.

Encoding source language features. The SEDEL language, used to illustrate the exam-
ples in this section, is built on top of the Fi calculus (Alpuim et al., 2017). The Fi calculus
is itself a polymorphic extension of the original version of λi (Oliveira et al., 2016). In
essence, source language constructs, such as traits and extensible records, are elaborated
into the more primitive constructs available in Fi. In particular, traits are encoded using
merges of single field records. To model self-references and inheritance, the elabora-
tion into Fi employs ideas from Cook’s denotational semantics of inheritance (Cook &
Palsberg, 1989). The details of the elaboration of SEDEL’s source language constructs
into Fi are outside of the scope of this paper, and are given in work by Bi & Oliveira
(2018). A more recent version of SEDEL, employing the same encoding, but targeting the
F+

i calculus instead and enabling distributive subtyping and nested composition, was used
by Bi et al. (2019). We have used such a version to present the examples in Section 2.2.

Although SEDEL itself cannot be fully elaborated to λi and λ+
i , because of the absence

of polymorphism, a large subset of it can indeed be directly encoded into λi and λ+
i . In

particular, all the examples that we present in Section 2.2 fit within this (monomorphic)

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

12 X. Huang et al.

subset of SEDEL. In fact, although SEDEL implementations support polymorphic traits,
the encoding of traits presented by Bi & Oliveira (2018) only supports monomorphic traits
for simplicity. Therefore, such an encoding of traits can essentially be directly applied to
encode the examples in Section 2.2 into λ+

i . One small point is that the encoding assumes
a letrec construct, which needs to be encoded with fix points in λi and λ+

i .
In addition to encoding source-level constructs, the type system of SEDEL also per-

forms simple forms of type-inference, allowing source programs to be written with fewer
annotations than those needed in λi and λ+

i . During elaboration, the type information is
used to insert extra type annotations, which are used by the core language.

3 An overview of the type-directed operational semantics

While the merge operator has many applications, designing a direct operational seman-
tics for a calculus with the merge operator is not straightforward. This section gives an
overview of the type-directed operational semantics for λi and λ+

i . We first introduce the
untyped semantics of Dunfield (2014) to show the behavior of the merge operator. As
Dunfield herself noted, such a semantics has two important problems: nondeterminism;
and the lack of subject reduction. In this section we illustrate how the TDOS uses type
annotations to guide reduction, solving the problems in Dunfield’s semantics.

3.1 Background: Dunfield’s nondeterministic semantics

Dunfield studied a calculus with unrestricted intersections and unions. The interesting
aspect of her calculus is the merge operator: it takes two terms E1 and E2 of some types
A and B, to create a new term that can behave both as a term of type A and as a term of
type B. She proposed an operational semantics and an indirect elaboration semantics for
the calculus. As Dunfield noted, the operational semantics is nondeterministic and does not
preserve types. Nonetheless, such a semantics plays an important role in Dunfield’s work
by giving an over-approximation of the intended behavior of programs using the merge
operator. It is used to justify the elaboration semantics, where programs are compiled into
a language with products and sums, and without intersections and unions. Indeed, intersec-
tion types and the merge operator in Dunfield’s calculus are similar to product types and
pairs. For example, a program written with pairs that behaves identically to the program
shown in Section 1 is:

let x : (Bool, Int) = (True, 1) in (snd x + 1, not (fst x))

However while for pairs both the introductions and eliminations are explicit, with the
merge operator the eliminations (i.e. projections) are implicit and driven by the types of the
terms. Dunfield exploits this similarity in her elaboration semantics. By extending typing
judgments, the elaboration transforms merges into pairs, intersections into products and
inserts the missing projections.

Syntax. The top of Figure 1 shows the syntax of Dunfield’s calculus. Types include a top
type Top, function types (A → B) and intersection types (written as A & B). Following the

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 13

Fig. 1. Syntax and nondeterministic small-step semantics of Dunfield’s calculus.

convention introduced by previous works (Oliveira et al., 2016), → has lower precedence
than &, which means A → B & C is equal to A → (B & C). Most expressions are standard,
except for the merge E1 ,, E2. The calculus also includes a canonical top value �, and
considers variables as values. Note that the original calculus by Dunfield uses a differ-
ent notation for intersection types (A ∧ B), and supports union types (A ∨ B). For a better
comparison, we adjust the syntax and omit union types in Dunfield’s system. Union types
are not supported by λi, since it is based on the calculus by Oliveira et al. (2016) with
disjoint intersection types, which focus on the merge operator and does not have unions
types. Integrating union types with disjointness is still an open problem, which has not
been addressed in previous work on disjoint intersection types. Since such a problem is
orthogonal to the work in this paper, the calculi presented in this paper do not support
union types either.

Operational semantics. The bottom part of Figure 1 presents the reduction rules.
All rules not involving the merge operator are standard call-by-value reduction rules.
The reduction of a merge construct in Dunfield’s calculus is quite flexible: V1 ,, V2

is a value, but E1 ,, E2 (including values) can step, to its left subexpression (by
rule DSTEP-UNMERGEL) or the right one (by rule DSTEP-UNMERGER). Other values can
step further as well, by rule DSTEP-SPLIT, which allows any expression to split into two.

Problem 1: no subject reduction. The operational semantics does not preserve types.
Since the reduction is oblivious of types, a term can reduce to two terms with potentially
different (and unrelated) types. For instance,

1 ,, True� 1 1 ,, True�True

Here the merge of an integer and a boolean is reduced to either the integer
(rule DSTEP-UNMERGEL) or the boolean (rule DSTEP-UNMERGER). In Dunfield’s cal-
culus the term 1 ,, True can have multiple types, including Int or Bool or Int & Bool. Not
all types that can be assigned to a term lead to type-preserving reductions. For instance, if

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

14 X. Huang et al.

the term is given the type Int, then the second reduction above does not preserve the type.
What is worse, a well-typed expression can reduce to an ill-typed expression by dropping
the wrong part:

(1 ,, λx. x + 1) 2� 1 2

Problem 2: nondeterminism. Even in type-preserving reductions there can be another
problem. Because of the pair of UNMERGE rules (rule DSTEP-UNMERGEL and
rule DSTEP-UNMERGER), the choice between a merge always has two options. This means
that a reduced term can lead to two other terms of the same type, but with different
meanings. For example,

1 ,, 2� 1 1 ,, 2� 2

There is even a third option to reduce a merge with the split rule (rule DSTEP-SPLIT):

1 ,, 2� (1 ,, 2) ,, (1 ,, 2)

In other words, the semantics is nondeterministic. Nondeterminism is also the root of the
problem with the examples discussed in Section 2.1.

Dunfield’s elaboration semantics, although is type-safe, also suffers from this issue. The
merge 1 ,, 2 can elaborate to 1 or 2 when checked against Int by the typing rules. Her
implementation prioritizes the left part, resulting in a biased merge operator.

3.2 A type-driven semantics for type preservation

An essential problem is that the semantics cannot ignore the types if the reduction is
meant to be type-preserving. Dunfield (2014) notes that “For type preservation to hold, the
operational semantics would need access to the typing derivation”. To avoid runtime type-
checking, we design a type-driven semantics and use type annotations to guide reduction.
Therefore, our λi calculus is explicitly typed, unlike Dunfield’s calculus. Nevertheless, it
is easy to design source languages that infer some of the type annotations and insert them
automatically to create valid λi terms as we will see in Section 4.4. We discuss the main
challenges and key ideas of the design of λi next.

Annotations and type-driven reduction. Our operational semantics follows a stan-
dard call-by-value small-step reduction and it is closely related to Dunfield’s semantics.
However, type annotations are used to guide reduction. For example, in λi we can write
explicitly annotated expressions for which the following reductions are valid:

(1 ,, True) : Int ↪→ 1 (1 ,, True) : Bool ↪→ True

In contrast, the following reductions are not possible:

(1 ,, True) : Bool �↪→ 1 (1 ,, True) : Int �↪→ True

Note also that 1 ,, True without any type annotation is a value and does not reduce.

Typed reduction in action. The crucial component in the operational semantics, which
enables the use of type information during reduction, is an auxiliary typed reduction

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 15

relation v ↪→A v′. This relation is used when we want some value to match a type. Typed
reduction is where type information from annotations in λi “filters” reductions that are
invalid due to a type mismatch. It takes a value and a type as inputs and produces a value
of that type as output. Similarly, to Dunfield’s operational semantics, this process may
result in further reduction of values, unlike many other languages where values can never
be further reduced. Typed reduction is used in two places during reduction:

STEP-ANNOV

v ↪→A v′

v : A ↪→ v′

STEP-BETA

v ↪→A v′

(λx. e : A → B) v ↪→ (e[x 	→ v′]) : B

The first place is in rule STEP-ANNOV. When reduction meets a value v with a type
annotation A, it uses typed reduction to further reduce v against the type A. To see typed
reduction in action, consider a simple merge of primitive values 1 ,, True ,, ‘c’ with an
annotation Int & Char. Using rule STEP-ANNOV, typed reduction is invoked, resulting in:

1 ,, True ,, ‘c’ ↪→Int & Char 1 ,, ‘c’

We can also type-reduce the same value under a similar type but where the two types in
the intersection are interchanged:

1 ,, True ,, ‘c’ ↪→Char & Int ‘c’ ,, 1

The two valid reductions illustrate the ability of typed reduction to create a value that
matches exactly with the shape of the type.

The second place where typed reduction is used is in rule STEP-BETA. In a function
application, the argument can contain more components than what the function expects.
That is because subtyping is allowed for function inputs. For intersection types, we know
A & B <: A. Thus, a function can take an input of type A & B while it expects an A. One
concrete example is (λx. x + 1 : Int → Int) (1 ,, True). The merge term (1 ,, True) provides
an integer 1, while the other component True is useless. Such redundant components are
sometimes even harmful. In the following example, we directly substitute the argument to
demonstrate why we need to do typed reduction first.

(λx. (x ,, False) : Int → Int & Bool) (1 ,, True) ↪→ (1 ,, True ,, False) : Int & Bool

The function expects an integer but is applied to (1 ,, True). Direct substitution (as done
usually by beta-reduction) would lead to a merge containing two different booleans: 1 ,,
True ,, False. Such an ambiguous term is not well typed, as we shall see in Section 3.4.
Thus, such reduction would not be type-preserving.

To avoid the issue with direct substitution, we choose to drop the boolean before beta
reduction by type reducing the argument. The input type annotation of the applied function
is used to guide the typed reduction and therefore cannot be omitted in lambda expressions.
With only one boolean, the final result is well typed.

(λx. (x ,, False) : Int → Int & Bool) (1 ,, True) ↪→ (1 ,, False) : Int & Bool

Note that, even an identity function could change its input value.

(λx. x : Int → Int) (1 ,, ‘c’) ↪→ 1 : Int

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

16 X. Huang et al.

That may look strange from the view of the subtyping models used in conventional OOP
languages, where upcasting has no runtime impact. However, in coercive subtyping (Luo,
1999), subtyping triggers coercions, and such coercions can have an operational effect and
change the underlying value. Previous work on intersection types with the merge oper-
ator (Dunfield, 2014; Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018, 2019)
employ an elaboration semantics with coercive subtyping: the elaboration introduces coer-
cions that transform values. For example, a merge is translated into a pair, and the coercion
from Int & Char to Int is a projection on the pair which takes the first component. In our
semantics, typed reduction plays a similar role to coercions, and our model of subtyping is
quite close to coercive subtyping. Annotations trigger typed reduction, which plays a role
similar to coercions in an elaboration approach.

The examples in this (sub)section have shown some nontrivial aspects of typed reduc-
tion, which must decompose values, and possibly drop (or rather hide via subtyping) some
of the components and permute other components. The details of the typed reduction
relation will be discussed in Section 5. As we shall see next functions introduce further
complications.

3.3 The challenges of functions

Some of the hardest challenges in designing the semantics of λi involve functions. We
discuss them next.

Return types matter. Unlike primitive values, we cannot tell the type of a function by
its form. Although the input type annotation of lambdas helps beta reduction, it is not
enough to distinguish among multiple functions in a merge (e.g. (λx. x + 1) ,, (λx. True))
without runtime type-checking. To be able to select the right function from a merge, in λi,
all functions are annotated with both the input and output types. With such annotations, we
can deal with programs like:

((λf . f 1 : (Int → Int) → Int)) ((λx. x + 1 : Int → Int) ,, (λx. True : Int → Bool))

In this program, we have a lambda that takes a function f as an argument and applies it to
1. The lambda is applied to the merge of two functions of types Int → Int and Int → Bool.
We select the wanted function by comparing their type annotations to the target type in
typed reduction. Otherwise, runtime type-checking would be necessary to recover the full
type of functions.

Annotation refinement. Typed reduction reduces any value v to another value v′ that
has a supertype of the type of v. Subtyping of intersection types leads to selecting
and dropping components from merges. On the other hand, the subtyping of arrow
types requests for type refinements on lambda expressions. Consider a single function
λx. x ,, False : Int → Int & Bool to be reduced under type Int & Bool → Int. To let the
function return an integer when applied to a merge of type Int & Bool, we must change
either the lambda body or the embedded annotation. Since reducing under a lambda body
is not allowed in call-by-value, λi adopts the latter option, and treats the input and output
annotations differently. The input annotation should not be changed as it represents the

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 17

expectation of the function and helps to adjust the input value before substitution. The next
example demonstrates that refining the input type annotation could result in ambiguity
(having both True and False in one merge), which we prevent using rule STEP-BETA.

(λx. x ,, False : Int → Int & Bool : Int & Bool → Int) (1 ,, True)
↪→ { wrong step here: not keeping the input annotation in typed reduction }

(λx. x ,, False : Int & Bool → Int) (1 ,, True)
↪→ { by rule STEP-BETA }

(1 ,, True ,, False) : Int (Does not type check!)

The output annotation, in contrast, must be replaced by Int, representing a future
reduction to be done after substitution. The output of the application then can be thought
of as an integer and can be safely merged with another boolean. The next example
illustrates how λi correctly deals with annotation refinements:

((λx. x ,, False : Int → Int & Bool : Int & Bool → Int) (1 ,, True)) ,, True
↪→ { keep the input annotation and change the output one }

((λx. x ,, False : Int → Int) (1 ,, True)) ,, True
↪→ { by rule STEP-BETA }

(1 ,, False) : Int ,, True
↪→ { by rule STEP-ANNOV }

1 ,, True

This example is similar to the previous one but, additionaly, we merge the expression with
True to demonstrate that the ouput type after beta-reduction, will filter the resulting merge.

Some calculi avoid the problem of function annotation refinement by treating annotated
lambdas as values. For example, the target language of NeColus does not reduce a value
wrapped by a coercion in a function form. In the blame calculus (Wadler & Findler, 2009),
a value with a cast from an arrow type to another arrow type is still a value.

3.4 Disjoint intersection types and consistency for determinism

Even if the semantics is type directed and it rules out reductions that do not preserve
types, it can still be nondeterministic. To solve this problem, we employ the disjointness
restriction that is used in calculi with disjoint intersection types (Oliveira et al., 2016) and
the novel notion of consistency. Both disjointness and consistency play a fundamental role
in the proof of determinism.

Disjointness. Two types are disjoint (written as A ∗ B), if any common supertypes that
they have are top-like types (i.e. supertypes of any type; written as �C�).

Definition 3.1 (Disjoint types). A ∗ B ≡ ∀C if A <: C and B <: C then �C�
If two types are disjoint (e.g. (Int & Char) ∗ Bool), their corresponding values do not over-
lap (e.g. 1 ,, ‘c’ and True). The only exceptions are top-like types, as they are disjoint with
any type (Alpuim et al., 2017). Since every value of a top-like type has the same effect,
typed reduction unifies them to a fixed result. Thus the disjointness check in the following

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

18 X. Huang et al.

typing rule guarantees that e1 and e2 can be merged safely, without any ambiguities. For
example, this typing rule does not accept 1 ,, 2 or True ,, 1 ,, False, as two subterms of the
merge have overlapped types (in this case, the same type Int and Bool, respectively).

TYP-MERGE

� � e1 ⇒ A � � e2 ⇒ B A ∗ B

� � e1 ,, e2 ⇒ A & B

Note that in this rule, ⇒ denotes the synthesis mode in bidirectional typing. In typing
judgements with such a mode, types are synthesized from the term, rather than checked.

Consistency. Recall the rule DSTEP-SPLIT in Dunfield’s semantics: E� E ,, E. It dupli-
cates terms in a merge. Similar things can happen in our typed reduction if the type has
overlapping parts, which is allowed, for example, in an expression 1 : Int & Int. Note that
in this expression the term 1 can be given type annotation Int & Int since Int <: Int & Int.
During reduction, typed reduction is eventually used to create a value that matches the
shape of type Int & Int by duplicating the integer:

1 ↪→Int & Int 1 ,, 1

Note that the disjointness restriction does not allow sub-expressions in a merge to have
the same type: 1 ,, 1 cannot type-check with rule TYP-MERGE. To retain type preservation,
there is a special typing rule for merges of values, where a novel consistency check is used
(written as v1 ≈spec v2):

TYP-MERGEV

· � v1 ⇒ A · � v2 ⇒ B v1 ≈spec v2

� � v1 ,, v2 ⇒ A & B

This rule is not designed to accept more programs written by users. Instead, it takes care
of expressions like 1 ,, 1 that may appear at runtime. Mainly, consistency allows values
to have overlapped parts as far as they are syntactically equal. For example, 1 ,, True and
1 ,, ‘c’ are consistent, since the overlapped part Int in both of merges has the same value.
True and ‘c’ are consistent because they are not overlapped at all. But 1 ,, True and 2 are
not consistent, as they have different values for the same type Int. When two values have
disjoint types, they must be consistent. For merges of such values, both rule TYP-MERGEV

and rule TYP-MERGE can be applied, and the types always coincide. In λi, consistency is
defined in terms of typed reduction:

Definition 3.2 (Consistency). Two values v1 and v2 are said to be consistent (written
v1 ≈spec v2) if, for any type A, the result of typed reduction for the two values is the same.

v1 ≈spec v2 ≡ ∀A if v1 ↪→A v′
1 and v2 ↪→A v′

2 then v′
1 = v′

2

Although the specification of consistency is decidable and an equivalent algorithmic defini-
tion exists (later defined in Figure 14), an algorithmic definition is not required. In practice,
in a programming language implementation, the rule TYP-MERGEV may be omitted, since,
as stated, its main purpose is to ensure that runtime values are type-preserving. On the other
hand, after preservation is proved in metatheory, runtime values are guaranteed to be well
typed and therefore there is no need to employ runtime type-checking.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 19

Note that the original λi (Oliveira et al., 2016) is stricter than our variant of λi and for-
bids any intersection types which are not disjoint. That is to say, the term 1 : Int & Int is
not well-typed because the intersection Int & Int is not disjoint. In the original λi calculus
disjointness checking is done by defining type well-formedness and forbidding all inter-
sections of two nondisjoint types. However, this approach is more conservative and less
expressive.

The idea of allowing unrestricted intersections, while only having the disjointness
restriction for merges, was first employed in the NeColus calculus (Bi et al., 2018). λi fol-
lows such an idea and 1 : Int & Int is well-typed in λi. Allowing unrestricted intersections
adds extra expressive power. For instance, in calculi with polymorphism, unrestricted
intersections can be used to encode bounded quantification (Cardelli & Wegner, 1985),
whereas with disjoint intersections only such an encoding does not work (Bi et al., 2019;
Xie et al., 2020). Various authors, including Pierce and Castagna, have (informally)
observed that some form of bounded quantification can be encoded via (unrestricted)
intersection types (Pierce, 1991; Castagna & Xu, 2011). Xie et al. (2020) formalize this
encoding precisely. For further details on this encoding, as well as to why unrestricted
intersections are needed, we refer to the work of Xie et al.

Revisiting the examples with merges and subtyping. Recall the first example presented
in Section 2, rewritten here to use a lambda instead of a let expression:

(λx. (2 ,, x) + 3 : Bool → Int) (True ,, 1)

As argued in Section 2, in a naive untyped semantics, examples like the above are
problematic since they can lead to nondisjoint merges appearing at runtime. So, how does
the TDOS approach deal with such an example? Here are the full reduction steps:

(λx. (2 ,, x) + 3 : Bool → Int) (True ,, 1)
↪→ ((2 ,, True) + 3) : Int by rule STEP-BETA

↪→ 5 : Int reduction for +
↪→ 5 by rule STEP-ANNOV

First, the input value is filtered via the typed reduction against the input type Bool.
Importantly, only the selected part True is substituted in the body of the lambda during
beta-reduction. Then, the expression (2 ,, True) + 3 evaluates to 5. In the process, + acts
like a lambda with annotation Int → Int → Int. Finally, the return-type Int filters the result,
which does not change it in this case.

The second example with records is slightly more involved, but can be dealt with sim-
ilarly. In the example with records, besides the use of the let expressions, which are not
present in λi or λ+

i , we assume some type-inference that avoids some explicit type annota-
tions. Therefore, to encode such an example in λ+

i , we must first introduce an explicit type
annotation. The SEDEL language, in its elaboration process to the Fi core language (which
is similar to λi or λ+

i , except for the addition of polymorphism), inserts such annotations
automatically (see also Section 8.3).

We show the full reduction steps, starting from the original example encoded as a
λ+

i expression using a lambda instead of a let expression, and with an extra annotation
({m : Int}) in Figure 2. In this example, a function that expects a record of Bool takes a

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

20 X. Huang et al.

Fig. 2. Reduction for the record example.

merge of two records. Only the one with the expected label and field is selected via typed
reduction. Later, the annotation {m : Int} helps to drop the record with unmatched labels
before projection. Afterward, the reduction is straightforward.

3.5 The challenges of distributivity

The λi calculus captures the basic functionality of the merge operator with a simple sub-
typing relation with intersection types. However, such a simple subtyping relation lacks
distributivity rules that enable, for instance, subtyping statements such as

(A → B) & (C → D) <: A & C → B & D

where the intersections distribute over the function types. Distributivity in a calculus with
a merge operator is interesting because it enables nested composition, which essentially
reflects the distributivity seen at the type level into the term level. Therefore, a merge of
two functions can be treated as a single function where the inputs and outputs of the two
original functions have intersection types.

The λ+
i calculus extends λi with distributivity rules for subtyping and nested compo-

sition. The subtyping relation for λ+
i is based on the well-known subtyping relation of

Barendregt, Coppo and Dezani-Ciancaglini (1983). Adding BCD style subtyping into the
type system of λi enables interesting applications, but it also brings more challenges.

Splittable arrow types. Without distributivity, if an arrow type is a supertype of an inter-
section of multiple types, then it must be a supertype of one of those types. Conversely,
when doing typed reduction of a merge under an arrow type, we will obtain a single func-
tion (one of the components of the merge) as a result. However, in λ+

i , we are now faced
with the following kind of typed reduction due to the change in subtyping:

(λx. x : Int → Int) ,, (λx. True : Int → Bool) ,, (λx. ‘c’ : Int → Char)

↪→Int → Int & Char (λx. x : Int → Int) ,, (λx. ‘c’ : Int → Char)

Even though we are doing typed reduction under an arrow type, we do not obtain a function
as a result. Instead what we have is a merge of two functions. This is because, with the
distributivity of arrow types, multiple components present in a merge can contribute to the

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 21

final result. For instance, in the reduction above both the first and the last lambdas must be
present to ensure that the resulting value “behaves” as a function of type Int → Int & Char.

Parallel application. One consequence of allowing merges to have arrow types is that
a beta reduction for applications is not enough, since merges of functions can also be
applied to values. We use a relation called the parallel application to deal with applications
of merges to another value. Parallel application distributes the input to every lambda in a
merge, and beta reduces them in parallel. From the point of view of the small-step seman-
tics, the parallel application process, like typed reduction, is finished in a single step, like
the following example.

(λx. x + 1 : Int → Int ,, (λx. True : Int → Bool ,, λx. ‘c’ : Int → Char)) 2

↪→ (2 + 1) : Int ,, (True : Bool ,, ‘c’ : Char)

Generalized consistency. In λ+
i , a merge of function values, once applied to an argu-

ment, can step to a merge of expressions. In the previous example, for instance, one of
the components in the resulting merge is (2 + 1) : Int, which is an expression but not a
value. This raises a challenge to the consistency definition employed in λi, which can
only relate values (but not arbitrary expressions). Therefore we have to extend the defi-
nition of consistency in λ+

i to include such expressions. Intuitively, two expressions can
be safely merged if their reduction result is the same, like (2 + 1) : Int or 3 ,, (2 + 1).
However, there are some difficulties regarding how to reason about expressions like the lat-
ter one. Consider two nonterminating programs, comparing them may never end. Instead,
we model consistency with a syntactic definition, which is less powerful in the sense that
it does not allow 3 ,, (2 + 1). But such a definition is enough to accept the terms generated
by parallel application, which keeps the syntactic equivalence among the components of
merges.

Records. Together with BCD subtyping, single-field records and record types are added
into λ+

i . There is a distributivity rule in subtyping for records as well: {l : A} & {l : B}� {l :
A & B}. A merge of several records can be used as a single record, as long as the records
have the same field name. This is similar to function application where functions in one
merge share one input. In reduction, we treat record projection like function application.
That is to say, the parallel application relation not only applies functions in a merge in
parallel but also projects records in a merge at the same time.

({l = True} ,, {l = 2}).l ↪→ True ,, 2

4 The λi calculus: Syntax, subtyping and typing

This section presents the type system of λi: a calculus with intersection types and a
merge operator. This calculus is a variant of the original λi calculus (Oliveira et al.,
2016) (which is inspired by Dunfield (2014)’s calculus) with fix points and explicitly
annotated lambdas instead of unannotated ones. Explicit annotations are necessary for the
type-directed operational semantics of λi to preserve determinism. The TDOS can handle

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

22 X. Huang et al.

nonterminating programs, while some calculi using elaboration and coherence proofs (Bi
et al., 2018, 2019) do not support nonterminating programs. Dunfield (2014)’s calculus
supports recursion, but it is incoherent.

4.1 Syntax

The syntax of λi is:

Types A, B ::= Int | Top | A → B | A & B
Expressions e ::= x | i | � | e : A | e1 e2 | λx. e : A → B | e1 ,, e2 | fix x. e : A
Values v ::= i | � | λx. e : A → B | v1 ,, v2
Contexts � ::= · | �, x : A
Typing modes ⇔ ::= ⇒|⇐

Types. Meta-variables A and B range over types. Two basic types are included: the integer
type Int and the top type Top. Function types A → B and intersection types A & B can be
used to construct compound types.

Expressions. Meta-variable e ranges over expressions. Expressions include some stan-
dard constructs: variables (x); integers (i); a canonical top value �; annotated expressions
(e : A); and application of a term e1 to term e2 (denoted by e1 e2). Lambda abstractions
(λx.e : A → B) must have a type annotation A → B, meaning that the input type is A and
the output type is B. The expression e1 ,, e2 is the merge of expressions e1 and e2. Finally,
fix points fix x. e : A (which also require a type annotation) model recursion.

Values, contexts, and typing modes. Meta-variable v ranges over values. Values include
integers, the top value �, lambda abstractions, and merges of values. Typing context �

tracks bound variables (x) with their type A. ⇔ stands for the mode of a bidirectional typing
judgment: ⇒ is the synthesis mode; ⇐ is the checking mode. They differ on whether
the type is an output (inferred) or an input (to be checked). The details of bidirectional
typechecking will be discussed in Section 4.3.

4.2 Subtyping and disjointness

Subtyping. The subtyping rules are shown at the top of Figure 3. Here we follow the
formalization by Davies & Pfenning (2000), except that we generalize rule S-TOP to allow
any top-like types to be supertypes of any type. The original subtyping relation is known
to be reflexive and transitive (Davies & Pfenning, 2000). We proved the reflexivity and
transitivity of the extended subtyping relation as well.

Top-like types and arrow types. As suggested by its name, a top-like type is both
a supertype and a subtype of Top. Besides Top, top-like types contain intersection
types like Top & Top. In the middle of Figure 3 is its formal definition. Notably,
rule TL-ARR allows arrow types to be top-like when their return types are top-like. This

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 23

Fig. 3. Subtyping, top-like types, and disjointness of λi.

enlargement of top-like types is inspired by the following rule in BCD-style subtyping
(Barendregt et al., 1983):

Top <: Top → Top
BCD-TOPARR

We will come back to our motivation for allowing such top-like types in Section 4.3.

Disjointness. Section 3.4 presents the specification of disjointness. Such a specification
is a liberal version of the original definition in λi. In our definition, A and B can be top-
like types, which was forbidden in λi. An equivalent algorithmic definition of disjointness
(A ∗a B) is presented in the bottom of Figure 3, which is the same as the definition in the
NeColus calculus (Bi et al., 2018).

Lemma 4.1 (Disjointness properties). Disjointness satisfies:

1. A ∗ B if and only if A ∗a B.
2. if A ∗ (B1 → C) then A ∗ (B2 → C).
3. if A ∗ B & C then A ∗ B and A ∗ C.

4.3 Bidirectional typing

We use a bidirectional type system for λi to avoid a general subsumption rule, which
causes ambiguity in the presence of a merge operator. A bidirectional type system has
two kinds of typing judgments, each associated with one mode. The checking judgment

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

24 X. Huang et al.

Fig. 4. Typing of λi.

� � e ⇐ A says that in the typing environment �, the expression e can be checked against
type A, while the synthesis judgment � � e ⇒ A infers the type A from � and e. Unlike
the original type system of λi (Figure 5), types have no well-formedness restriction, and
expressions like 1 : Int & Int are allowed. This generalization is inspired by the NeColus
calculus (Bi et al., 2018), which is the first to introduce unrestricted intersections to a
calculus which supports disjoint intersection types.

In Figure 4, most typing rules directly follow the bidirectional type system of the
original λi, including the merge rule TYP-MERGE, where disjointness is used. When
two expressions have disjoint types, any parts from each of them do not overlap in
the types. Therefore, their merge does not introduce ambiguity. With this restriction,
rule TYP-MERGE does not accept expressions like 1 ,, 2 or even 1 ,, 1. On the other hand,
the novel rule TYP-MERGEV allows consistent values to be merged regardless of their
types. It accepts 1 ,, 1 while still rejecting 1 ,, 2. The consistency specification used in
rule TYP-MERGEV is given in Definition 3.1. It is for values only, and values are closed.
Therefore, the premises should have an empty context (denoted by ·). As discussed in
Section 3.4, together the two rules support the determinism and type preservation of the
TDOS, and rule TYP-MERGEV does not need to be included in an implementation. The
type system with the remaining rules is algorithmic. The rule TYP-FIX is new and allows
fix points. In addition, two rules are revised: rule TYP-ABS and rule TYP-APP. Since
lambdas are now fully annotated in the current system, rule TYP-ABS is changed from
checking to synthesis mode. Next, we will discuss how rule TYP-APP is generalized with
the applicative distributivity relation.

Applicative distributivity and rule TYP-APP. The top of Figure 4 shows the applicative
distributivity relation, which relates a type with one of its arrow supertypes. Applicative

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 25

distributivity is used in rule TYP-APP, where a term is expected to play the role of a func-
tion. Therefore, a term of type Top can be used as if it has type Top → Top and be applied
to any terms. For example, � 1 is allowed and it evaluates to �.

Top-like types and merges of functions. We can finally come back to the motivation
to allow arrow types in top-like types and depart from Dunfield’s calculus. If no arrow
types are top-like, two arrow types A → B and C → D are never disjoint in terms of
Definition 3.1, as they have a common supertype A & C → Top. Consequently, we can
never create merges with more than one function, which is quite restrictive. For Dunfield
this is not a problem because she does not have the disjointness restriction. So her calculus
supports merges of any functions (but it is incoherent). In the original λi an ad hoc solu-
tion is proposed, by forcing the matter and employing the syntactic definition of top-like
types in Figure 3 in disjointness, while keeping the standard rule A <: Top in subtyping.
However this means that top-like function types are not supertypes of Top, which contra-
dicts the intended meaning of a top-like type. In contrast, the approach we take in λi is
to change the rule S-TOP in subtyping. Now Top <: (A & C → Top) is derivable and thus
A & C → Top is genuinely a top-like type. In turn, this makes merges of multiple functions
typeable without losing the intuition behind top-like types.

Checked subsumption. Unlike many calculi where there is a general subsumption rule
that can apply anywhere, λi employs bidirectional type-checking, where subsumption is
controlled. The subsumption (rule TYP-SUB) is in checking mode only. The checking mode
is explicitly triggered by a type annotation, either via the rule TYP-ANNO, rule TYP-ABS

or rule TYP-FIX. The annotation rule TYP-ANNO acts as explicit subsumption and assigns
supertypes to expressions, provided a suitable type annotation. There is a strong motiva-
tion not to include a general (implicit) subsumption rule in calculi with disjoint intersection
types. With an implicit subsumption rule, disjointness is insufficient to prevent some
ambiguous terms, as shown in the following example.

SUB

MERGE

SUB
· � 1 ⇒ Int Int <: Top

· � 1 ⇒ Top · � 2 ⇒ Int Top ∗ Int

· � 1 ,, 2 ⇒ Top & Int Top & Int <: Int & Int

· � 1 ,, 2 ⇒ Int & Int

Via the typical implicit subsumption, type Top is assigned to integer 1. Then 1 can be
merged with 2 of type Int since their types are disjoint. At that time, the merged term
1 ,, 2 has type Top & Int, which is a subtype of Int & Int. By applying the subsumption
rule again, the ambiguous term 1 ,, 2 finally bypasses the disjointness restriction, having
type Int & Int. However, note that with rule TYP-ANNO we can still type-check the term
(1 : Top) ,, 2, and reducing that term under the type Int can only unambiguously result in
2. The type annotation is key to prevent using the value 1 as an integer.

Typing properties. The bidirectional type-checking system has some properties that
are important for the type soundness proof presented in Section 5. First, each term has
only one synthesized type. Second, any well-typed term has a synthesized type, which

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

26 X. Huang et al.

is the principal type. Third, the type in a checking judgment can be replaced by a
supertype.

Lemma 4.2 (Synthesis uniqueness). If � � e ⇒ A and � � e ⇒ B , then A = B.

Lemma 4.3 (Synthesis principality). If � � e ⇐ A then there exists type B, s.t. � � e ⇒
B and B <: A.

Lemma 4.4 (Checking subsumption). If � � e ⇐ A and A <: B, then � � e ⇐ B.

4.4 Completeness with respect to the original type system

In this section, we discuss the relationship between the original λi (Oliveira et al., 2016)
and the new variant. To dmbiguate between the two calculi, we use λi '16 to denote the
original calculus and λi for our variant. We prove that the type system of the new variant is
at least as expressive as the λi '16 calculus1. The syntax of λi '16 (minus pairs and product
types) is almost the same as λi, except that there are no fix points and the lambdas do not
have any type annotations. Thus, lambdas can only be typed in checked mode. Figure 5
presents an excerpt of the type system. The type system has a type well-formedness defi-
nition and a slightly different disjointness relation compared to our variant of λi. Also note
that the rule for the merge of values (rule TYP-MERGEV) is absent because the disjointness
restriction in well-formedness prevents duplicated values.

Some details need to be explained before presenting the completeness theorem. First,
subtyping in our variant of λi is stronger due to top-like types. Second, top-like types are
disjoint to any type in our variant, while the disjointness in the original λi '16 is restricted
to types that are not top-like. We extended the bidirectional type system of the original λi

'16 with recursion and designed an elaboration from the extended system to λi. We proved
a theorem that shows the type system of λi can type check any well-typed terms in λi '16,
with type annotations inserted based on the typing derivation:

Theorem 4.1 (Completeness of typing with respect to the extended original λi). If � |=
E ⇔ A ↪→ e , then � � e ⇔ A.

The result means that the type system of λi '16 (or any type system equivalent to it) can
be used as a surface language where many of the explicit annotations of λi are inferred
automatically. That is to say, the λi '16 calculus can be translated into λi without loss of
expressivity or flexibility. Moreover, the extension of fix points further shows that some
type inference with recursion is feasible.

5 A type-directed operational semantics for λi

This section introduces the type-directed operational semantics for λi. The operational
semantics uses type information arising from type annotations to guide the reduction

1 Note that the original λi includes pairs and product types. In the Coq formalization we have a variant with
pairs and product types as well. It has all the previous properties proved in this section. For simplicity and
consistency of presentation, we use the variant without pairs and product types in the paper.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 27

Fig. 5. The type system of the original λi (extended with fix points). Three rules that
relate with product types are ignored.

process. In particular, a new relation called typed reduction is used to further reduce values
based on the contextual type information, forcing the value to match the type structure. We
show two important properties for λi: determinism of reduction and type soundness. That
is to say, there is only one way to reduce an expression according to the small-step relation,
and the process preserves types and never gets stuck.

5.1 Typed reduction of values

To account for the type information during reduction, λi uses an auxiliary reduction rela-
tion called typed reduction for reducing values under a certain type. Typed reduction
v ↪→A v′ reduces the value v under type A, producing a value v′ that has type A. It arises
when given a value v of some type, where A is a supertype of the type of v, and v needs
to be converted to a value compatible with the supertype A. Typed reduction ensures that
values and types have a strong correspondence. If a value is well-typed, its principal type
can be told directly by looking at its syntactic form. Typed reduction can be viewed as
a relation that gives a runtime interpretation to subtyping, and the rules of typed reduc-
tion are aligned in a one-by-one correspondence with subtyping. While subtyping states
what kind of conversions are valid at the type level, typed reduction gives an operational
meaning for such conversions on values.

Figure 6 shows the typed reduction relation. Rule TR-TOP expresses the fact that a
top-like type is the supertype of any type, which means that any value can be reduced
under it. The top-like type is restricted to be ordinary (Davies & Pfenning, 2000),

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

28 X. Huang et al.

Fig. 6. Typed reduction of λi.

to avoid overlapping with the rule TR-AND. Ordinary types are all types that are not
intersections:

A Ordinary (Ordinary Types)

O-TOP

Top Ordinary

O-INT

Int Ordinary

O-ARROW

A → B Ordinary

The rule TR-TOP indicates that under such a type, any value reduces to the top value
�. Recall that the top-like definition in Figure 3 includes arrow types whose return type
is top-like, thus the rule TR-TOP covers values with such top-like arrow types as well.
Rule TR-LIT expresses that an integer value reduced under the supertype Int is just the
integer value itself. Rule TR-ARROW states that a lambda value λx. e : A → B, under a non-
top-like type C → D, evaluates to λx. e : A → D if C <: A and B <: D. The restriction that
C → D is not top-like avoids overlapping with rule TR-TOP. Importantly rule TR-ARROW

changes the return type of lambda abstractions, and keeps the input type, since it is needed
at runtime (by rule STEP-BETA which is discussed in Section 5.3).

Intersections and merges. In the remaining rules, we first decompose intersections. Then
we only need to consider ordinary types. We take care of the value by going through
every merge, until both the value and type are in a basic form. Rule TR-MERGEVL and
rule TR-MERGEVR are a pair of rules for reducing merges under an ordinary type. Since
the type is not an intersection, the result contains no merge. Usually, we need to select
between the left part and right part of a merge according to the type. The values of disjoint
types do not overlap on non-top-like types. For example, 1 ,, (λx. x : Int → Int) ↪→Int 1
selects the left part. For top-like types, no matter which rule is applied, the reduction result
is determined by the type only, as the rule TR-TOP suggests.

Rule TR-AND is the rule that deals with intersection types. It says that if a value v can be
reduced to v1 under type A and can be reduced to v2 under type B, then its reduction result
under type A & B is the merge of two results v1 ,, v2. Note that this rule may duplicate
values. For example, 1 ↪→Int & Int 1 ,, 1. Such duplication requires special care, since the
merge violates disjointness. The specially designed typing rule (rule TYP-MERGEV) uses
the notion of consistency (Definition 3.2) instead of disjointness to type-check a merge
of two values. Note also that such duplication implies that sometimes it is possible to
use either rule TR-MERGEVL or rule TR-MERGEVR to reduce a value. For example, 1 ,,

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 29

1 ↪→Int 1. The consistency restriction in rule TYP-MERGEV ensures that no matter which
rule is applied in such a case, the result is the same.

Example. A larger example to demonstrate how typed reduction works is

(λx. (x ,, ‘c’) : Int → Int & Char) ,, (λx. x : Bool → Bool) ,, 1

↪→Int & (Int→Int) 1 ,, (λx. (x ,, ‘c’) : Int → Int)

The initial value is the merge of two lambda abstractions and an integer. The target type is
Int & (Int → Int). Because the target type is an intersection, typed reduction first employs
rule TR-AND to decompose the intersection into Int and Int → Int. Under type Int the value
reduces to 1, and under type Int → Int it will reduce to λx. x ,, ‘c’ : Int → Int. Therefore,
we obtain the merge 1 ,, (λx. x ,, ‘c’ : Int → Int) with type Int & (Int → Int).

Basic properties of typed reduction. Some properties of typed reduction can be proved
directly by induction on the typed reduction derivation. First, when typed reduction is
under a top-like type, the result only depends on the type. Second, typed reduction produces
the same result whenever it is done directly or indirectly. Third, if a well-typed value can
be type-reduced by some type, its synthesized type must be a subtype of that type. The
three properties are formally stated next:

Lemma 5.1 (Top-like typed reduction). If �A�, v1 ↪→A v′
1 , and v2 ↪→A v′

2 then v′
1 = v′

2.

Lemma 5.2 (Typed reduction transitivity). If v ↪→A v1, and v1 ↪→B v2, then v ↪→B v2.

Lemma 5.3 (Subtyping preservation). If v ↪→A v′ and · � v ⇒ B, then B <: A.

Note that Lemma 5.3 relates typed reduction and subtyping.

5.2 Consistency, determinism and type soundness of typed reduction

Consistent values, as specified in Definition 3.2, introduce no ambiguity in typed reduction.
If two consistent values both can reduce under a type, they should produce the same result.
The consistency restriction ensures that duplicated values in a merge type-check, but it
still rejects merges with different values of the same type. A value of a top-like type is
consistent with any other value. It only type-reduces under top-like types, which leads to a
fixed result decided by the type.

Relating disjointness and consistency. Assuming that the synthesized types of two val-
ues are disjoint, from Lemma 5.3, we can conclude that when the two values both reduce
under a type, that type must be a common supertype of their principal types, which is
known to be top-like. Furthermore, Lemma 5.1 implies that their reduction results are
always the same under such top-like types, so they are consistent. The above discussion
concludes that values with disjoint types evaluate to the same result under the same type,
i.e. they are consistent. This is captured by the following lemma:

Lemma 5.4 (Consistency of disjoint values). If A ∗ B, · � v1 ⇒ A, and · � v2 ⇒ B, then
v1 ≈spec v2.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

30 X. Huang et al.

Fig. 7. Runtime subtyping of λi.

Determinism of typed reduction. The merge construct makes it hard to design a deter-
ministic operational semantics. Disjointness and consistency restrictions prevent merges
like 1 ,, 2, and bring the possibility to deal with merges based on types. Typed reduc-
tion takes a well-typed value, which, if it is a merge, must be consistent (according to
Lemma 5.4). When the two typed reduction rules for merges (rule TR-MERGEVL and
rule TR-MERGEVR) overlap, no matter which one is chosen, either value reduces to the
same result due to consistency. Indeed our typed reduction relation always produces a
unique result for any legal combination of the input value and type. This serves as a
foundation for the determinism of the operational semantics.

Lemma 5.5 (Determinism of typed reduction). For every well-typed v (that is there is
some type B such that · � v ⇒ B), if v ↪→A v1 and v ↪→A v2 then v1 = v2.

Runtime subtyping. While most typed reduction rules produce values of the reduc-
tion type (in synthesis mode), two rules are more relaxed. Rule TR-TOP offers � for
any top-like types. Rule TR-ARROW keeps the original input annotation in the reduced
lambda:

(λx. x ,, 2 : Char → Char & Int) ↪→(Char & Int→Char) λx. x ,, 2 : Char → Char

Precisely speaking, the synthesized type of the result in typed reduction is a runtime sub-
type of the reduction type. Defined in Figure 7, runtime subtyping is a restricted form of
subtyping. Roughly, runtime subtyping only allows subtyping in contravariant positions
except for top-like types.

Runtime subtyping is introduced because we need to find a middle point between
equality and subtyping to describe how typed reduction preserves the reduction type
(Lemma 5.7). If A is the reduction type and B is the type of the output value in the typed
reduction relation, we cannot simply say that B = A. But knowing only that B <: A is not
enough. It does not even prevent directly using the input value as the result. Runtime sub-
typing ensures that the reduction result behaves like a term of the reduction type, and it
keeps transitivity as well. Thus, after multiple steps of reduction, the ultimate result still
has a runtime subtype in terms of the type of the initial expression. Therefore, the preser-
vation property of λi is safely relaxed, to allow the expression type to become more and
more specific during reduction.

Type soundness of typed reduction. Via the transitivity lemma (Lemma 5.2) and the
determinism lemma (Lemma 5.5), we obtain the following property: any reduction results
of the given value are consistent.

Lemma 5.6 (Consistency after typed reduction). If v is well typed , and v ↪→A v1 , and
v ↪→B v2 then v1 ≈spec v2.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 31

The lemma shows that the reduction result of rule TR-AND is always made of consistent
values, which is needed in type preservation via the typing rule TYP-MERGEV. Then, a
(generalized) type preservation lemma on typed reduction can be proved.

Lemma 5.7 (Preservation of typed reduction). If · � v ⇐ A and v ↪→A v′, then ∃B, · �
v′ ⇒ B and B � A.

In general, this lemma shows that typed reduction produces well-typed values: it shows
that if a value is checked by type A and it can be type reduced by A, then the reduced value
is always well typed, and its synthesized type B is a runtime subtype of A. What is more,
typed reduction is guaranteed to progress for a given value and a type it can be checked
against. That is to say, from a well-typed value, we can derive the existence of a typed
reduction judgement and the well typedness of the reduction result.

Lemma 5.8 (Progress of typed reduction). If · � v ⇐ A, then ∃v′, v ↪→A v′.

Fewer checks on typed reduction. In rule TR-ARROW (in Figure 6), the premise A1 <:
B1 is redundant for reduction. Since we only care about well-typed terms being reduced,
such a check has already been guaranteed by typing. Therefore, an actual implementation
could omit that check. The reason why we keep the premise is that typed reduction plays
another role in our metatheory: it allows us to define consistency. Consistency is defined
for any (untyped) values, and the extra check there tightens up the definition of consistency.
With the premise, typed reduction directly implies a subtyping relation between the type
of the reduced value and the reduction type. (See Lemma 5.3: If v ↪→A v′, and · � v ⇒ B,
then B <: A.)

One could wonder if this property is unnecessary because it may be derived by type
preservation of reduction. Note that whenever typed reduction is called in a reduction rule,
the subtyping relation can be obtained from the typing derivation of the reduced term. For
example, reducing v : A will type-reduce v under A. If v : A is well typed, then we could in
principle prove that the type of v is a subtype of A. Unfortunately, the above proof is hard
to attain in practice. Because type preservation depends on consistency, and consistency is
defined by typed reduction. Once the subtyping property relies on type preservation, there
is a cyclic dependency between the properties.

5.3 Reduction

The reduction rules are presented in Figure 8. Recall that rule TYP-APP is generalized using
applicative distributivity. Correspondingly, the top value consumes every input it meets
using rule STEP-TOP. Pierce & Steffen (1997) employ a similar rule in a calculus with
higher-order subtyping. Rule STEP-BETA and rule STEP-ANNOV are the two rules relying
on typed reduction judgments. Rule STEP-BETA says that a lambda value λx. e : A → B
applied to value v reduces by replacing the bound variable x in e by v′. Importantly, v′

is obtained by type-reducing v under type A. In other words, in rule STEP-BETA further
(typed) reduction may be necessary on the argument depending on its type. This is unlike
many other calculi where values are in a final form and no further reduction is needed

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

32 X. Huang et al.

Fig. 8. Call-by-value reduction of λi.

before substitution. The rule STEP-ANNOV says that an annotated v : A can be reduced to
v′ if v type-reduces to v′ under type A.

Metatheory of reduction. When designing the operational semantics of λi, we want it to
have two properties: determinism of reduction and type soundness. That is to say, there is
only one way to reduce an expression according to the small-step relation, and the process
preserves types and never gets stuck. Similar lemmas on typed reduction were already
presented, which are necessary for proving the following theorems, mainly in cases related
to rule STEP-ANNOV and rule STEP-BETA.

Theorem 5.1 (Determinism of ↪→). If · � e ⇐ A, e ↪→ e1, e ↪→ e2, then e1 = e2.

The preservation theorem states that during reduction, the program is always well typed,
and the reduced expression can be checked against the original type.

Theorem 5.2 (Type preservation of ↪→). If · � e ⇔ A, and e ↪→ e′ then · � e′ ⇐ A.

This theorem is a corollary of the following lemma:

Lemma 5.9 (Generalized type preservation of ↪→). If · � e ⇔ A, and e ↪→ e′ then ∃B,
· � e′ ⇔ B and B � A.

The lemma has a similar structure to Lemma 5.7: the type of the reduced result is a runtime
subtype (Figure 7) of the target type. Note that ⇔ in this and the following lemmas is a
meta-variable for typing mode. It means both checking and synthesis mode work for it,
as long as the conclusion and the premise have the same mode. To prove Lemma 5.9, the
substitution lemma has to be adapted. The substituted term is allowed to have a runtime
subtype of the expected type. The type of the result, accordingly, is a subtype of the initial
type. For example, a lambda of type Int → Int can be used when a term of Int & Char → Int
is expected. It can be viewed as a combination of type narrowing via runtime subtyping
and the conventional substitution lemma.

Lemma 5.10 (Substitution preserves types). For any expression e, if �1, x : B, �2 � e1 ⇔
A and �2 � e2 ⇒ B′, B′ � B, then �1, �2 � e1[x 	→ e2] ⇔ A′ and A′ � A.

Finally, the progress theorem promises that reduction never gets stuck. Its proof relies on
the progress lemma of typed reduction.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 33

Fig. 9. Type erasure of λi.

Theorem 5.3 (Progress of ↪→). If · � e ⇐ A, then e is a value or ∃e′, e ↪→ e′.

5.4 Soundness with respect to Dunfield’s operational semantics

Dunfield’s nondeterministic operational semantics motivates our TDOS. Here, we show
the soundness of the operational semantics of λi with respect to a slightly extended version
of Dunfield’s semantics. The need for extending Dunfield’s original semantics is mostly
due to the generalization of the rule S-TOP in subtyping. In the conference version of this
paper (Huang & Oliveira, 2020) we also discuss a variant of λi (which uses the original
subtyping) and show that such a variant requires no changes to Dunfield’s semantics.

Dunfield’s original reduction rules are presented in Fig 1. We extend her operational
semantics with the following two rules.

E� E′ (The Extension of Dunfield’s Calculus)

DSTEP-TOP

V ��

DSTEP-TOPARR

� V ��
Rule DSTEP-TOPARR states that the value � can be used as a lambda which returns �, sug-
gested by the newly added top-like types for arrow types returning Top. Rule DSTEP-TOP

states that any value can be reduced to �, corresponding to A <: Top. Dunfield avoids
having a rule DSTEP-TOP by performing a simplifying elaboration step in advance:

� � V : Top ↪→ � DUNFIELD-TYPING-T

With such a rule, values of type Top are directly translated into � and do not need any
further reduction in the target language. We do not have such an elaboration step. Instead
we extend the original semantics with the two rules above.

Type erasure. Differently from Dunfield’s calculus, λi uses type annotations in its syntax
to obtain a direct operational semantics. | e | erases annotations in term e. By erasing all
annotations, terms in λi can be converted to terms in Dunfield’s calculus (and also the
original λi). The annotation erasure function is defined in Figure 9. Note that for every
value v in λi, | v | is a value as well.

Soundness. Given Dunfield’s extended semantics, we can show a theorem that each step
in the TDOS of λi corresponds to zero, one, or multiple steps in Dunfield’s semantics.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

34 X. Huang et al.

Theorem 5.4 (Soundness of ↪→ with respect to Dunfield’s semantics). If e ↪→ e′, then
| e |�∗ | e′ |.

A necessary auxiliary lemma for this theorem is the soundness of typed reduction.

Lemma 5.11 (Soundness of typed reduction with respect to Dunfield’s semantics). If
v ↪→A v′, then | v |�∗ | v′ |.
This lemma shows that although the type information guides the reduction of values, it
does not add additional behavior to values. For example, a merge can step to its left
part (or the right part) with rule TR-MERGEVL (or rule TR-MERGEVR), corresponding to
rule DSTEP-UNMERGEL (or rule DSTEP-UNMERGER). Rule TR-AND can be understood
as a combination of splitting (rule DSTEP-SPLIT V � V ,, V) and further reduction on
each component separately.

6 A modular and algorithmic formulation of BCD subtyping

The formalization of λ+
i in Section 7 is an extension of λi. At the type level, the main

addition of λ+
i over λi is a more powerful subtyping relation based on BCD subtyp-

ing (Barendregt et al., 1983). In this section, we first revisit BCD subtyping and propose a
new modular and algorithmic formulation of BCD subtyping. This new algorithmic formu-
lation of BCD subtyping is important for the design of the typed reduction relation for λ+

i .
The most interesting feature in BCD subtyping is its distributivity rule between intersection
and function types. However, such a rule introduces complications, and designing sound
and complete algorithms is tricky. In particular, in previous work (Bi et al., 2018; Pierce,
1989; Bessai et al., 2016, 2019; Siek, 2019), the distributivity rule leads to non-modular
algorithmic formulations where many standard subtyping rules have to be changed due to
distributivity. Furthermore, the metatheory of BCD subtyping is challenging.

We propose a novel modular and algorithmic BCD formulation. The key idea is to use
the novel notion of splittable types, which are types that can be split into an intersection
of two simpler types. We show basic properties of our formulation, including transitivity
and inversion lemmas, and conclude that it is sound and complete with respect to the
declarative BCD subtyping. Of particular interest is our transitivity proof. This proof is
remarkably simple in comparison with other proofs in the literature due to a semantic
characterization of types using splittable and ordinary types (Davies & Pfenning, 2000),
which is used as the inductive argument for transitivity.

6.1 BCD subtyping

The BCD subtyping relation supports intersection types and allows some forms of distribu-
tivity. The original BCD formulation is shown in Figure 10. Most notably, BCD subtyping
supports distributivity of intersections over function types using the rule OS-DISTARR.
This rule says that an intersection of two function types A → B and A → C is a subtype of
a function type A → B & C.

The rule OS-TOPARR is also interesting: in combination with the transitivity rule, it
essentially allows Top to be a subtype of any function type returning Top (recall also

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 35

Fig. 10. Declarative BCD subtyping.

the discussion in Section 4.2). In fact, the relation Top <: Top → Top is equivalent to
Top <: A → Top, since Top → Top is the lower bound of A → Top for any type A. With
BCD subtyping, we can further justify the property Top <: A → Top by the distributivity
rule (extended to multiple components):

(A → B1) & (A → B2) & ... & (A → Bn)� A → B1 & B2 & ... & Bn

The Top type is commonly treated as an intersection of zero types. Therefore, when n = 0,
the above subtyping judgment becomes Top <: A → Top. On the other hand, from the
coercive subtyping point of view, a simple coercion that validates the relation can be a
constant function that returns λx. � : A → Top.

The reflexivity and transitivity rules are common elements for declarative systems. In
this particular system, the transitivity rule is hard to eliminate, mainly due to the existence
of rule OS-DISTARR.

6.2 A simple and modular formulation of BCD with splittable types

In order to obtain an algorithm for the BCD subtyping, the transitivity rule must be elim-
inated. As a step toward transitivity elimination, we treat any type A that is equivalent to
an intersection type directly as an equivalent intersection type B & C. If such treatment is
possible, we call A splittable; otherwise, A is ordinary.

Ordinary types. Ordinary types (Davies & Pfenning, 2000) have been used in the past
to define algorithmic formulations of subtyping with intersection types (but without dis-
tributivity). At the top of Figure 11, we present the definition of ordinary types for our
formulation. Traditionally, an ordinary type is any type that is not an intersection of two
other types. However, in this part of the paper, this distinction is more fine-grained, since
some function types may not be ordinary. For a function type to be ordinary its output type
must be ordinary as well.

Splittable types. The splittable relation, also shown in Figure 11, can be viewed as
taking an input type A, and returning two types B and C, such that A is equivalent to
B & C, i.e. A <: B & C ∧ B & C <: A. Rule SP-AND splits an intersection type directly.
Rule SP-ARROW splits a function type when its return type is splittable. The reasoning

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

36 X. Huang et al.

Fig. 11. Algorithmic and modular subtyping.

for rule SP-ARROW is that both A → B & C <: (A → B) & (A → C) and (A → B) & (A →
C) <: A → B & C are derivable in declarative BCD subtyping. The following lemma pro-
vides some justification for type splitting. It is proven by a routine induction on the
splittable premise.

Lemma 6.1 (Splittable subtypes). If B1 � B � B2 and A� B1 and A� B2, then A� B.

Three important properties related to ordinary and splittable types are:

Lemma 6.2 (Ordinary types do not split). For any ordinary type A, A is not splittable.

Lemma 6.3 (Types are ordinary or splittable). For any type A, either A is ordinary or A is
splittable, and it is decidable.

Lemma 6.4 (Splittable determinism). For any splittable type A, if B1 � A � C1 and B2 �
A � C2, then B1 = B2 and C1 = C2.

Algorithmic BCD subtyping. By splitting a type into (nested) intersections of ordi-
nary types, the distributivity rule in BCD subtyping is no longer problematic. In essence,
we normalize the function type produced by distributivity to an equivalent intersection
type.

Our new formulation of the subtyping relation A <: B is shown at the bottom of
Figure 11. The main idea with this formulation is that we always split B if possible. In
such a case, rule S-BCD-AND is applied, which works in a similar way to rule S-ANDR

when D is already an intersection type, such as D1 & D2. The most interesting case is

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 37

when D is a splittable function type. For example, D := D1 → (D21 & D22), and D can be
split into D1 → D21 and D1 → D22. Therefore, the premises of A <: D are A <: D1 → D21

and A <: D1 → D22, or equivalently, A <: (D1 → D21) & (D1 → D22), which can conclude
A <: D with a combination of rule OS-TRANS and rule OS-DISTARR in the declarative
BCD subtyping. In fact, the split of two types already takes rule OS-DISTARR into con-
sideration implicitly, while rule S-BCD-AND combines rule OS-TRANS and rule OS-AND.
All the other rules are straightforward, because we already rule out the possibility that B
is splittable. They look almost identical to standard subtyping rules found in the literature,
modulo the additional ordinary-type conditions marked in gray.

Top-like types. Top-like types are the same as defined in Figure 3. Rule S-BCD-TOP

says that a top-like type is a supertype of any type, which is equivalent to the declarative
rule OS-TOP and rule OS-TOPARR. Although the supertype in rule OS-TOPARR looks
different than that of rule TL-ARR, the equivalence is supported by the transitivity rule.
For example, Int → Top and Int → (Top → Top) are supertypes (and also subtypes) of
Top. The following property generalizes rule OS-TOP in the declarative BCD subtyping,
and it shows the soundness of the definition of top-like types.

Lemma 6.5 (S-BCD-TOP in declarative BCD). If �B�, then A� B.

Modularity. A more declarative (and modular) formulation of subtyping is to omit each
ordinary-type condition in a gray background in Figure 11. Note that here we employ the
term “modularity” to mean that existing subtyping rules do not need to be changed because
of a new feature (in this case distributivity).

Our first observation is that omitting the ordinary-type conditions does not change
expressiveness.

Lemma 6.6 (Modular S-BCD-TOP). If �B�, then A <: B.

Lemma 6.7 (Modular S-BCD-ARR). If B <: A, C <: D, then A → C <: B → D.

Lemma 6.8 (Modular S-BCD-ANDL). If A <: C, then A & B <: C.

Lemma 6.9 (Modular S-BCD-ANDR). If B <: C, then A & B <: C.

With these lemmas, the two formulations (with and without ordinary-type conditions) are
proved to be sound and complete with respect to each other. Thus, compared to the sub-
typing relation in Figure 3 (which is not BCD), the modular BCD subtyping relation only
replaces rule S-ANDR by rule S-BCD-AND to enable BCD distributivity. The new subtyping
rules generalize the previous ones.

It is possible to have an equivalent alternative approach for adding BCD distributivity
(rule S-BCD-AND) without modifying the existing rules. One just needs to keep the old
rule S-ANDR and add rule S-BCD-AND-ALT:

S-ANDR

A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-BCD-AND-ALT

B � E � C
A <: D → B A <: D → C

A <: D → E

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

38 X. Huang et al.

Additionally, top-like types are handled by rule S-BCD-TOP using the top-like relation
(�A�). An alternative to that rule is to use the following two rules:

S-BCD-TOP-ALT

A <: Top

S-BCD-TOP-ALT-ARR

Top <: C

A <: B → C

The first rule is just the standard rule for top types, while the second rule is a special rule
which deals with top-like function types.

Both alternative approaches replace one rule in our modular subtyping relation by
two, while keeping the expressiveness of subtyping unchanged. Rule S-BCD-AND and
rule S-BCD-TOP in our modular BCD subtyping are generalizations of the designs that
would use 2 rules instead, which is why we choose them to be in our system.

It is also worth mentioning that our algorithmic relation keeps the simple judgment
form A <: B, thus the system is easier to extend with orthogonal features, which have
been presented with a subtyping relation of that form. Some BCD subtyping formulations
require a different form to the subtyping relation (Bi et al., 2018; Pierce, 1989; Bessai
et al., 2016, 2019).

6.3 Metatheory of modular BCD

A benefit of our new formulation of BCD subtyping is that the metatheory is remark-
ably simple. The metatheory of BCD subtyping has been a notoriously difficult topic of
research.

Inversion lemmas. Given that our algorithmic relations are not entirely syntax-directed,
several inversion lemmas indicate that the algorithm and the declarative system behave
similarly.

Lemma 6.10 (Inversion on left split). Given B Ordinary+, if A <: B and A1 � A � A2 then
A1 <: B or A2 <: B.

Lemma 6.11 (Inversion on right split). If A <: B and B1 � B � B2 then A <: B1 and
A <: B2.

Both lemmas are easily proven by induction on the subtyping premises.

Transitivity. Since the transitivity rule is eliminated in algorithmic systems, we need to
show that the transitivity lemma holds. This property is critical but difficult for any BCD
formulation without the transitivity axiom built-in.

Lemma 6.12 (Transitivity of modular BCD). If A <: B and B <: C then A <: C.

To prove the transitivity lemma, one might try at first to proceed by induction on B.
However, that does not succeed, since our algorithm is not entirely syntax-directed. In
particular, the behavior of the subtyping algorithm is determined by whether the type
on the right is ordinary or splittable (but not simply the syntax form of the type). For
example, in the case where A <: B is derived by rule S-BCD-AND, B can be split into two

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 39

Fig. 12. Proper types.

parts B1 � B � B2, yet B1 and B2 cannot be applied to the induction hypothesis, simply
because they may not be components of type B. On the other hand, assuming one does
induction on the two subtyping derivations, it is a tricky case when A <: B is derived
by rule S-BCD-AND and B <: C is derived by rule S-BCD-ARR. The former splits type B
while the latter decomposes it as a function type, and they do not match.

To overcome this problem we would like to treat any splittable type similarly to an
intersection type. Therefore, we need a proper characterization of the type structure,
so that the induction hypothesis on splittable types is always as desired. The relation
defined in Figure 12 defines the so-called proper types. Proper types act as an alterna-
tive inductive definition for types, distinguishing types based on whether they are ordinary
or splittable. The following lemma shows that the definition is general: any type is a
proper type.

Lemma 6.13 (Types are proper types). For any type A, �& A.

With the new definition for types, we are ready to prove the transitivity lemma. Induction
is performed on the relation �& B which is obtained easily on type B through Lemma 6.13.
The induction then breaks into several cases:

• Int and Top are easy base cases.
• When B is a function type constructed by rule RTY-ORDFUN, a nested induction on

the premise B <: C gives three sub-cases.

– Sub-cases rule S-BCD-TOP and rule S-BCD-AND are easy to prove by induction
hypothesis.

– Sub-case rule S-BCD-ARR is then able to finish by another nested induction on
the other premise A <: B.

• The last case is when B is a splittable type (B1 � B � B2), where we know that A <:
B1 and A <: B2 by Lemma 6.11. Let us do induction on �& C.

– If C is an ordinary type, by Lemma 6.10, either B1 <: C or B2 <: C holds. In both
cases, applying the induction hypothesis of B finishes the proof.

– Otherwise, assuming C1 � C � C2, we apply Lemma 6.11 to B <: C and get B <:
C1 and B <: C2. Via the induction hypothesis of C we can obtain A <: C1 and
A <: C2 and reach the goal by rule S-BCD-AND.

Equivalence to declarative BCD. Thanks to the simple judgment form used in our
algorithm, the soundness and completeness theorems are stated directly as follows.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

40 X. Huang et al.

Theorem 6.1 (Soundness of modular BCD). If A <: B then A� B.

The soundness theorem only relies on Lemma 6.1 and Lemma 6.5.
The completeness theorem is also easy to show with the help of transitivity

(Lemma 6.12), by induction on the premise.

Theorem 6.2 (Completeness of modular BCD). If A� B then A <: B.

To sum up, our novel formulation of BCD subtyping adds the function distributivity
feature in a modular way, and the metatheory is straightforward to establish with the notion
of proper types.

7 The nested composition calculus: Syntax, subtyping and typing

In this section, we will introduce the λ+
i calculus, which is essentially a TDOS variant

of the calculus with the same name introduced by Bi et al. (2018). In the original λ+
i

calculus, the semantics is defined by elaboration. λ+
i has record types and supports record

concatenation via the merge operator. While λ+
i is quite similar to the λi calculus, BCD

subtyping empowers λ+
i so that a merge of functions (or records) can act as a function

(or a record). We will see how this behavior leads to changes in the typing and reduction
rules.

7.1 Syntax and typing

The syntax of λ+
i is:

Types A, B ::= Int | Top | A → B | A & B | {l : A}
Expressions e ::= x | i | � | e : A | e1 e2 | λx.e : A → B | e1 ,, e2 | fix x. e : A

| {l = e} | e.l
Values v ::= i | � | λx.e : A → B | v1 ,, v2 | {l = v}
Pre-values u ::= v | e : A | u1 ,, u2 | {l = u}
Contexts � ::= · | �, x : A
Values or labels vl ::= v | {l}

Records and record types. The addition of records affects definitions at both the term
and type level. {l = e} stands for a single-field record whose label is l and its field is e.
Projection (e.l) selects the field(s) from e with label l. In a record type {l : A}, A is the type
of the field. As discussed in Section 2, records can be concatenated by the merge operator.
A merge of single-field records can be thought of as a multi-field record, and therefore can
be used, for example, to model objects. Finally, a new syntactic category vl is defined to
unify values and labels for reduction.

Splittable types and subtyping. Figure 13 shows the extension of ordinary types, split-
table types, top-like types, and the modular BCD subtyping to record types. The original
definitions can be found in Figure 11, discussed in Section 6. For each relation, a rule for
record types is added in a modular way. Distributivity of intersection over record types is
supported via rule S-BCD-AND. The definition of splittable types is extended with a new
rule SP-RCD, which states that a record type is splittable if the type of its field is splittable.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 41

Fig. 13. Rules extending subtyping in Figure 11 with records.

Disjointness. The disjointness definition, presented on the top of Figure 14, extends λi’s
definition in Figure 3. It might be a bit surprising that, except for the new record related
rules, the remaining rules are the same as λi’s disjointness definition. The two systems both
respect the specification of disjointness (Definition 3.1), from which we know that if type
A is not disjoint with type B, then it is not disjoint to any subtypes of B. Therefore, since
types in λ+

i can have more supertypes, its disjointness definition is expected to be stricter
than λi. However, in λi, for arrow types, disjointness only cares about output types. In
other words, the set of all output types in an intersection of arrow types decides the set of
its disjoint types. For (A → B) & (A → C), if a type is disjoint to it, the type cannot contain
B or C in the return type of any of its components. The same criterion applies to types of
disjoints from (A → B & C). Therefore, for (A → B) & (A → C), the additional supertype
A → B & C, introduced by the distributivity rule in BCD subtyping, brings no extra non-
disjoint type to it. Thus, the disjointness definition does not change. What is more, the
extended definition also has the following properties:

Lemma 7.1 (Disjointness properties). Disjointness satisfies:

1. A ∗ B if and only if A ∗a B.
2. if A ∗ (B1 → C) then A ∗ (B2 → C).
3. if A ∗ B & C then A ∗ B and A ∗ C.

Pre-values and consistency. As shown in Section 3.5, merges like e : A ,, e : A, could be
produced during reduction, since merged functions both take the input. To type check such
merges, in λ+

i , we use pre-values to denote a sort of terms including values, annotated
terms, and merges composed by them, and generalize consistency to pre-values. A pre-
value’s type, if it is not a merge, can be told directly from its form without analyzing its
structure. The principal type of a term is the most specific one among all of its types,
i.e. it is the subtype of every other type of the term. The middle of Figure 14 shows the
syntax-directed definition of principal types for pre-values. It is proved that for a well-
typed pre-value with type A, its principal type is A.

Lemma 7.2 (Principal types). For any pre-value u,

1. if u : A and · � u ⇒ B, then A = B.
2. if · � u ⇒ A then u : A.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

42 X. Huang et al.

Fig. 14. Extension of disjointness in Figure 3, principal types and consistency in λ+
i .

Recall that the intuition of consistency is to allow two terms in a merge if they have disjoint
types or their overlapped parts are equal. In λi, only values can be consistent, and the spec-
ification of consistency relies on typed reduction, which is hard to extend to expressions.
To extend consistency to pre-values, we now use an inductive relation to define consis-
tency, where principal types are used to simplify the definition. Consistency is showed on
the bottom of Figure 14. Notably, for values, the definition is sound and complete with
respect to the specification (Definition 3.2).

Lemma 7.3 (Soundness and completeness of consistency definition). For all well-typed
value v1 and v2, v1 ≈ v2 if and only if v1 ≈spec v2.

Typing and applicative distributivity. Figure 15 presents the extension of typing and
applicative distributivity. The initial definitions can be found in Figure 4. Applicative
distributivity is extended in two dimensions. One is to treat record types as one of the
applicative forms. Rule AD-RCD is the base case for record types, given that the shape
can already accept label projections. Top can behave like different types depending on
the context: 1) {l : Top} when a record type is required, or 2) Top → Top when a func-
tion type is required. The other dimension is about distributivity over intersections, where
rule AD-ANDARR now supports intersection of function (-like) types, thanks to the dis-
tributivity rule of BCD subtyping. Rule AD-ANDRCD combines both dimensions and
enables the intersection of record (-like) types.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 43

Fig. 15. Typing and applicative distributivity of λ+
i (extends Figure 4).

Typing relies on applicative distributivity. Due to the distributivity and top-like types,
in rule TYP-APP and rule TYP-BCD-PROJ, where a term is expected to play the role of a
function or record, its inferred type is allowed to be Top, or (in λ+

i) an intersection type.
Assuming that a term e1 of type (Int → Int) & (Bool → Bool) is applied to term e2, via
this relation, we can derive that e2 should be checked against type Int & Bool. Besides
this, two new rules are added for records and record projection: rule TYP-BCD-RCD and
rule TYP-BCD-PROJ. Moreover, rule TYP-BCD-MERGEV is generalized from values to pre-
values. Thus, merges like e : A ,, e : A are well typed in λ+

i .

7.2 Operational semantics

Typed reduction. Compared with λi, the new typed reduction has one more rule for
records, and two rules that change, as shown in Figure 16. An additional condition is added
in rule TR-BCD-ARROW to make sure that it only applies to ordinary arrow types. The con-
dition is unnecessary in λi because every arrow type there is ordinary. Rule TR-BCD-RCD

mimics the arrow rule. Rule TR-BCD-AND works on splittable types, so now it needs to
take care of more types than just intersections. Although we choose to merge the two
results of the split types, there are some other alternative options. One possible design is
to construct a lambda from the results. Therefore, we could prevent merges from being the
inhabitants of arrow types. However, manipulating the lambda body breaks the transitivity
of typed reduction, which plays an important role in our metatheory.

Reduction. In the reduction rules of λ+
i , presented in Figure 17, rule STEP-BCD-PAPP

replaces the original beta-reduction rule and rule STEP-TOP. Rule STEP-BCD-RCD,
rule STEP-BCD-PROJ, and rule STEP-BCD-PPROJ are added for records and record
projection. The rules for merges are changed to reduce components in parallel.

Parallel application. The distributivity rule in BCD subtyping indicates that a merge of
functions can be applied. While the current typing rule can check such applications with
suitable annotations, designing new reduction rules is necessary. An intuitive solution is to

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

44 X. Huang et al.

Fig. 16. Typed reduction of λ+
i (extends Figure 6).

have a rule that distributes the input value, like

(v1 ,, v2) v ↪→ v1 v ,, v2 v

Assuming that v1 and v2 are consistent but not disjoint, to obtain preservation, v1 v and
v2 v have to be consistent. To avoid the complexity of extending consistency to expres-
sions including applications, we design parallel application (Figure 17) to distribute and
substitute the input value in a big-step style, where a function application is divided into
two parts v and vl, and steps to an expression e. Consider a merge of three functions being
applied to a value. Compared to adding the previous single rule to the small-step reduc-
tion, parallel reduction helps us to “jump” from (f1 ,, f2 ,, f3) v to a merge of annotated terms
when reasoning about reduction. Every lambda gets the input directly without intermediate
reduction steps such as ((f1 ,, f2) v) ,, f3 v. Record projection is handled in a similar style. In
this case, v is a record value, and vl stands for a label instead.

{l = 1} ,, ({l = True} ,, {l = 1}) • {l} ↪→ 1 ,, (True ,, 1)

The above example shows how merged records are projected in parallel, and the whole
term is kept consistent. Rule PAPP-TOP shows that the top value can be used as a function
that returns �, or a record which contains � in its field. With it, rule STEP-BCD-PAPP

subsumes the rule STEP-TOP in Figure 8.

Parallel reduction of merges. To maintain consistency of subterms in a merge (which
may contain non-values), as required by the typing rule TYP-MERGEV, we reduce every
component in a merge simultaneously through rule STEP-BCD-MERGE. This rule is help-
ful to preserve consistency of pre-values during reduction, and therefore enables the type
preservation theorem. As a counter-example, if parallel reduction is not employed, we
might encounter the following reduction step:

(1 + 1) : Int ,, (1 + 1) : Int ↪→ 2 : Int ,, (1 + 1) : Int

where the r.h.s term is ill-typed, since the subterms are not consistent any more. In con-
trast, rule STEP-BCD-MERGE will keep the reduction of terms synchronized. When one of
the subterms is already a value, rule STEP-BCD-MERGE no longer applies. In that case,
rule STEP-BCD-MERGEL or rule STEP-BCD-MERGER reduces the other subterm.

Overloading on return types. The λi and λ+
i calculi support a form of overloading on

return types. With parallel application, we can even merge multiple functions and apply
them together to one input. Eventually, the return value would be a combination of the

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 45

Fig. 17. Parallel application and reduction of λ+
i (extends Figure 8).

outputs of all functions and can play the role of any single output. The following example
shows how this mechanism works.

not ((λx. x + 1 : Int → Int ,, λx. True : Int → Bool) 1)
↪→ { by STEP-BCD-PAPP and parallel application }

not (2 : Int ,, True : Bool)
↪→ { by STEP-APPR, STEP-BCD-MERGE, STEP-ANNOV and typed reduction }

not (2 ,, True)
↪→ { assuming not has type Bool → Bool }

False : Bool
↪→ { by STEP-ANNOV and typed reduction }

False

7.3 Metatheory

Completeness of the type system with respect to the original λ+
i (or NeColus) calculus.

Besides the extra rule for consistent merges (rule TYP-BCD-MERGEV), λ+
i has two different

rules for record projection and function application when compared with the type system
of NeColus (Bi et al., 2018).

� �n e ⇔ A (NeColus Typing (Selected))

NEC-T-APP

� �n e1 ⇒ A1 → A2 � �n e2 ⇐ A1

� �n e1 e2 ⇒ A2

NEC-T-PROJ

� �n e ⇒ {l : A}
� �n e.l ⇒ A

To show that every well-typed term in NeColus can be type checked in λ+
i , we prove the

following lemmas:

Lemma 7.4 (λ+
i application subsumes NeColus’s application). For any expressions e1 and

e2, if � � e1 ⇒ A → B and � � e2 ⇐ A, then � � e1 e2 ⇒ B.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

46 X. Huang et al.

Fig. 18. Runtime subtyping of λ+
i extends the definition in Figure 7.

Lemma 7.5 (λ+
i projection subsumes NeColus’s projection). For any expressions e and

any label l, if � � e ⇒ {l : A}, then � � e.l ⇒ C.

Then it is straightforward that NeColus can be translated into λ+
i . In our Coq formalization,

we designed an elaboration from NeColus to λ+
i and proved the completeness of λ+

i ’s type
system with respect to NeColus.

Properties of the TDOS. The TDOS of λ+
i preserves determinism, progress, and subject-

reduction. Most of the proof follows λi’s structure. Runtime subtyping is extended, and the
newly added parallel application requires some extra lemmas.

Runtime subtyping and preservation. Compared with Figure 7, λ+
i ’s runtime subtyping

has one more rule for record types, and two rules changed for distributivity (Figure 18).
Rule RSUB-BCD-RCD allows a record type to be a runtime subtype of another record type
if their label is the same and the former’s field type is a runtime subtype of the latter’s.
Type A is constrained to be ordinary in rule RSUB-BCD-TOP. Therefore, Top � Top & Top
and A → Top � A → Top & Top are no longer derivable. The change is to maintain the
transitivity of subtyping. As a consequence of the generalization of rule RSUB-AND to
rule RSUB-BCD-SPLIT, an intersection type can be a runtime supertype of an arrow type.
However, A → Top, as an ordinary type, is not a runtime subtype of (A → Top) & (A →
Top), and that would break transitivity. Since we need rule RSUB-BCD-SPLIT to help some
merges of functions to act as a function, we choose to drop the unneeded A → Top � A →
Top & Top.

Parallel application. Some extra lemmas about parallel application are proved:

Lemma 7.6 (Type preservation of parallel application on functions). If · � v1 v2 ⇒ A,
and v1 • v2 ↪→ e then · � e ⇒ A.

Lemma 7.7 (Type preservation of parallel application on records). If · � v1.l ⇒ A, and
v1 • {l} ↪→ e then · � e ⇒ A.

For both function application and record projection, parallel reduction preserves the
original type. Furthermore, we can prove the following determinism lemmas:

Lemma 7.8 (Determinism of parallel application on functions). If · � v1 v2 ⇒ A, v1 •
v2 ↪→ e1, v1 • v2 ↪→ e2 then e1 = e2.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 47

Lemma 7.9 (Determinism of parallel application on records). If · � v1.l ⇒ A, v1 • l ↪→
e1, v1 • l ↪→ e2 then e1 = e2.

We can also prove the following progress lemmas for parallel application:

Lemma 7.10 (Progress of parallel application on functions). If · � v1 v2 ⇒ A, then ∃e,
v1 • v2 ↪→ e.

Lemma 7.11 (Progress of parallel application on records). If · � v1.l ⇒ A, then ∃e, v1 •
l ↪→ e.

Finally, based on all the lemmas above, the key properties of reduction can be derived,
including type preservation with runtime subtyping:

Lemma 7.12 (Type preservation of ↪→ with respect to runtime subtyping). If · � e ⇒ A,
and e ↪→ e′ then exists B, · � e′ ⇒ B and B � A.

And its corollary:

Theorem 7.1 (Type preservation of ↪→). If · � e ⇒ A, and e ↪→ e′ then · � e′ ⇐ A.

Determinism and progress theorems are proved as well.

Theorem 7.2 (Determinism of ↪→). If · � e ⇒ A, e ↪→ e1, e ↪→ e2, then e1 = e2.

Theorem 7.3 (Progress of ↪→). If · � e ⇒ A, then e is a value or ∃e′, e ↪→ e′.

8 Discussion

This section provides some discussion on design choices, a comparison with elaboration
semantics as well as implementation considerations and possible extensions for future
work.

8.1 TDOS versus an elaboration semantics

This paper proposes the use of type-directed operational semantics for modelling languages
with a merge operator. Since a general form of the merge operator has a type-directed
semantics, previous work has favored an elaboration semantics. Traditionally, for lan-
guages with type-directed semantics, elaboration has been a common choice. That is the
case, for instance, for many previous calculi with the merge operator (Dunfield, 2014;
Oliveira et al., 2016; Alpuim et al., 2017; Bi et al., 2018, 2019), gradual typing (Siek
& Taha, 2006), or type classes (Wadler & Blott, 1989; Kaes, 1988). In the elaboration
approach, the idea is that the source language can be translated via a type-directed trans-
lation into a conventional target calculus, whose semantics is not type directed. In the
case of languages with the merge operator, the target calculus is typically a conventional
calculus (such as the STLC) extended with pairs. The implicit upcasts that extract com-
ponents from merges are modelled by explicit projections with pairs. One very appealing
benefit of the elaboration semantics is that it gives a simple way to obtain an implementa-
tion. Since elaboration targets conventional languages/calculi, that means that it can simply

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

48 X. Huang et al.

reuse existing and efficient implementations of languages. For example, in the case of the
merge operator, a key motivation of Dunfield (2014) was that the elaboration could just
target ML-like languages, which have several efficient implementations available. From
the implementation point-of-view, the TDOS would be more useful for guiding the design
of a dedicated virtual machine, compiling directly to bytecode/assembly, or having an
interpreter. However, obtaining an efficient implementation for the latter options would
require significantly more effort than with an elaboration approach.

Nevertheless, the reason for designing a semantics for a language or calculus is not
merely implementation. In fact, the implementation aspects are not our primary motivation
for TDOS. Although, as we will discuss in Section 8.2, TDOS can provide some insights
for obtaining efficient implementations as well. Furthermore, we do not view TDOS as
being mutually exclusive with elaboration: both approaches have interesting aspects and
they can serve different purposes. Our main motivation for the TDOS is reasoning. A
semantics is supposed to describe the meaning of the language constructs in the language.
Having a clear and high-level presentation of the semantics is then useful for language
implementers to understand the behavior of the language. Furthermore, it is also useful to
provide programmers with a mental model of how programs are executed, and to study the
properties of the language. Next, we give more details on the advantages of a direct seman-
tics over the elaboration semantics in terms of reasoning and proof methods employed in
previous work on disjoint intersection types.

Shorter, more direct reasoning. Programmers want to understand the meaning of their
programs. A formal semantics can help with this. With our TDOS, we can essentially
employ a style similar to equational reasoning in functional programming to directly
reason about programs written in λi. For example, it takes a few reasoning steps to work
out the result of (λx. x + 1 : Int → Int) (2 ,, ‘c’):

(λx. x + 1 : Int → Int) (2 ,, ‘c’)
↪→ (2 + 1) : Int by STEP-BETA and typed reduction
↪→ 3 : Int by STEP-ANNO and arithmetic
↪→ 3 by STEP-ANNOV and typed reduction

Here reasoning is easily justifiable from the small-step reduction rules and type-directed
reduction. Building tools (such as debuggers) that automate such kind of reasoning should
be easy using the TDOS rules.

However, with an elaboration semantics, the (precise) reasoning steps to determine the
final result are more complex. First, the expression has to be translated into the target lan-
guage before reducing to a similar target term. Figure 19 shows this elaboration process
in λi, where an expression in the source language is translated into an expression in a tar-
get language with products. The source term (λx. x + 1 : Int → Int) (2 ,, ‘c’) is elaborated
into the target term (λx. x + 1) (fst (2 , ‘c’)). As we can see the actual derivation is rather
long, so we skip the full steps. Also, for simplicity’s sake, here we assume the subtyping
judgement produces the most straightforward coercion fst. This elaboration step and the
introduction of coercions into the program make it harder for programmers to precisely
understand the semantics of a program. Moreover, while the coercions inserted in this
small expression may not look too bad, in larger programs the addition of coercions can be
a lot more severe, hampering the understanding of the program.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 49

Fig. 19. Elaboration of (λx. x + 1 : Int → Int) (2 ,, ‘c’) to a calculus with products.

After elaboration, we can then use the target language semantics, to determine a target
language value.

(λx. x + 1) (fst (2 , ‘c’))
↪→ (λx. x + 1) 2 reduction for application and pairs
↪→ 2 + 1 by the beta reduction rule
↪→ 3 by arithmetic

A final issue is that sometimes it is not even possible to translate back the value of the
target language into an equivalent “value” on the source. For instance in the NeColus cal-
culus (Bi et al., 2018) 1 : Int & Int results in (1, 1), which is a pair in the target language.
But the corresponding source value 1 ,, 1 is not typable in NeColus. In essence, with an
elaboration, programmers must understand not only the source language but also the elab-
oration process as well as the semantics of the target language, if they want to precisely
understand the semantics of a program. Since the main point of semantics is to give clear
and simple rules to understand the meaning of programs, a direct semantics is a better
option for providing such understanding.

Simpler proofs of unambiguity. For calculi with an elaboration semantics, unrestricted
intersections make it harder to prove coherence. Our λi calculus, on the other hand, has a
deterministic semantics, which implies unambiguity directly. For instance, (1 : Int & Int) :
Int only steps to 1 in λi. But it can be elaborated into two target expressions in the
NeColus calculus corresponding to two typing derivations:

(1 : Int & Int) : Int� fst (1, 1)

(1 : Int & Int) : Int� snd (1, 1)

Thus,the coherence proof needs deeper knowledge about the semantics: the two different
terms are known to both reduce to 1 eventually. Therefore, they are related by the logical
relation employed in NeColus for coherence. Things get more complicated for functions.
The following example shows two possible elaborations of the same function. Relating
them requires reasoning inside the binders and a notion of contextual equivalence.

λx. x + 1 : Int & Int → Int� λx. fst x + 1

λx. x + 1 : Int & Int → Int� λx. snd x + 1

Furthermore, the two target expressions above are clearly not equivalent in the general
case. For instance, if we apply them to (1, 2) we get different results. However, the target
expressions will always behave equivalently when applied to arguments elaborated from

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

50 X. Huang et al.

the NeColus source calculus. NeColus, forbids terms like (1 ,, 2) and thus cannot produce a
target value (1, 2). Because of elaboration and also this deeper form of reasoning required
to show the equivalence of semantics, calculi defined by elaboration require a lot more
infrastructure for the source and target calculi and the elaboration between them, while
in a direct semantics only one calculus is involved and the reasoning required to prove
determinism is quite simple.

Not limited to terminating programs. The (basic) forms of logical relations employed
by NeColus and F+

i has cannot deal with non-terminating programs. In principle, recursion
could be supported by using a step-indexed logical relation (Ahmed, 2006), but this is
left for future work. λi smoothly handles unrestricted intersections and recursion, using
TDOS to reach determinism with a significantly simpler proof method. It also makes other
features that lead to nonterminating programs, such as recursive types, feasible.

8.2 Implementation considerations

The TDOS for λi and λ+
i is implementable directly, since the relations developed in this

paper are all essentially algorithmic. However, a direct implementation will not be very
efficient, for multiple reasons. Next we discuss some considerations for the design of
efficient implementations of languages with the merge operator.

Merge lookups. From the efficiency point of view, one particularly bad aspect of the
TDOS is that runtime lookup on merges (triggered by typed reduction) does not exploit
statically known information. For instance, if we have a program such as

let x : ... & Int & ... = ... ,, 2 ,, ... in x + 1

extracting the number 2 from the merge currently requires blindly going through the
elements in the merge at runtime until the integer value is found. The approach in the
elaboration semantics is much better here, since during type checking we know statically
where the integer value can be found. Therefore, when generating code in the target lan-
guage we can simply look up the value directly at that position, thus avoiding having to
search for the value in the merge at runtime. It should be possible to create optimizations
for the TDOS by employing similar ideas to the elaboration. That is, using the type system
to statically determine where to find values. For this to work with the TDOS, we would
need to extend the TDOS with explicit projections, so that code with implicit projections
could be replaced with explicit projections. For instance, if the integer 2 is at position 5 in a
merge, the code x + 1 could be replaced by x[5] + 1, where x[5] denotes the projection of
the 5th element in the merge. We should remark that, for such optimizations to be correct,
it is essential that the origin of values can be statically determined. As we have discussed
in Section 2.1, with some alternative semantics for the merge operator that may not be the
case. Therefore, such optimizations would be invalid.

Overhead from annotations. One other source of concern for efficiency is the overhead
caused by type annotations, and their use at runtime. Type annotations in a TDOS play a
very similar role to casts in cast languages (Wadler & Findler, 2009; Siek & Wadler, 2010),

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 51

which are used, for instance, as targets for gradually typed languages. The problem of how
to design efficient cast languages is an important topic in the gradual typing literature, and
the overhead caused by casts have been a notorious challenge in that area. In particular,
a main source of overhead comes from casting functions. In calculi such as the blame
calculus, function values need to accumulate casts to avoid raising blame too early. Thus,
function values can have an arbitrary number of casts, which also leads to space efficiency
concerns. Luckily, for λi and λ+

i , we do not need to accumulate annotations around function
values. Indeed, as shown in Section 4, function values are of the form λx. e : A → B in
λi and λ+

i . That is, they only contain a single annotation. In contrast to cast calculi, the
approach used in λi and λ+

i , when reduction encounters multiple annotations around a
function is to simply replace the type annotation of the value. This process happens in the
typed reduction rule TR-ARROW for functions:

TR-ARROW

¬�A2� A1 <: B1 B2 <: A2

λx. e : B1 → B2 ↪→(A1→A2) λx. e : B1 → A2

Moreover, as discussed in Section 5.2, the premise A1 <: B1 is not needed at runtime and
can be avoided in an implementation. Thus, while the overhead caused by type annota-
tions is still a concern, we believe that λi and λ+

i avoid some of the thornier issues that
gradually typed languages have to deal with. Moreover, annotation replacement could
actually have some advantages over an elaboration approach. Multiple annotations around
functions would result in multiple coercions being applied to the function in an elabora-
tion approach. In contrast, annotation replacement avoids such coercions and immediately
collapses annotations, so that, ultimately, we only need to type-reduce the argument and
the result of the function one time. Nevertheless, a proper assessment of the performance
impact of annotations at runtime is outside of the scope of this work and left for future
work.

Parallel application. Parallel application in λ+
i may raise some concern if available in

unrestricted ways to programmers. In λ+
i parallel application arises as a consequence of

the distributivity of intersections over functions. That is, the following is a valid subtyping
statement in λ+

i (and BCD subtyping):

(A1 → B1)&(A2 → B2) <: A1&A2 → B1&B2

In essence, an intersection of two functions can be viewed as a single function with the
intersections of the inputs and outputs. Thus, parallel application arises naturally in the
semantics of the language in order to support such form of conversions at runtime.

The semantics for the application of merged functions is to apply all of the functions to
the argument. This turns what looks like one function call into two or more function calls
and could have a significant impact on the time complexity of a program. A program that
looks linear time could in fact be exponential, due to parallel application. Therefore, it is
important to consider the consequences of parallel application and how they can be miti-
gated. One option would be to redesign the calculus so that parallel application is avoided.
This would probably require weakening the subtyping relation to avoid type conversions
like the above. However, parallel application is an important aspect of nested composition,

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

52 X. Huang et al.

and dropping parallel application from the calculus would prevent important applications
of nested composition. Instead, we believe that a better approach is to restrict the use of
parallel application in the source language that targets λ+

i . In the following section, we will
come back to this topic.

8.3 Design of source languages

SEDEL is an existing implementation of a source language that targets calculi closely
related to λi and λ+

i . In essence the two implementations of SEDEL (Bi & Oliveira, 2018;
Bi et al., 2019) target Fi (Alpuim et al., 2017) and F+

i (Bi et al., 2019), which are,
respectively, polymorphic versions of λi and λ+

i (but with an elaboration semantics). As
already discussed in Section 2, the examples that we presented in this paper are written
in a monomorphic subset of SEDEL and can be encoded into λi and λ+

i following the
encoding proposed by Bi & Oliveira (2018).

While calculi like λi and λ+
i are supposed to be closer to source languages, they are still

core calculi and are not meant to be used directly for programming. Here we discuss some
important considerations for the design of source languages.

Type inference. λi and λ+
i employ explicit annotations at runtime to determine the final

result of a program. However, while not too heavy, some of those annotations can be
cumbersome to write explicitly by programmers. In λ+

i , the rules of records essentially
require explicit-type annotations when multiple distinct field names exist. For example,
the following program is not directly accepted:

({m = 1} ,, {n = True}).n
Instead, to retrieve True, we need to write:

(({m = 1} ,, {n = True}) : {n : Bool}).n
The explicit annotation specifies both the field name and the type that we wish to look up.
Note that, since records can have fields with the same names and disjoint types, having the
type is helpful to select from those fields. For simplification, the SEDEL language accepts:

({m = 1} ,, {n = True}).n
directly, and inserts the missing annotation when elaborating to the core language. Once
SEDEL finds a field lookup expression e.n, it infers the type of e and then filters that type
using the label n. For the example above, the inferred type of record is

({m = 1} ,, {n = True}) : {m : Int} & {n : Bool}
and the filtered type is {n : Bool}. That annotation is inserted into the expression, resulting
in:

(({m = 1} ,, {n = True}) : {n : Bool}).n

Parallel application again. Parallel application is a useful feature. It is used, for instance,
in the example shown in Section 2.3, in the SEDEL code:

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 53

fac = new[ExtLang] implExt;
e = fac.add (fac.neg (fac.lit 2)) (fac.lit 3)

The add call above is employing parallel application and it will call the two implemen-
tations for add in the traits implPrint and implLang. Therefore, parallel applications play
a fundamental role in “family polymorphism” style applications and cannot be entirely
avoided without ruling out interesting applications. Nevertheless, as argued in Section 8.2,
allowing a completely unrestricted form of parallel application may be undesirable. One
possibility is to restrict the use of parallel applications in the source language. For instance,
we may consider not allowing merges directly in the source language, and only use them
to encode source-level features. In the interests of first-class traits with nested composi-
tion, we can use merges in the encoding of traits only. It leads to a language similar to
languages with family polymorphism and virtual classes (Ernst, 2001). In such languages,
nested composition is limited to nested composition of classes. An alternative option is
to keep merges in the source language, but forbid parallel application for such merges.
Therefore, the core language would still have parallel application, but the source language
merges do not. Potentially, we could try to implement an overloading-like semantics for
the source language merges, instead of parallel application.

Furthermore, our current dynamic semantics for parallel applications is simple, but
naive. One possible way to optimize parallel application is through specialization. For
instance, in the code:

fac = new[ExtLang] implExt;

we could generate a new trait implementation such as:

trait facSpecialized ⇒ {
lit (x: Double) = {print = x.ToString, eval = x}
add (x:IEval&IPrint) (y:IEval&IPrint) =
{

print = "(" ++ x.print ++ " + " ++ y.print ++ ")",
eval = x.eval + y. eval

}
}

That is we would just syntactically merge all components recursively, eliminating a lot
of the overhead induced by nested merges. When specialization can be applied, it could
lead to very significant performance improvements. However, such an approach assumes
that the source code of the original implementations is known, and we have not looked
yet at the technical details of how to implement this. Nevertheless, such a specialization
approach is related to flattening of traits (Nierstrasz et al., 2006), which has been used to
generate new traits/classes from the composition of multiple traits.

Finally, we believe that work on the compilation of virtual classes will shed light on how
to optimize parallel application, since virtual classes need to be able to encode code that
is similar to the fac and e definitions above. As part of future work on the compilation of
languages with the merge operator, we plan to look more closely at existing compilation
models for virtual classes, and see whether some of the ideas can be employed to have
more efficient forms of parallel application.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

54 X. Huang et al.

8.4 Extensions

There are several avenues for future work. In the setting of disjoint intersection types,
an obvious extension is disjoint polymorphism (Alpuim et al., 2017), which adds poly-
morphism into calculi with disjoint intersection types. We discuss two other extensions
next.

First-class record labels. Instead of having two constructs for record and record projec-
tion as our current system does, we believe it is also possible to employ first-class labels.
First-class labels are used in some record calculi with extensible rows (Leijen, 2004).
Record {l = 1} would have type Lab l → Int in the new setting, where the type Lab l is the
type of label. Therefore, to project a field against the label l, we would apply it to a term
of type Lab l. Using first-class labels, the parallel application (defined on Figure 17) could
be simplified and unified further. Moreover, the syntactic sort vl would not be needed, as
labels would already be values.

Splittable union types. Although our calculus does not support union types, splittable
types (defined in Figure 11) have the potential to be extended to union types (A|B). For
example, assume that the rule:

A → C � (A | B) → C � B → C

is added to the existing definition of splittable types. Combined with rule S-BCD-AND, then
the following subtyping statement is derivable:

(A → C) & (B → C) <: (A | B) → C

This means that two functions with the same input type can be merged and act as a function.
Besides this, we believe that it is also possible to add a dual of the rule S-BCD-AND in
the modular BCD subtyping to accomplish more union-related subtyping. We hope to
investigate this further in the future.

9 Related work

This section discusses various lines of related work, including calculi with a merge
operator, record calculi, and some work on OOP languages.

9.1 Calculi with the merge operator and a direct semantics

Intersection types with a merge operator are a key feature of the Forsythe language of
Reynolds (1988). Reynolds (1991) also studied a core calculus with similarities to λi.
However, merges in Forsythe are restricted and use a syntactic criterion to determine what
merges are allowed. A merge is permitted only when the second term is a lambda abstrac-
tion or a single field record, which makes the structure of merges always biased. To prevent
potential ambiguity, the latter overrides the former when they overlap. If formalized as a
tree, the right child of every node is a leaf. The only place for primitive types is the left-
most component. Forsythe follows the standard call-by-name small-step reduction, during

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 55

which types are ignored. The reduction rules deal with merges by continuously checking if
the second component can be used in the context (abstractions for application, records for
projection). This simple approach, however, is unable to reduce merges when (multiple)
primitive types are required. Reynolds (1997) admitted this issue in his later work. We use
types to select values from a merge and the disjointness restriction guarantees the deter-
minism. Therefore, the order of a value in a merge is not a deciding factor on whether the
value is used.

The calculus λ& proposed by Castagna et al. (1995) has a restricted version of the
merge operator for functions only. The merge operator is indexed by a list of types of
its components. Its operational semantics uses the runtime types of values to select the
“best approximate” branch of an overloaded function. λ& requires runtime type check-
ing on values, while in TDOS, all type information is already present in type annotations.
Another obvious difference is that λi supports merges of any type (not just functions),
which are useful for applications other than overloading of functions, including multi-
field extensible records with subtyping (Oliveira et al., 2016); encodings of objects and
traits (Bi & Oliveira, 2018); dynamic mixins (Alpuim et al., 2017); or simple forms of
family polymorphism (Bi et al., 2018).

Several other calculi with intersection types and overloading of functions have been
proposed (Castagna & Xu, 2011; Castagna et al., 2015, 2014), but these calculi do not
support a merge operator, and thus avoid the ambiguity problems caused by the construct.

9.2 Calculi with a merge operator and an elaboration semantics

Instead of a direct semantics, many recent works (Dunfield, 2014; Oliveira et al., 2016;
Alpuim et al., 2017; Bi et al., 2018, 2019) on intersection types employ an elaboration
semantics, translating merges in the source language to products (or pairs) in a target lan-
guage. With an elaboration semantics the subtyping derivations are coercive (Luo, 1999):
they produce coercion functions that explicitly convert terms of one type to another in the
target language. This idea was first proposed by Dunfield (2014), where she shows how to
elaborate a calculus with intersection and union types and a merge operator to a standard
call-by-value lambda calculus with products and sums. Dunfield also proposed a direct
semantics, which served as inspiration for our work. However, her direct semantics is non-
deterministic and lacks subject reduction (as discussed in detail in Section 3.1). Unlike
Forsythe and λ&, Dunfield’s calculus has unrestricted merges and allows a merge to work
as an argument. Her calculus is flexible and expressive and can deal with several programs
that are not allowed in Forsythe and λ&.

To remove the ambiguity issues in Dunfield’s work, the original λi calculus (Oliveira
et al., 2016) forbids overlapping in intersections using the disjointness restriction for all
well-formed intersections. In other words, it does not support unrestricted intersections.
Because of this restriction, the proof of coherence in the original λi is still relatively simple.
Likewise, in the following work on the Fi calculus (Alpuim et al., 2017), which extends λi

with disjoint polymorphism, all intersections must be disjoint. However, the disjointness
restriction causes difficulties because it breaks stability of type substitutions. Stability is a
desirable property in a polymorphic-type system that ensures that if a polymorphic type
is well-formed then any instantiation of that type is also well-formed. Unfortunately, with

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

56 X. Huang et al.

Fig. 20. Summary of intersection calculi with the merge operator.
λ,, stands for Dunfield’s calculus. Note that λi '16 is the original one by Oliveira et al.

(2016), whereas λi is the variant introduced in this paper.
(= yes, = no, - = not applicable)

disjoint intersections only, this property is not true in general. Thus, Fi can only prove a
restricted version of stability, which makes its metatheory nontrivial.

Disjointness of all well-formed intersections is only a sufficient (but not necessary)
restriction to ensure an unambiguous semantics. The NeColus calculus (Bi et al., 2018)
relaxes the restriction without introducing ambiguity. In NeColus 1 : Int & Int is allowed,
but the same term is rejected in the original λi. NeColus employs the disjointness restric-
tion only on merges, but otherwise allows unrestricted intersections. Unfortunately, this
comes at a cost: it is much harder to prove the coherence of elaboration. Both NeColus and
F+

i (Bi et al., 2019) (a calculus derived from Fi that allows unrestricted intersections) deal
with this problem by establishing coherence using contextual equivalence and a logical
relation (Tait, 1967; Plotkin, 1973; Statman, 1985) to prove it. The proof method, how-
ever, cannot deal with non-terminating programs. In fact, none of the existing calculi with
disjoint intersection types supports recursion, which is a severe restriction.

We retain the essence of the power of Dunfield’s calculus (modulo the disjointness
restrictions to rule out ambiguity), and gain benefits from the direct semantics. Figure 20
summarizes the key differences between our work and prior work, focusing on the most
recent work on disjoint intersection types. Note that the row titled “Coercion Free” denotes
whether subtyping generates coercions or not. Our calculi are coercion free, while all other
calculi based on an elaboration semantics employ coercive subtyping.

9.3 Record calculi with record concatenation and subtyping

As we have seen, in calculi with disjoint intersection types and records, the merge opera-
tor concatenates records in a symmetric way. However, designing a record concatenation
operator, no matter symmetric or asymmetric, is a difficult problem in calculi with subtyp-
ing, as identified by Cardelli & Mitchell (1991). In both cases, a record can “hide” some
fields via subsumption to bypass the restriction on types. As far as we know, no existing
record calculus in the literature supports nested composition. However, there are numerous
designs in the literature with concatenation or subtyping or both.

Asymmetric concatenation without subtyping. Record concatenation is used by Wand
(1989) to model multiple inheritance. He has a biased operator, which overrides the first
term by the second if they have conflicting fields. Wand (1989) makes every record types

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 57

explicitly state whether a field is present in it or absent with respect to a fixed set of labels,
which could be infinite. It is similar to the algorithm implemented by Rémy (1989) to
type-check records in an ML extension, which keeps track of if a field is absent or not.

Symmetric concatenation without subtyping. Harper & Pierce (1991) design a record
calculus with symmetric concatenation. Their system keeps the extension and restriction
operators in terms and types and generalizes them to work on two records (or record types).
A compatibility check is enforced on types, via the typing of record concatenation and type
well-formedness definition. Their type quantification only takes care of negative informa-
tion. For example, �a#l.a stands for any type that does not have a field of name l. Although
they avoid subtyping, it is still necessary to reason about type equivalence with the type
operations in their calculus.

A similar disjointness constraint for symmetric record concatenation is employed for by
the language Ur presented by Chlipala (2010), which has a more comprehensive reasoning
on type equivalence. Ur is a dependently typed language with first-class labels, designed
for statically typed meta-programming with type inference. It encodes disjoint assertions
in guarded types. Ur uses type-level computation, including a type-level map operation,
to allow flexible and generic programs to be written using records. The semantics is given
by elaboration, and a translation of Ur programs into terms of the Calculus of Inductive
Constructions ensures type soundness. Like Harper and Pierce’s work, Ur has no subtyping
as it introduces ambiguity. The absence of subtyping avoids the “hidden fields” problem.

Record subtyping without concatenation. Cardelli and Mitchell propose to use exten-
sion and restriction as primitive operators instead of concatenation. They introduce type
operators and negative restrictions in record types, so that in their calculus, via bounded
quantification, programmers can declare a polymorphic function that takes any records
lacking certain fields. Like merges in λ+

i , extension in their system is conflict-free, which
is ensured by static type-checking. Compared to restriction, we can use type annotations
to drop fields in a record in λ+

i . A difference is that the two operators deal with a record
and a field, while our system can handle two records in a merge. As identified by Cardelli
& Mitchell (1991), with subtyping, a record can “hide” some fields via subsumption to
bypass the restriction on types, which makes it hard to capture the absent fields in record
calculi. Their solution is to add type operations that can encode negative information in
subtyping. Corresponding to the term operators, they have two type operators of the same
name: extension on a type requires that the given field is absent from the type; restriction
on a type explicitly excludes the field from it, if it has such a field. For example, {}\l stands
for an empty record with a restriction that cannot have field l. Any subtype cannot have l
either. Besides special subtyping rules, they define type equivalence rules to reason about
type operations on records.

Subtyping-constraint-based calculi. Rémy (1995) and following work by Pottier (2000)
handle both symmetric and asymmetric concatenation in a constraint-based-type system.
To deal with record concatenation, type operators or conditional constraints are used to
express two branches: either a field exists or is absent, mirroring the reduction of programs.
In subtyping, the type of records are distinguished into two forms: rigid record types and

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

58 X. Huang et al.

flexible record types. A rigid record type of a term reflects all fields in it. Rigid records
have no subtyping, but they can be used in a concatenation with another record. Every
rigid record type corresponds to a flexible record type, which has subtypes and supertypes.
However, flexible records cannot be used with concatenation. In λi and λ+

i , all records are
flexible and they can be used with concatenation. Moreover, the subtyping in their systems
is not expressive enough to support nested composition.

Record calculi as extensions of system F<:. The F<:ρ calculus proposed by Cardelli
(1992) extends System F<: by extensible records and combines row quantification used in
the previously discussed Harper & Pierce (1991)’s work with bounded quantification. F<:ρ

does not have record concatenation as a primitive operator. Instead, it has row extension
and restriction. A translation to F<: is provided. Poll (1997) solves the polymorphic record
update problem in System F with a restricted formulation of subtyping: it only supports
width-subtyping on record types. It has a record-update operator instead of concatenation.
One record-update operation only alters a field in a record. The subtype checking in its
typing rule makes sure the record contains that field of the expected type.

The F# calculus by Zwanenburg (1995) supports intersection types (in its later ver-
sion (Zwanenburg, 1997) intersection types are eliminated) and record concatenation in
a F<:-like system. Similar to λ+

i , multi-field records are obtained by concatenating single-
field records, and there is a distributivity rule for records in subtyping as well. They use
a “with” construct for record concatenation which is similar to the merge operator. Like
rule TYP-MERGE, the typing of “with” introduces intersections, and it has a compatibility
pre-condiction for the two terms’ types (written as A#B). Only record types or Top can
be compatible. The concatenation operator is asymmetric. When two concatenated records
have the same label, the right one overwrites the left. Correspondingly, two compatible
types can have common fields as long as for those shared fields, the right one has a sub-
type of the left’s , e.g. {l : Int}#{l : Int} & {l : Char}. In contrast, disjointness is symmetric,
and a type (unless it is top-like) cannot be disjoint with its subtypes, to ensure the two sides
of a merge coexist safely. To prevent the issue of subsumption “hiding” fields of differ-
ent types the compatibility checking, they require explicit annotations on merged records.
These annotations are used during elaboration to a target calculus, therefore affecting the
program behavior, like in our calculus. The semantics of F# is given by elaborating into
system F with pairs and records. In this sense, it predates Dunfield’s work. Concatenated
records are translated into pairs, where a special “overwriter” function, generated by the
compatibility derivation, is applied to update the overlapped fields in the first record by the
second one. In the work of Zwanenburg (1995), coherence is left for future work.

9.4 Languages and calculi with type-dependent semantics

Typed operational semantics. Goguen (1994) uses types in his reduction, similarly
to typed reduction in λi. However, Goguen’s typed operational semantics is designed
for studying meta-theoretic properties, especially strong normalization, and is not aimed
to describe type-dependent semantics. Unlike TDOS, in typed operational semantics,
the reduction process does not use the additional type information to guide reduction.
Instead, the combination of well-typedness and computation provides inversion principles

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 59

for proving various metatheoretical properties. Typed operational semantics has been
applied to several systems. These include simply typed lambda calculi (Goguen, 1995),
calculi with dependent types (Goguen, 1994; Feng & Luo, 2009) and higher-order sub-
typing (Compagnoni & Goguen, 2003). Note that the semantics of these systems does not
depend on typing, and the untyped (type-erased) reduction relations are still presented to
describe how to evaluate programs.

Type classes. (Wadler & Blott, 1989; Kaes, 1988) are an approach to parametric over-
loading used in languages like Haskell. The commonly adopted compilation strategy for
it is the dictionary passing style elaboration (Wadler & Blott, 1989; Hall et al., 1996;
Chakravarty et al., 2005a,b). Other mechanisms inspired by type classes, such as Scala’s
implicits (Oliveira et al., 2010), Agda’s instance arguments (Devriese & Piessens, 2011)
or Ocaml’s modular implicits (White et al., 2014) have an elaboration semantics as well.
In one of the pioneering works of type classes, Kaes (1988) gives two formulations for
a direct operational semantics. One of them decides the concrete type of the instance of
overloaded functions at runtime, by analyzing all arguments after evaluating them. In both
Kaes’ work and the following work by Odersky et al. (1995), the runtime semantics has
some restrictions with respect to type classes. For example, overloading on return types
(needed, for example for the read function in Haskell) is not supported. Interestingly, the
semantics of λi allows overloading on return types, which is used whenever two functions
coexist on a merge. For a detailed example, please refer to Section 7.2.

Gradual typing. Siek & Taha (2006) have become popular over the last few years.
Gradual typing is another example of a type-dependent mechanism, since the success or
not of an (implicit) cast may depend on the particular type used for the implicit cast. Thus,
the semantics of a gradually typed language is type-dependent. Like other type-dependent
mechanisms, the semantics of gradually typed source languages is usually given by a (type-
dependent) elaboration semantics into a cast calculus, such as the blame calculus of Wadler
& Findler (2009) or the threesome calculus of Siek & Wadler (2010).

Multiple dispatching. Clifton et al. (2000), Chambers & Chen (1999), Muschevici et al.
(2008), Park et al. (2019) generalize object-oriented dynamic dispatch to determine the
overloaded method to invoke based on the runtime type of all its arguments. Similar
to TDOS, much of the type information is recovered from type annotations in multiple
dispatching mechanisms, but, unlike TDOS, they only use input types to determine the
semantics.

9.5 Dealing with conflicts in OOP

There is a rich literature in OOP with various solutions for dealing with (method) con-
flicts. As we have mentioned throughout the article, the approach to deal with conflicts
by employing disjointness and a symmetric merge operator is closely related to the trait
model (Schärli et al., 2003) in OOP. In the trait model, the idea is that the composition of
traits should only be accepted if there are no conflicts: i.e. conflicts should result in errors.
To resolve errors the trait model typically allows operations for renaming and/or removing

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

60 X. Huang et al.

methods from an inherited trait. We can resolve conflicts in the same way, using subtyping
to hide (remove) some values in a merge. Bi & Oliveira (2018) have shown how to build
a source language with first-class traits on top of a calculus with a symmetric merge oper-
ator. An alternative approach would be to have an asymmetric merge operator, such as
the one from Dunfield (2014). In such a case, conflicts would be automatically resolved
by simply employing the order of composition. Such a semantics is closely related to the
traditional semantics for mixins (Bracha & Cook, 1990; Flatt et al., 1998). However, this
approach is prone to subtle errors arising from the implicit overriding of values/methods
triggered by the automatic (and implicit) resolution of conflicts.

Other approaches to conflicts in class-based languages. Several other approaches to
deal with conflicts have been studied in the context of OOP. C++ supports a very expres-
sive model of multiple inheritance that accepts two classes A and B with conflicting method
implementations to be inherited by a third class C. To deal with method invocations that
have multiple conflicting implementations, programmers in C++ can upcast C to either A
or B and then the ambiguity is removed because the static type (A or B) is used to decide
which of the methods to invoke. A simple formal model of such a mechanism in C++ (and
some extensions) was described by Wang et al. (2018). A closely related approach was
proposed by Flatt et al. (1998) in the context of mixins for a Java-like setting. The idea
there is also that if a class inherits from multiple mixins with conflicting methods, then
invocations of conflicted methods can still be disambiguated by first upcasting the class
to the mixin with the method implementation that the programmer wishes to invoke. This
approach is more flexible than the traditional-biased approach of mixin inheritance that
employs the order of mixins in composition to automatically override methods with con-
flicts. Furthermore, it avoids the issues of unintentional errors due to accidental overriding
of methods. In such approaches, nominal types play an important role, since the nominal
types enable distinguishing possible overlapping (or even equal) structural types. Our work
is done in the context of languages with structural types and thus it is closer to the work on
record calculi. However, the addition of nominal types would be interesting to investigate
and could allow for improved mechanisms for conflict resolution.

Delegation-based languages. More generally, the very dynamic nature of merges is
closely related to delegation-based OOP languages (Lieberman, 1986; Kniesel, 1999;
Fisher & Mitchell, 1995; Ungar & Smith, 1988; Ostermann, 2002; Büchi & Weck, 2000).
Delegation, originally introduced by Lieberman (1986), is a form of dynamic inheritance.
With dynamic inheritance, the inherited implementation is not statically known. This is
in contrast to static inheritance (which is widely adopted by mainstream OOP languages),
where the inherited class must be known statically: in mainstream OOP languages, when
using class A extends B, B is some concrete (statically known) class. Delegation can
itself be further classified into two difference forms: static delegation and dynamic dele-
gation (Kniesel, 1999). In static delegation, the inherited implementation may be statically
unknown, but it cannot be changed after it is “bound” to the object. In dynamic delega-
tion, the inherited implementation is stored in a mutable reference in the object and can be
changed at any time. The SEDEL language, for instance, adopts a static delegation model,
since the self-reference is immutable.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 61

The Self language (Ungar & Smith, 1988) was the first OOP language to employ dele-
gation. JavaScript has a closely related model and is directly inspired by Self. In Self and
JavaScript, the idea is that an object has a property that holds a link to another object,
which is called the prototype. The prototype object can have a prototype of its own, and so
on. This offers a very dynamic model where prototype objects can be changed at runtime,
by simply mutating the prototype reference. In other words, Self and JavaScript follow a
dynamic delegation approach. Due to their dynamically typed nature, there is no support
for statically detecting conflicts in JavaScript or Self.

Research on type systems for delegation-based languages is much less explored com-
pared with class-based languages. Fisher & Mitchell (1995) were among the first to study
type systems for delegation. Kniesel (1999) further explored this space and has inves-
tigated ways to deal with issues arising from conflicts. In his model, he avoids most
accidental overriding conflicts, by adopting a rule that a method m in one of the par-
ents can only (implicitly) override another method implementation with the same name
in another parent, if the two parents have a common parent class. This way, unrelated
methods with the same name cannot be accidentally overridden. The work by Ostermann
(2002) adapts the idea of family polymorphism to a delegation-based setting and offers
some of the advantages of nested composition that is enabled in λ+

i . There are a few other
statically typed approaches to delegation in the context of OOP programming (Büchi &
Weck, 2000; Schaefer et al., 2011). Overall, the main difference is that we are looking at
foundational calculi using intersection types and a merge operator in this article, instead
of looking at the semantics of high-level OOP languages. One application of the calculi in
this paper is indeed to model high-level programming abstractions for OOP languages, but
that is not the focus of this work. In contrast, the aforementioned related work on delega-
tion is specifically focused on the semantics of higher level OOP languages and language
mechanisms.

9.6 BCD subtyping algorithms

Pierce (1989) developed an algorithm for a form of subtyping close to BCD subtyping
using a queue of types. His algorithmic decision procedure le(σ , τ , τ) is equivalent to the
declarative judgment σ ≤ τ → τ , where τ is the queue, containing known argument types
of the right-hand-side function type. When τ is a function type τ1 → τ2, its argument type
τ1 is added to the queue. When σ is an intersection type σ1 & σ2, the queue is duplicated
on both subbranches in order to reflect the distributivity rule, by distributing the argument
types to both components of an intersection type. The rule for function types, top types,
and intersection types then takes care of argument types in the queue. Bi et al. (2018)
adapted Pierce’s algorithm to BCD subtyping and extended it with record types without
major difficulties.

The decidability of BCD subtyping is shown in several other works (Kurata &
Takahashi, 1995; Rehof & Urzyczyn, 2011; Statman, 2015) through manual proofs, and
there are also proofs formalized in Coq (Laurent, 2012; Bessai et al., 2016). Bessai et al.
(2019) developed a fast algorithm verified in Coq. Their algorithm is presented as a rela-
tional abstract machine specification, with a long proof due to the mismatch between
the styles of the declarative system and algorithmic system. In contrast, our algorithm

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

62 X. Huang et al.

is defined in a simple relational form, keeping the modularity of existing rules, resulting in
a novel, simple, and concise formulation of the metatheory for the algorithm. Of course,
the two lines of work have quite distinct goals: while we emphasize the modularity and
simplicity of the metatheory, Bessai et al. are interested in a fast algorithm, which justifies
the additional complexity in the metatheory of their approach.

Muehlboeck & Tate (2018) developed a framework for subtyping algorithms with inter-
section and union types. They also showed a variant that supports minimal relevant logic
B+, which is a generalized system with intersection and union types, subsuming BCD sub-
typing. To decide A <: B, they rewrite A with (a generalized version of) rule OS-DISTARR

as much as possible. In contrast, we split B to make the types match. Siek (2019), inspired
by Laurent (2019), proposed a new subtyping system and proved the transitivity lemma
directly. Siek keeps the judgment form A <: B (like us), but most subtyping rules require
changes and are less modular than our rules. Siek’s transitivity proof involves a size mea-
sure, while we avoid any size measure by using an alternative relation of types (proper
types), which exploits the properties of our splittable-type relation. Both works formalize
the transitivity property, as well as soundness and completeness to BCD subtyping in proof
assistants.

9.7 Parallel reduction in union-related calculi

Parallel reduction for typing unions. As discussed in Section 7.2, λ+
i applies a merge

of multiple functions to the input together and reduces every component in the result-
ing merge simultaneously. Although their system does not have merges, Barbanera et al.
(1995) also employed a similar evaluation strategy called parallel beta-reduction in a calcu-
lus with intersection and union types. They consider beta-redexes rather than components
in a merge. Instead of reducing the leftmost beta-redex, all occurrences of the same redex
are reduced together. Likewise, their motivation is a typing rule that does not preserve
types under conventional beta-reduction. This typing rule eliminates union types. If e has
type A | B, the rule considers two cases: every occurrence of e has type A or has type
B, and type-checks the expression twice under the two assumptions. Since beta-reduction
can change the syntax form of such subterms, it has to be done in parallel. This kind of
reduction strategy was proposed by Knuth (1971) and formalized in Barendregt (1984,
Chapter 13), and is known as Gross–Knuth reduction.

10 Conclusion

In this work, we showed how a type-directed operational semantics allows us to address the
ambiguity problems of calculi with a merge operator. Therefore, with the TDOS approach,
we can answer the question of how to give a direct operational semantics for both the
general merge operator in a setting with intersection types, as well as calculi with record
concatenation and subtyping. Both of these problems are well known to be challenging in
the literature, while at the same time having important practical applications. Compared
with the elaboration approach, having a direct semantics avoids the translation process
and a target calculus. This simplifies both informal and formal reasoning. For instance,

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 63

establishing the coherence of elaboration in NeColus (Bi et al., 2018) requires much
more sophistication than obtaining the determinism theorem in λ+

i . Furthermore, the proof
method for coherence in NeColus cannot deal with nonterminating programs, whereas
dealing with recursion is straightforward in λi and λ+

i . The TDOS approach exploits type
annotations to guide reduction. The key component of TDOS is typed reduction, which
allows values to be further reduced depending on their type.

Acknowledgments

We are grateful to anonymous reviewers and our colleagues Yaoda Zhou, Andong Fan,
Yaozhu Sun, Baber Rehman, and Jinhao Tan for their valuable comments that helped
improve the presentation and our understanding of this work. We also thank Yaozhu for
implementing our TDOS. This work has been sponsored by Hong Kong Research Grants
Council projects numbers 17209519 and 17209520.

Conflicts of Interest

None.

References

Ahmed, A. J. (2006) Step-indexed syntactic logical relations for recursive and quantified types. In
Programming Languages and Systems, 15th European Symposium on Programming, ESOP 2006,
Proceedings. Springer, pp. 69–83.

Alpuim, J., d. S. Oliveira, B. C. & Shi, Z. (2017) Disjoint polymorphism. In Programming
Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings. Springer, pp. 1–28.

Barbanera, F., Dezani-Ciancaglini, M. & De’Liguoro, U. (1995) Intersection and union types: Syntax
and semantics. Inform. Comput. 119(2), 202–230.

Barendregt, H. (1984) The Lambda Calculus - Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics.

Barendregt, H., Coppo, M. & Dezani-Ciancaglini, M. (1983) A filter lambda model and the
completeness of type assignment. J. Symb. Logic 48(4).

Bessai, J., Dudenhefner, A., Düdder, B. & Rehof, J. (2016) Extracting a formally verified subtyping
algorithm for intersection types from ideals and filters. TYPES.

Bessai, J., Rehof, J. & Düdder, B. (2019) Fast verified BCD subtyping. In Models, Mindsets, Meta:
The What, the How, and the Why Not?, vol. 11200. Lecture Notes in Computer Science. Cham:
Springer, pp. 356–371.

Bi, X., d. S. Oliveira, B. C. & Schrijvers, T. (2018) The essence of nested composition. In
32nd European Conference on Object-Oriented Programming, ECOOP 2018, July 16–21,
2018, Amsterdam, The Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
22:1–22:33.

Bi, X. & Oliveira, B. C. d. S. (2018) Typed first-class traits. In 32nd European Conference on Object-
Oriented Programming, ECOOP 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
9:1–9:28.

Bi, X., Xie, N., d. S. Oliveira, B. C. & Schrijvers, T. (2019) Distributive disjoint poly-
morphism for compositional programming. In Programming Languages and Systems - 28th

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

64 X. Huang et al.

European Symposium on Programming, ESOP 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings. Springer, pp. 381–409.

Bracha, G. & Cook, W. R. (1990) Mixin-based inheritance. In Conference on Object-Oriented
Programming Systems, Languages, and Applications/European Conference on Object-Oriented
Programming (OOPSLA/ECOOP), Ottawa, Canada, October 21-25, 1990, Proceedings. ACM,
pp. 303–311.

Büchi, M. & Weck, W. (2000) Generic wrappers. In European Conference on Object-Oriented
Programming (ECOOP).

Cardelli, L. (1992) Extensible Records in a Pure Calculus of Subtyping. Digital. Systems Research
Center.

Cardelli, L. & Mitchell, J. (1991) Operations on records. Math. Struct. Comput. Sci. 1, 3–48.
Cardelli, L. & Wegner, P. (1985) On understanding types, data abstraction, and polymorphism. ACM

Comput. Surv. 17(4), 471–522.
Castagna, G., Ghelli, G. & Longo, G. (1995) A calculus for overloaded functions with subtyping.

Inf. Comput. 117(1), 115–135.
Castagna, G., Nguyen, K., Xu, Z. & Abate, P. (2015) Polymorphic functions with set-theoretic types:

Part 2: Local type inference and type reconstruction. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015. ACM, pp. 289–302.

Castagna, G., Nguyen, K., Xu, Z., Im, H., Lenglet, S. & Padovani, L. (2014) Polymorphic func-
tions with set-theoretic types: part 1: Syntax, semantics, and evaluation. In The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, 2014.
ACM, pp. 5–18.

Castagna, G. & Xu, Z. (2011) Set-theoretic foundation of parametric polymorphism and subtyping.
In Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011. ACM. pp. 94–106.

Chakravarty, M. M. T., Keller, G. & Jones, S. L. P. (2005a) Associated type synonyms. In
Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2005, Tallinn, Estonia, September 26–28, 2005. ACM, pp. 241–253.

Chakravarty, M. M. T., Keller, G., Jones, S. L. P. & Marlow, S. (2005b) Associated types with class.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005. ACM, pp. 1–13.

Chambers, C. & Chen, W. (1999) Efficient multiple and predicated dispatching. In Proceedings
of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA 1999), Denver, Colorado, USA, November 1-5, 1999. ACM, pp. 238–255.

Chlipala, A. (2010) Ur: statically-typed metaprogramming with type-level record computation. ACM
Sigplan Not. 45(6), 122–133.

Clifton, C., Leavens, G. T., Chambers, C. & Millstein, T. D. (2000) Multijava: Modular open
classes and symmetric multiple dispatch for java. In Proceedings of the 2000 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
2000), Minneapolis, Minnesota, USA, October 15–19, 2000. ACM, pp. 130–145.

Compagnoni, A. B. & Goguen, H. (2003) Typed operational semantics for higher-order subtyping.
Inf. Comput. 184(2), 242–297.

Cook, W. R. & Palsberg, J. (1989) A denotational semantics of inheritance and its correctness. In
Object-Oriented Programming: Systems, Languages and Applications (OOPSLA).

Coppo, M., Dezani-Ciancaglini, M. & Venneri, B. (1981) Functional characters of solvable terms.
Math. Log. Q. 27(2-6), 45–58.

Davies, R. & Pfenning, F. (2000) Intersection types and computational effects. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP 2000),
Montreal, Canada, September 18–21, 2000. ACM. pp. 198–208.

Devriese, D. & Piessens, F. (2011) On the bright side of type classes: Instance arguments in Agda.
In Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011. ACM. pp. 143–155.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 65

Dunfield, J. (2014) Elaborating intersection and union types. J. Funct. Program. 24(2–3), 133–165.
Dunfield, J. & Pfenning, F. (2003) Type assignment for intersections and unions in call-by-value

languages. In Foundations of Software Science and Computational Structures, 6th International
Conference, FOSSACS 2003, Warsaw, Poland, Proceedings. Springer, 250–266.

Ernst, E. (2001) Family polymorphism. In Proceedings of the 15th European Conference on Object-
Oriented Programming. Berlin, Heidelberg: Springer-Verlag, p. 303–326.

Facebook. (2014) Flow. https://flow.org/
Feng, Y. & Luo, Z. (2009) Typed operational semantics for dependent record types. In Proceedings

Types for Proofs and Programs, Revised Selected Papers, TYPES 2009, Aussois, France, 12-15th
May 2009. pp. 30–46.

Fisher, K. & Mitchell, J. (1995) A delegation-based object calculus with subtyping. Fundamentals
of Computation Theory.

Flatt, M., Krishnamurthi, S. & Felleisen, M. (1998) Classes and mixins. In POPL 1998, Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1998.
ACM, pp. 171–183.

Freeman, T. S. & Pfenning, F. (1991) Refinement types for ML. In Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI). ACM,
pp. 268–277.

Goguen, H. (1994) A Typed Operational Semantics for Type Theory. Ph.D. thesis. University of
Edinburgh, UK.

Goguen, H. (1995) Typed operational semantics. In Typed Lambda Calculi and Applications,
Second International Conference on Typed Lambda Calculi and Applications, TLCA 1995, 1995,
Proceedings. Springer, pp. 186–200.

Hall, C. V., Hammond, K., Jones, S. L. P. & Wadler, P. (1996) Type classes in haskell. ACM Trans.
Program. Lang. Syst. 18(2), 109–138.

Harper, R. & Pierce, B. (1991) A record calculus based on symmetric concatenation. In Proceedings
of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New
York, NY, USA: Association for Computing Machinery, pp. 131–142.

Huang, X. & Oliveira, B. C. d. S. (2020) A type-directed operational semantics for a calculus with a
merge operator. In 34th European Conference on Object-Oriented Programming, ECOOP 2020.

Kaes, S. (1988) Parametric overloading in polymorphic programming languages. In ESOP 1988, 2nd
European Symposium on Programming, Proceedings. Springer, pp. 131–144.

Kniesel, G. (1999) Type-safe delegation for runtime component adaptation. In European Conference
on Object-Oriented Programming (ECOOP).

Knuth, D. E. (1971) Examples of formal semantics. In Symposium on Semantics of Algorithmic
Languages. Springer.

Kurata, T. & Takahashi, M. (1995) Decidable properties of intersection type systems. In Proceedings
of the Second International Conference on Typed Lambda Calculi and Applications. Springer-
Verlag, p. 297–311.

Laurent, O. (2012) Intersection types with subtyping by means of cut elimination. Fundamenta
Informaticae. 121(1–4), 203–226.

Laurent, O. (2019) Intersection subtyping with constructors. In Proceedings Twelfth Workshop on
Developments in Computational Models and Ninth Workshop on Intersection Types and Related
Systems (DCM 2018 and ITRS 2018), pp. 73–84.

Leijen, D. (2004) First-class labels for extensible rows. Technical Report UU-CS-2004-51. Dept. of
Computer Science, Universiteit Utrecht. UTCS Technical Report.

Lieberman, H. (1986) Using prototypical objects to implement shared behavior in object oriented
systems. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).

Luo, Z. (1999) Coercive subtyping. J. Log. Comput. 9(1), 105–130.
Microsoft. (2012) TypeScript. https://www.typescriptlang.org/
Muehlboeck, F. & Tate, R. (2018) Empowering union and intersection types with integrated

subtyping. Proc. ACM Program. Lang. 2(OOPSLA), 112:1–112:29.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://flow.org/
https://www.typescriptlang.org/
https://doi.org/10.1017/S0956796821000186

66 X. Huang et al.

Muschevici, R., Potanin, A., Tempero, E. D. & Noble, J. (2008) Multiple dispatch in practice. In
Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA.
ACM, pp. 563–582.

Nierstrasz, O., Ducasse, S. & Schärli, N. (2006) Flattening traits. Journal of Object Technology. 5(4),
129–148.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N., Schinz, M.,
Stenman, E. & Zenger, M. (2004) An overview of the Scala programming language. Technical
report. École Polytechnique Fédérale de Lausanne.

Odersky, M., Wadler, P. & Wehr, M. (1995) A second look at overloading. In Proceedings of
the Seventh International Conference on Functional Programming languages and Computer
Architecture, FPCA 1995. ACM, pp. 135–146.

Oliveira, B. C. d. S., Moors, A. & Odersky, M. (2010) Type classes as objects and implicits. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2010, October 17–21, 2010, Reno/Tahoe,
Nevada, USA. ACM, pp. 341–360.

Oliveira, B. C. d. S., Shi, Z. & Alpuim, J. (2016) Disjoint intersection types. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18–22, 2016. ACM, pp. 364–377.

Ostermann, K. (2002) Dynamically composable collaborations with delegation layers. In European
Conference on Object-Oriented Programming (ECOOP).

Palsberg, J. & Zhao, T. (2004) Type inference for record concatenation and subtyping. Inf. Comput.
189(1), 54–86.

Park, G., Hong, J., Jr., G. L. S. & Ryu, S. (2019) Polymorphic symmetric multiple dispatch with
variance. Proc. ACM Program. Lang. 3(POPL), 11:1–11:28.

Pierce, B. & Steffen, M. (1997) Higher-order subtyping. Theor. Comput. Sci. 176(1), 235–282.
Pierce, B. C. (1989) A decision procedure for the subtype relation on intersection types with bounded

variables. Technical report. School of Computer Science, Carnegie-Mellon University.
Pierce, B. C. (1991) Programming with Intersection Types and Bounded Polymorphism. Ph.D. thesis.

Carnegie Mellon University.
Pierce, B. C. & Turner, D. N. (1998) Local type inference. In Proceedings of ACM Symposium on

Principles of Programming Languages, pp. 252–265.
Plotkin, G. (1973) Lambda-definability and logical relations.
Poll, E. (1997) System F with width-subtyping and record updating. In International Symposium on

Theoretical Aspects of Computer Software. Springer, pp. 439–457.
Pottier, F. (2000) A 3-part type inference engine. In European Symposium on Programming.

Springer, pp. 320–335.
Pottinger, G. (1980) A type assignment for the strongly normalizable λ-terms. To HB Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577.
RedHat. (2011) Ceylon. https://ceylon-lang.org/
Rehof, J. & Urzyczyn, P. (2011) Finite combinatory logic with intersection types. In International

Conference on Typed Lambda Calculi and Applications.
Rémy, D. (1989) Type checking records and variants in a natural extension of ML. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
77–88.

Rémy, D. (1995) A case study of typechecking with constrained types: Typing record concatenation.
In Presented at the workshop on Advances in Types for Computer Science at the Newton Institute,
Cambridge, UK.

Reynolds, J. C. (1988) Preliminary design of the programming language Forsythe. Technical Report
CMU-CS-88-159. Carnegie Mellon University.

Reynolds, J. C. (1991) The coherence of languages with intersection types. In Theoretical Aspects
of Computer Software, International Conference TACS 1991, Sendai, Japan, September 24-27,
1991, Proceedings. Springer, pp. 675–700.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://ceylon-lang.org/
https://doi.org/10.1017/S0956796821000186

Taming the Merge Operator 67

Reynolds, J. C. (1997) Design of the programming language Forsythe. In ALGOL-Like Languages.
Springer, pp. 173–233.

Schaefer, I., Bettini, L. & Damiani, F. (2011) Compositional type-checking for delta-oriented pro-
gramming. In Proceedings of the Tenth International Conference on Aspect-Oriented Software
Development, AOSD 2011. ACM, pp. 43–56.

Schärli, N., Ducasse, S., Nierstrasz, O. & Black, A. P. (2003) Traits: Composable units of behaviour.
In ECOOP 2003 - Object-Oriented Programming, 17th European Conference, Proceedings.
Springer, pp. 248–274.

Siek, J. G. (2019) Transitivity of subtyping for intersection types. CoRR. abs / 1906.09709.
Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. In Scheme and Functional

Programming Workshop.
Siek, J. G. & Wadler, P. (2010) Threesomes, with and without blame. In Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010. ACM, pp. 365–376.

Statman, R. (1985) Logical relations and the typed λ-calculus. Inf. Control. 65(2/3), 85–97.
Statman, R. (2015) A finite model property for intersection types. Electron. Proc. Theor. Comput.

Sci. 177, 1–9.
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2),

198–212.
Ungar, D. & Smith, R. B. (1988) Self: the power of simplicity (object-oriented language). In Thirty-

Third IEEE Computer Society International Conference, Digest of Papers.
Wadler, P. (1998) The expression problem. Posted on the Java Genericity Mailing List.
Wadler, P. & Blott, S. (1989) How to make ad-hoc polymorphism less ad-hoc. In Conference Record

of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11–13, 1989. ACM Press, pp. 60–76.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, York, UK,
March 22–29, 2009. Proceedings. Springer, pp. 1–16.

Wand, M. (1989) Type inference for record concatenation and multiple inheritance. Proceedings.
Fourth Annual Symposium on Logic in Computer Science. pp. 92–97.

Wang, Y., Zhang, H., d. S. Oliveira, B. C. & Servetto, M. (2018) FHJ: A formal model for hierarchi-
cal dispatching and overriding. In 32nd European Conference on Object-Oriented Programming,
ECOOP 2018, July 16–21, 2018, Amsterdam, The Netherlands.

White, L., Bour, F. & Yallop, J. (2014) Modular implicits. In Proceedings ML Family/OCaml Users
and Developers Workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4–5, 2014, pp.
22–63.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput. 115(1),
38–94.

Xie, N., Oliveira, B. C. d. S., Bi, X. & Schrijvers, T. (2020) Row and bounded polymorphism via
disjoint polymorphism. In 34th European Conference on Object-Oriented Programming, ECOOP
2020.

Zwanenburg, J. (1995) Record concatenation with intersection types.
Zwanenburg, J. (1997) A type system for record concatenation and subtyping. Technical report.

Eindhoven University of Technology.

https://doi.org/10.1017/S0956796821000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000186

	Taming the Merge Operator
	Introduction
	Motivation and applications of the merge operator
	The merge operator, ambiguity, and subtyping
	Typed first-class traits
	Nested composition

	An overview of the type-directed operational semantics
	Background: Dunfield's nondeterministic semantics
	A type-driven semantics for type preservation
	The challenges of functions
	Disjoint intersection types and consistency for determinism
	The challenges of distributivity

	The bold0mu mumu sectioni calculus: Syntax, subtyping and typing
	Syntax
	Subtyping and disjointness
	Bidirectional typing
	Completeness with respect to the original type system

	A type-directed operational semantics for Lambda-i
	Typed reduction of values
	Consistency, determinism and type soundness of typed reduction
	Reduction
	Soundness with respect to Dunfield's operational semantics

	A modular and algorithmic formulation of BCD subtyping
	BCD subtyping
	A simple and modular formulation of BCD with splittable types
	Metatheory of modular BCD

	The nested composition calculus: Syntax, subtyping and typing
	Syntax and typing
	Operational semantics
	Metatheory

	Discussion
	TDOS versus an elaboration semantics
	Implementation considerations
	Design of source languages
	Extensions

	Related work
	Calculi with the merge operator and a direct semantics
	Calculi with a merge operator and an elaboration semantics
	Record calculi with record concatenation and subtyping
	Languages and calculi with type-dependent semantics
	Dealing with conflicts in OOP
	BCD subtyping algorithms
	Parallel reduction in union-related calculi

	Conclusion

